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Preface

This monograph evolved out of Einstein Cartan Evans (ECE) field theory when
an investigation was being made of the inhomogeneous field equation. This
involved the calculation of a quantity which in the shorthand notation of ECE
theory (see www.aias.us) is denoted R̃ ∧ q. Here R̃ is the Hodge dual of the
curvature form and q is the Cartan tetrad form. The symbol ∧ denotes Cartan’s
wedge product. The Cartan Evans identity states that:

D ∧ T̃ := R̃ ∧ q (1)

and in the Einstein field equation the Hodge dual torsion T̃ is zero. In tensor
notation Eq. (1) becomes:

DµT
κµν := Rκ µν

µ (2)

where Tκµν is the torsion tensor in four dimensional spacetime, and where Rκ µν
µ

is the curvature tensor. The latter can be worked out from the Einstein field
equation, so Eq. (2) gives a new test for this equation. The curvature tensor
Rκ µν

µ should be zero because the Einstein field equation uses a zero torsion
Tκµν by construction. I proceeded to work out Rκ µν

µ by hand, but soon found
that this was far too laborious. Thereafter, in mid 2007, Horst Eckardt and his
group in Munich wrote code for the evaluation of Rκ µν

µ by computer algebra.
This resulted in paper 93 on www.aias.us and came up with the important
finding that the Einstein field equation gives a non zero Rκ µν

µ in general, and
is therefore wholly incorrect.

This finding was thereafter reinforced by later papers of the ECE series,
which showed that every known metric of the Einstein field equation is incorrect.
In paper 122 of the ECE series the root cause of this disaster for the now obsolete
physics of the twentieth century was discovered, the connection in Riemannian
geometry must be antisymmetric in its lower two indices µ and ν. For some
obscure reason Einstein and his contemporaries used a symmetric connection,
an elementary error. The antisymmetry of the connection is shown easily as
follows. Define the commutator of covariant derivatives in any four dimensional
spacetime:

Dµν = −Dνµ := [Dµ, Dν ]. (3)

then well known textbook calculations show that:

DµνV
ρ = RρσµνV

σ − TλµνDλV
ρ (4)
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PREFACE

where Rρσµν is the curvature tensor, Tλµν is the torsion tensor, V ρ is a vector
and DλV

ρ is its covariant derivative. The torsion tensor is defined by:

Tλµν = Γλµν − Γλνµ (5)

where Γλµν is the connection. The latter therefore has the same symmetry as
the commutator, i.e. it is antisymmetric in µ and ν:

Γλµν = −Γλνµ. (6)

Both the commutator and the connection vanish if µ is the same as ν. This
means that the torsion and curvature vanish if µ is the same as ν. The error
made by Einstein, and repeated until the evolution of ECE, was:

Γλµν =? Γλνµ 6=? 0. (7)

This error, and its repetition for ninety years, is inexplicable in logic, it is
perhaps due to belief retention. When we submitted paper 93 to Physica B
in 2007/2008 it was met by crude personal abuse, so this seems indeed to be
hostility due to belief retention, a commonplace human failing. This means that
academic physics itself comes under the microscope, being a clearly unreliable
subject. Schroedinger, and independently, Bauer, were the first to criticise the
Einstein field equation in 1918, and these criticisms have echoed down the years.
Academic physics seems to have ignored them illogically.

The use of the antisymmetric connection led to important new antisymme-
try laws which have been developed in later papers of the ECE series, papers
which attract a huge readership of high quality on www.aias.us, but which are
anathema to academic physics. The latter has therefore been isolated as a
non-scientific remnant by other scientific professions, by industry, government,
military staffs and individual scholars in their hundreds of thousands.

Once it is accepted that the connection is antisymmetric in its lower two
indices, its Hodge dual may be defined as in the textbooks:

Γ̃λµν =
1
2
‖g‖1/2ε αβ

µν Γλαβ (8)

where ‖g‖1/2 is the square root of the positive value of the determinant of the
metric, a weighting factor which cancels out in later calculations. In Eq. (8)
the totally antisymmetric unit tensor ε αβ

µν is defined as the flat space tensor.
The Hodge dual torsion is the tensor:

T̃λµν = Γ̃λµν − Γ̃λνµ. (9)

Neither the connection nor the Hodge dual connection are tensors, because
under the general coordinate transformation they do not transform as tensors.
They are nevertheless antisymmetric in their lower two indices. The Hodge dual
transformation applied to Eq. (4) produces:

D̃µνV
ρ = R̃ρσµνV

σ − T̃λµνDλV
ρ (10)
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in which the structure of the torsion tensor must be defined as in Eq. (9). It
follows that the covariant derivative used in Eq. (10) must be:

D̃µV
ρ = ∂µV

ρ + Γ̃ρµλV
λ (11)

and that the Hodge dual curvature tensor must be:

R̃ρσµν = ∂µΓ̃ρνσ − ∂ν Γ̃ρµσ + Γ̃ρµλΓ̃λνσ − Γ̃ρνλΓ̃λµσ. (12)

The two tensors (9) and (12) must therefore give a new identity of differential
geometry:

D ∧ T̃ a := d ∧ T̃ a + ωab ∧ T̃ b := R̃ab ∧ qb (13)

which has become known as the Cartan Evans identity. The original Cartan
identity is well known from the textbooks to be:

D ∧ T a := d ∧ T a + ωab ∧ T b := Rab ∧ qb. (14)

The Cartan Evans identity (13) shows that the Einstein field equation is in-
correct, as explained already in this preface, and this book is dedicated to this
demonstration, with chapters by other colleagues who have independently re-
futed the Einstein field equation and standard cosmology with its pseudoscien-
tific contrivances.

The Cartan Evans identity is Hodge dual invariant with the Cartan identity.
The former identity in tensor notation is:

DµT̃
a
νρ +DρT̃

a
µν +Dν T̃

a
ρµ := R̃aµνρ + R̃aρµν + R̃aνρµ (15)

which is the same as:

DµT
aµν := Ra µν

µ (16)

in which the covariant derivative is defined by:

DµV
ρ := ∂µV

ρ + Γ̃ρµλV
λ. (17)

A special case of Eq. (16) is:

DµT
κµν := Rκ µν

µ . (18)

The Cartan identity in tensor notation is:

DµT
a
νρ +DρT

a
µν +DνT

a
ρµ := Raµνρ +Raρµν +Raνρµ (19)

which is the same as:

DµT̃
aµν := R̃a µν

µ (20)

in which the covariant derivative is

DµV
ρ := ∂µV

ρ + ΓρµλV
λ. (21)

A special case of Eq. (20) is

DµT̃
κµν := R̃κ µν

µ . (22)
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Chapter 1

Introduction

by

Myron W. Evans1,

Alpha Institute for Advance Study (AIAS)
(www.aias.us, www.atomicprecision.com)

This book is a review of recent criticisms of the well known Einstein field
equation of 1915, which is still the basis for ideas such as big bang, black holes
and dark matter, and of the precision tests of general relativity in the standard
physics. The book is divided into chapters by contemporary critics of the equa-
tion. Chapter two is a review of the well known Einstein Cartan Evans (ECE)
variation on relativity theory, which correctly considers the role of space-time
torsion and reinstates torsion in its central role. This chapter is paper 100 on
the www.aias.us site, the most read site of contemporary physics, and gives a
rigorous proof of the Bianchi identity of Cartan geometry and its dual identity.
It is shown that the Einstein field equation does not obey these fundamental
identities of geometry because of its neglect of torsion. Chapter three is by
Stephen Crothers, a leading scholar on solutions of the equation. In his chapter
Crothers give several clear arguments as to the fundamental incorrectness of big
bang, and exposes glaring errors in the mathematics of such claims. Similarly,
Crothers shows with clarity and rigor that claims to the existence of black holes
and dark matter cannot be mathematically correct, and so have no significance
in physics.

Chapter four is by Horst Eckardt, and uses recently developed computer
algebra to show that all mathematical solutions of the Einstein field equation
in the presence of finite energy momentum density violate the dual identity
proven in chapter two and in several papers on www.aias.us. For each line
element solution of the Einstein field equation, computer algebra is used to give

1e-mail: emyrone@aol.com
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all the Christoffel symbols and all elements of the Riemann, Ricci and Einstein
tensors. Each line element is checked for metric compatibility, and each line
element is checked to see if it obeys the fundamental Ricci cyclic equation,
known in the standard literature as the first Bianchi identity. This appellation
of the standard physics is a misnomer, because it is neither a true identity
nor was it given by Bianchi. It was first given by Ricci and Levi-Civita. The
rigorously correct Bianchi identity in geometry was first given by Cartan as is
well known, and as is equally well known, must include the torsion ineluctably.
Finally in this chapter by Eckardt, the line element solutions are tested against
the dual identity proven in chapter two. The results are given in tables and
graphs. They are exceedingly intricate, so the computer is used to build up the
tables without manual transcription error. The results show clearly that the
Einstein field equation is incorrect geometrically - meaning that the standard
theory of relativity must be revised fundamentally to place torsion as a central
feature of the natural and engineering sciences. This is what ECE theory does.

In the fifth chapter, Kerry Pendergast uses his skills as an educator and
writer to put these results in historical and scientific context. In so doing he
uses some of the material from his "virtual best seller" on www.aias.us, called
"Crystal Spheres" to give a historically accurate description of the evolution of
the theory of relativity.

In the remainder of this introductory chapter a brief account is given of
the evolution of space-time torsion in geometry and ECE theory. The latter is
reviewed in detail in chapter two of this book, (paper 100 of www.aias.us). The
fundamental idea of the theory of relativity is that physics must be an objective
subject independent of anthropomorphic bias.

This philosophy was given for example by High Renaissance thinkers such
as Bernardino Telesio and Francis Bacon, but goes back to classical times. Its
most well known manifestation appears in the Idol of the Cave philosophy of
Bacon. By this he means the fantasies of the human mind, the word "idol"
being used in its original classical Greek meaning of "dream". Bacon asserts
that the workings of nature must be manifest through empirical testing of human
ideas, in our times "experimental data". Contemporary science is based on this
philosophy combined with the earlier philosophy of William of Ockham, that
the simpler of two theories is preferred in natural philosophy or physics. The
invisible college of Francis Bacon later developed into the Royal Society, which
espouses the Baconian philosophy.

In Newtonian times the idea of absolute space and of absolute time was pre-
dominant, and the whole of Newtonian mechanics is based on the separation
of space and time. The anthropomorphic bias of the human mind makes this
separation seem entirely natural from everyday experience. Time seems to be
moving in one way, in space we can move forwards an backwards, and the two
concepts appeared to be described by Newtonian mechanics with the later ad-
dition of the Euler, Laplace and Hamilton equations and so forth in classical
dynamics. In the nineteenth century these well known concepts of dynamics
were challenged by the then new classical electrodynamics, notably the vector
equations of Heaviside. These are the well known equations of classical electro-
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CHAPTER 1. INTRODUCTION

dynamics, developed from the quaternion equations of Maxwell and Faraday’s
concept of field of force which he named the electro-tonic state. The Heaviside
field equations are misnamed "the Maxwell equations" in the standard books
in physics, and importantly, are not Newtonian in nature. They are covari-
ant under the Lorentz transformation, not the Galilean transformation of space
separated from time.

Heaviside developed his equations a few years before Michelson and Morley
proved the absence of the aether, causing a crisis of thought in natural philos-
ophy as is well known. The results of the Michelson Morley experiment were
discussed by Heaviside and Fitzgerald, who can be said to be the founders of the
theory of relativity. This discussion culminated in the proposal by Fitzgerald of
length contraction to explain the results of the Michelson Morley experiment.
This was a qualitative proposal made to the journal "Science" and it took a
further eight years or so for Lorentz to produce the equations of the Lorentz
transform, in which space and time both transform. About this time, 1900,
Poincare, Bianchi, Ricci and Levi-Civita began to develop the theory of ten-
sors, a term coined by Hamilton. The Heaviside equations were put into tensor
form, the electromagnetic field was shown to be part of a four by four matrix
so that electricity and magnetism became part of the same entity. In the years
1900 to 1905 several scientists contributed to special relativity, and in 1905 Ein-
stein proposed the constancy of the speed of light as a cornerstone and showed
that the equations of dynamics are Lorentz covariant in special relativity, as
well as the Heaviside equations of electro-dynamics. Around the same time
Minkowski developed the contra-variant covariant notation and the concept of
Minkowski space-time, or flat space-time described by the metric diag (-1, 1,
1, 1). Therefore the discussions between Heaviside and Fitzgerald culminated
circa 1906 in the theory of special relativity as still used today. In this theory a
frame translates with constant velocity with respect to a second, and the equa-
tions of physics retain their tensor form under the Lorentz transform. It is now
known that special relativity is the most precise theory in physics, having been
rigorously tested in many ways.

The development of general relativity, in which a frame moves in any way,
i.e. arbitrarily, with respect to another, is due to Einstein from about 1906
onwards. The basic tensorial idea of general relativity is that the equations
of physics retain their form under any type of transformation, and that this
transformation is a coordinate transformation in four dimensions (ct, X, Y, Z).
General relativity is a philosophical departure from special relativity because in
the former subject the metric is no longer the static diag (-1, 1, 1, 1). Also,
physics is thought of in terms of a geometry that is not Euclidean. Perhaps this
is the greatest achievement of Einstein, the application of Riemann geometry to
physics. The fundamental task of development of the Einstein field equation is
how to make physics proportional to geometry. This is the easiest way to think
of general relativity because it is not an intuitive concept, neither is length con-
traction nor time dilation, nor space-time nor the Lorentz transform. The well
known Einstein field equation of 1915 was finally arrived at independently by
Einstein and Hilbert after many discussion with experts in tensor theory and
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geometry such as Levi-Civita and Grossman. The field equation states that
a quantity in Riemann geometry is proportional to the Noether Theorem of
physics, the latter being essentially the conservation laws of physics in tensor
form, or generally covariant form. The quantity in geometry is what the stan-
dard physics calls the second Bianchi identity. The proportionality constant is
k, the Einstein constant. The Einstein field equation then follows by assuming
that the covariant derivative on both sides can be removed, so that the Einstein
tensor itself is proportional through k to a quantity known as the canonical
energy momentum density of matter.

This is the equation that is still used in the standard physics to predict such
things as big bang, black holes and dark matter. They are all consequences
of the Einstein field equation, which has become dogmatic in nature. As early
as 1918 Bauer and Schroedinger independently showed major shortcomings of
the Einstein field equation and the Eddington experiment is known now to be
essentially an exercise in anthropomorphic bias, lacking entirely the precision to
prove the field equation as is so often claimed in the standard physics. In the
early twenties, Cartan showed that the Riemann geometry itself is incomplete
because of its lack of space-time torsion. The torsion was unfortunately elimi-
nated by Ricci and Levi-Civita through their use of the symmetric connection,
often attributed to Christoffel.

The Einstein field equation is therefore based on a geometry in which torsion
is eliminated arbitrarily. There is no logical justification for this elimination of
torsion. In this book, it is shown what happens when the torsion is neglected -
essentially a disaster for twentieth century standard physics. The only way in
which standard physics can justify its claims is to assert without logic that tor-
sion is a mathematical abstraction. In logic, torsion is no more of an abstraction
than curvature, on which the whole of the illogical paraphenalia of big bang,
black holes and dark matter is based. Chapter two shows essentially how the
torsion is central to a generally covariant unified field theory, the ECE theory.
Chapter three by Crothers show shows the vacuum solutions of the Einstein
field equation are meaningless, and reveals the basic errors repeated down the
twentieth century by the standard physics. Chapter four by Eckardt uses newly
developed computer algebra to show precisely how the lack of torsion leads to a
basic contradiction with the Bianchi identity of Cartan in its Hodge dual form,
and chapter five by Pendergast summarizes the historical context.
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Chapter 2

A Review of Einstein Cartan
Evans (ECE) Field Theory

by

Myron W. Evans1,

Alpha Institute for Advance Study (AIAS)
(www.aias.us, www.atomicprecision.com)

2.1 Introduction

The well accepted Einstein Cartan Evans (ECE) field theory [1,12] is reviewed in
major themes of development from Spring 2003 to present in approximately 103
papers and volumes summarized on www.aias.us and www.atomicprecision.com.
Recently a third website, www.telesio-galilei.com, has been associated with these
two main websites of the theory. Additionally, these websites contain educa-
tional articles by members of the Alpha Institute for Advanced Study (AIAS)
and the Telesio-Galilei Association, and also contain an Omnia Opera listing
most of the collected works of the present author, including precursor theories
to ECE theory from 1992 to present. Most original papers are available by hy-
perlink for scholarly study. It is seen in detail from the feedback activity sites
of the three main sites that ECE theory is fully accepted. All the 103 papers to
date are read by someone, somewhere every month, and detailed summaries of
the feedback are available on www.aias.us. Additionally ECE theory has been
published in the traditional manner: in four journals with anonymous reviewers,
(three of them standard model journals), and is constantly internally refereed
by AIAS staff. The latter are like minded professionals who have worked vol-

1e-mail: emyrone@aol.com
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untarily on ECE theory and in the development of AIAS. Computer algebra
(Maxima program) has been developed to check hand calculations of ECE the-
ory and to perform calculations that are too complicated to carry out by hand.
Therefore a review of the main themes of development and main discoveries of
ECE theory is timely.

The ECE theory is a suggestion for the development of a generally covariant
unified field theory based on the principles of general relativity, essentially that
natural philosophy is geometry. This principle has been proposed since ancient
times in many ways, but its most well known manifestation is probably the
work of Albert Einstein from about 1906 to 1915, culminating in the proposal
of the well known Einstein Hilbert (EH) field equation of gravitation. This
work by Einstein and contemporaries is very well known, but a brief summary
is given here. After several false starts Einstein proposed in 1915 that the
so called “second Bianchi identity” of Riemann geometry be proportional to
a form of the Noether Theorem in which the covariant derivative vanishes of
the canonical energy-momentum tensor. It is much less well known that in so
doing, Einstein used the only type of geometry then available to him: Riemann
geometry without torsion. The EH field equation follows from this proposal by
Einstein as a special case:

Gµν = kTµν (2.1)

where Gµν is the Einstein tensor, k is the Einstein constant, and Tµν is the
canonical energy - momentum tensor. Eq. (2.1) is a special case of the Einstein
proposal of 1915:

DµGµν = kDµTµν = 0 (2.2)

where on the left hand side appears geometry, and on the right hand side ap-
pears natural philosophy. David Hilbert proposed the same equation at about
the same time using Lagrangian principles, but Hilbert’s work was motivated by
Einstein’s ideas, so the EH equation is usually attributed to Einstein. The EH
equation applies however only to gravitation, whereas ECE has unified general
relativity with the other fields of nature besides gravitation. The other fun-
damental fields are thought to be the electromagnetic, weak and strong fields.
ECE has also unified general relativity with quantum mechanics by discarding
the acausality and subjectivity of the Copenhagen School, and by deriving ob-
jective and causal wave equations from geometrical first principles. The two
major and well accepted achievements of ECE theory are therefore the unifi-
cation of fields using geometry, and the unification of relativity and quantum
mechanics. This review is organized in sections outlining the main themes and
discoveries of ECE theory, and into detailed technical appendices dealing with
basics. These appendices include flow charts of the inter-relation of the main
equations.

In Section 2.2 the geometrical first principles of ECE theory are summarized
briefly, the theory is based on a form of geometry developed [13] by Cartan
and first published in 1922. This geometry is fully self-consistent and well
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known - it can be regarded as the standard differential geometry taught in good
universities. The dialogue between Einstein and Cartan on this geometry is
perhaps not as well known as the dialogue between Einstein and Bohr, but is the
basis for the development of ECE theory. It is named “Einstein Cartan Evans”
field theory because the present author set out to suggest a completion of the
Einstein Cartan dialogue. This dialogue was part of the attempt by Einstein and
many others to complete general relativity by developing a generally covariant
unified field theory on the principles of a given geometry. For many reasons
this unification did not come about until Spring of 2003, when ECE theory was
proposed. The main obstacles to unification were adherence in the standard
model to a U(1) sector for electromagnetism, the neglect of the ECE spin field
B(3), inferred in 1992, and adherence to the philosophy of the Copenhagen
School. Standard model proponents adhere to these principles at the time of
writing, but ECE proponents now adopt a different natural philosophy, since
it may be claimed objectively from feedback data that ECE is a new school of
thought.

In Section 2.3 the main field and wave equations of ECE are discussed in
summary. They are derived from the well known principles of Cartan’s geom-
etry. The gravitational, electromagnetic, weak and strong fields are unified by
Cartan’s geometry, each is an aspect of the same geometry. The field equations
are based on the one true Bianchi identity given by Cartan, using different rep-
resentation spaces. The wave equations are derived from the tetrad postulate,
the very fundamental requirement in natural philosophy and relativity theory
that the complete vector field be invariant under the general transformation
of coordinates. To translate Cartan to Riemann geometry requires use of the
tetrad postulate. Therefore both the Bianchi identity and tetrad postulate are
fundamentals of standard differential geometry and their use in ECE theory is
entirely standard mathematics [13].

In Section 2.4 the unification of phase theory made possible by ECE is sum-
marized in terms of the main discoveries and points of development. The main
point of development in this context is the unification of apparently disparate
phases such as the electromagnetic phase, the Dirac and Wu Yang phases, and
the topological phases. ECE theory presents a unified geometrical approach to
each phase, and this approach also gives a straightforward geometrical expla-
nation of the Aharonov Bohm effects and “non-locality”. The electromagnetic
phase for example is developed in terms of the B(3) spin field [14] and some
glaring shortcomings of the standard model are corrected. Thus, apparently
simple and well known effects such as reflection are developed self-consistently
with ECE, while in the standard model they are at odds with fundamental sym-
metry [1, 12]. The standard model development of the Aharonov Bohm effects
is also incorrect mathematically, obscure, controversial and convoluted, while in
ECE theory it is straightforward.

In Section 2.5 the ECE laws of classical dynamics and electrodynamics are
summarized in the language of vectors, the language used in electrical engi-
neering. The equations of electrodynamics in ECE theory reduce to the four
laws: Gauss law of magnetism, Faraday law of induction, Coulomb law and
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Ampère Maxwell law. In ECE theory they are the same in vector notation as in
the familiar Maxwell Heaviside (MH) field theory, but in ECE are written in a
different space-time. In ECE the electromagnetic field is the spinning of space-
time, represented by the Cartan torsion, while in MH the field is a nineteenth
century concept still used uncritically in the contemporary standard model of
natural philosophy. The space-time of MH is the flat and static Minkowski
space-time, while in ECE the space-time is dynamic with non-zero curvature
and torsion. This difference manifests itself in the relation between the fields
and potentials in ECE, a relation which includes the spin connection.

In Section 2.6, spin connection resonance (SCR) is discussed, concentrat-
ing as usual on the main discoveries and points of development of the ECE
theory. In theory, SCR is of great practical utility because the equations of
classical electrodynamics become resonance equations of the type first inferred
by the Bernoulli’s and Euler. Therefore a new source of electric power has been
discovered in ECE theory - this source is the Cartan torsion of space-time. Am-
plification occurs in principle through SCR, the spin connection itself being the
property of the four-dimensional space-time with curvature and torsion which
is the base manifold of ECE theory. It is well known [15] that these resonance
equations are equivalent to circuits that can be used to amplify electric power.
In all probability these circuits were the ones designed by Tesla empirically.

In Section 2.7 the utility of ECE as a unified field theory is illustrated through
the effects of gravitation in optics and spectroscopy. These are exemplified by
the effect of gravitation on the ring laser gyro (Sagnac effect) and on radiatively
induced fermion resonance (RFR). RFR itself is of great potential utility because
it is a form of electron and proton spin resonance induced not by a permanent
magnet, but by a circularly polarized electromagnetic field. This is known as
the inverse Faraday effect (IFE) [16] from which the ECE spin field B(3) was
inferred in 1992 [17]. The spin field signals the fact that in a self consistent
philosophy, classical electrodynamics must be part of a generally covariant field
theory. This is incompatible with the U(1) sector of special relativity still used
to describe electrodynamics in the standard model. Any proposal for a unified
field theory based on U(1) cannot be generally covariant in all sectors, leaving
ECE as the only satisfactory unified field theory at the time of writing.

In Section 2.8 the well known radiative corrections [18] are developed with
ECE theory, and a summary of the main points of progress illustrated with the
anomalous g factor of the electron and the Lamb shift. It is shown that claims
to accuracy of standard model quantum electrodynamics (QED) are greatly ex-
aggerated. The accuracy is limited by that of the Planck constant, the least
accurately known fundamental constant appearing in the fine structure con-
stant. There are glaring internal inconsistencies in standards laboratories tables
of data on the fundamental constants, and QED is based on a number of what
are effectively adjustable parameters introduced by ad hoc procedures such as
dimensional renormalization The concepts used in QED are vastly complicated
and are not used in the ECE theory of the experimentally known radiative cor-
rections. The Feynman perturbation method is not used in ECE: it cannot be
proven to converge as is well known, i.e. needs many terms of increasing com-
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plexity which must be evaluated by computer. So ECE is a fundamental theory
of quantized electrodynamics from the first principles of general relativity, while
QED is a theory of special relativity needing adjustable parameters, acausal and
subjective concepts, and therefore of dubious validity.

In Section 2.9, finally, it is shown that EH theory has several fundamental
shortcomings. As described on ww.telesio-galilei.com EH has been quite severely
criticized down the years by several leading physicists. Notably, Crothers [19]
has criticized the methods of solution of EH, and has shown that uncriti-
cally accepted concepts are in fact incompatible with general relativity. These
include Big Bang, dark hole and dark matter theory and the concept of a
Ricci flat space-time. He has also shown that the use of the familiar but mis-
named “Schwarzschild metric” is due to lack of scholarship and understanding
of Schwarzschild’s original papers of 1916. ECE has revealed that the use of the
familiar Christoffel symbol is incompatible with the one true Bianchi identity of
Cartan. This section suggests a development of the EH equation into one which
is self consistent.

Several technical appendices give basic details which are not usually given
in standard textbooks, but which are nevertheless important to the student.
These appendices also contain flow charts inter-relating the main concepts and
equations of ECE.

2.2 Geometrical Principles
The ECE theory is based on the two structure equations of Cartan, and the
Bianchi identity of Cartan geometry. During the course of development of the
theory a useful short-hand notation has been used in which the indices are
removed in order to reveal the basic structure of the equations. In this notation
the two Cartan structure equations are:

T = D ∧ q = d ∧ q + ω ∧ q (2.3)

and

R = D ∧ ω = d ∧ ω + ω ∧ ω (2.4)

and the Bianchi identity is:

D ∧ T = d ∧ T + ω ∧ T := R ∧ q. (2.5)

In this notation T is the Cartan torsion form, ω is the spin connection symbol,
q is the Cartan tetrad form, and R is the Cartan curvature form. The meaning
of this symbolism is defined in all detail in the ECE literature [1, 12], and the
differential form is defined in the standard literature [13]. The purpose of this
section is to summarize the main advances in basic geometry made during the
development of ECE theory.

The Bianchi identity (2.5) is basic to the field equations of ECE, and its
structure has been developed considerably [1, 12]. It has been shown to be
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equivalent to the tensor equation:

Rλρµν +Rλµνρ +Rλνρµ

:= ∂νΓλρµ − ∂ρΓλνµ + ΓλνσΓσρµ − ΓλρσΓσνµ
+ ∂ρΓλµν − ∂µΓλρν + ΓλρσΓσµν − ΓλµσΓσρν
+ ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ

(2.6)

in which a cyclic sum of three Riemann tensors is identically equal to the sum of
three fundamental definitions of the same Riemann tensors. These fundamental
definitions originate in the commutator of covariant derivatives acting on a
four-vector in the base manifold. The latter is four dimensional space-time with
BOTH curvature and torsion [1, 13]. This operation produces:

[Dµ, Dν ]V ρ = RρσµνV
σ − TλµνDλV

ρ (2.7)

where the torsion tensor is:

Tλµν = Γλµν − Γλνµ. (2.8)

The curvature or Riemann tensor cannot exist without the torsion tensor, and
the definition (2.7) has been shown to be equivalent to the Bianchi identity
(2.6).

The second advance in basic geometry is the inference [1, 12] of the Hodge
dual of the Bianchi identity. In short-hand notation this is:

D ∧ T̃ := R̃ ∧ q (2.9)

and is equivalent to:

[Dµ, Dν ]HDV ρ = R̃ρσµνV
σ − T̃λµνDλV

ρ (2.10)

where the subscript HD denotes Hodge dual. From these considerations it may
be inferred that the Bianchi identity and its Hodge dual are the tensor equations:

DµT̃
κµν = R̃κµ

µν (2.11)

and

DµT
κµν = Rκµ

µν (2.12)

in which the connection is NOT the Christoffel connection. Computer algebra
[1, 12] has shown that the tensor Rκ µν

µ is not zero in general for line elements
that use the Chrstoffel symbol, while Tκµν is always zero for the Christoffel
symbol. So the use of the latter is inconsistent with the tensor equation (2.12).
Therefore the neglect of torsion makes EH theory internally inconsistent, so
standard model general relativity and cosmology are also internally inconsistent
at a basic level. In short-hand notation the geometry used in EH is:

R ∧ q = 0 (2.13)
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which in tensor notation is known as “the first Bianchi identity”:

Rκµνρ +Rκρµν +Rκνρµ = 0 (2.14)

in the standard model literature. However, this is not an identity, because it
conflicts with equation (2.5), and is true if and only if the Christoffel symbol
and symmetric metric are used [1,13]. Eq. (2.14) was actually inferred by Ricci
and Levi-Civita, not by Bianchi. So it is referred to in the ECE literature as
the Ricci cyclic equation.

In the course of development of ECE theory a similar problem was found
with what is referred to in the standard model literature as “the second Bianchi
identity”. In shorthand notation this is given [13] as:

D ∧R = 0 (2.15)

but again this neglects torsion. In tensor notation Eq. (2.15) is:

DρR
κ
σµρ +DµR

κ
σνρ +DνR

κ
σρµ = 0. (2.16)

It has been shown [1,12] that Eq. (2.15) should be:

D ∧ (D ∧ T ) := D ∧ (R ∧ q) (2.17)

which is found by taking D∧ on both sides of Eq. (2.15). Eq. (2.17) has been
given in tensor notation [1, 12], and reduces to Eq. (2.16) when:

Tλµν = 0. (2.18)

However, Eq. (2.18) is inconsistent with the fundamental operation of the
commutator of covariant derivatives on the four vector, Eq. (2.7). So in the ECE
literature the torsion is always considered self-consistently. From the fundamen-
tals [13] of Eq. (2.7) there is no a priori reason for neglecting torsion, and in
fact the torsion tensor is always non-zero if the curvature tensor is non-zero.
This fact precludes the use of the Christoffel symbol, making EH theory self-
inconsistent.

These are the main geometrical advances made during the course of the
development of ECE theory, which is the only self-consistent theory of general
relativity. It has also been pointed out by Crothers [19] that methods of solution
of the EH equation are geometrically incorrect, and must be discarded. It
is thought that these errors have been repeated uncritically for ninety years
because few have the necessary technical ability to understand the geometry
of general relativity in sufficient depth, and that the prestige of Einstein has
precluded or inhibited due criticism.

2.3 The Field and Wave Equations of ECE The-
ory

The wave equation of ECE was the first to be developed historically [1,12], and
methods of derivation of the wave equation were subsequently simplified and
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clarified. The field equations were subsequently developed from the Bianchi
identity discussed in Section 2.2. This section summarizes the main equations
and methods of derivation. More detail of the equations is given in technical
appendices. The field equations are relevant to classical gravitation and electro-
dynamics, and the wave equation to causal and objective quantum mechanics.
Full details of derivations are available in the literature [1, 12], the aim of this
section is to summarize the main inferences of ECE theory to date.

The Bianchi identity (2.5) and its Hodge dual (2.9) become the homogeneous
and inhomogeneous field equations of ECE respectively. These field equations
apply to the four fundamental fields of force: gravitational, electromagnetic,
weak and strong and can be used to describe the interaction of the fundamental
fields on the classical level. For example the electromagnetic field is described
by making the fundamental hypothesis:

A = A(0)q (2.19)

where the shorthand (index-less) notation has been used. Here A represents the
electromagnetic potential form and cA(0) is a primordial quantity with the units
of volts, a quantity which is proportional to the charge, −e, on the electron. The
hypothesis (2.19) implies that:

F = A(0)T (2.20)

where F is shorthand notation for the electromagnetic field form. The homo-
geneous ECE field equation of electrodynamics follows from the Bianchi iden-
tity (2.5):

d ∧ F + ω ∧ F = A(0)R ∧ q (2.21)

and the inhomogeneous ECE field equation follows from the Hodge dual (2.9)
of the Bianchi identity:

d ∧ F̃ + ω ∧ F̃ = A(0)R̃ ∧ q. (2.22)

Therefore the ECE field equations are duality invariant, a basic symmetry which
means that they transform into each other by means of the Hodge dual [1, 12].
The Maxwell Heaviside (MH) field equations of the standard model do not have
this fundamental symmetry and in differential form notation the MH equations
are:

d ∧ F = 0 (2.23)

and

d ∧ F̃ = J̃/ε0 (2.24)

where J̃ denotes the inhomogeneous charge/current density and ε0 is the S. I.
vacuum permittivity. Duality symmetry is broken by the fact that there is no
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homogeneous charge current density (J ) in MH theory (the right hand side of
Eq. (2.23) is zero). The absence of J in the standard model is made the basis
for gauge theory as is well known, and also made the basis for the absence of a
magnetic monopole.

The ECE field equations (2.21) and (2.22) are re-arranged as follows in order
to define the homogeneous (J ) and inhomogeneous (J̃) charge current densities
of ECE theory:

d ∧ F = J/ε0 = A(0)(R ∧ q − ω ∧ T ) (2.25)

and

d ∧ F̃ = J̃/ε0 = A(0)(R̃ ∧ q − ω ∧ T̃ ). (2.26)

Both equations are generally covariant because they originate in the Bianchi
identity. The interaction of electromagnetism with gravitation occurs when-
ever J is non-zero. In MH theory such an interaction cannot be described,
because MH theory is developed in Minkowski space-time. The latter has no
curvature and in general relativity cannot describe gravitation at all. For all
practical purposes in the laboratory there is no interaction of electromagnetism
and gravitation, so Eq. (2.25) reduces to:

d ∧ F = 0. (2.27)

Therefore ECE theory explains in this way why there is no magnetic monopole
observable in the laboratory. The standard model has no physical explanation
for this, and indeed asserts that gauge theory is mathematical in nature. ECE
theory does not use gauge theory, and adopts Faraday’s original point of view
that the potential A is a physically effective entity. There are therefore impor-
tant philosophical differences between ECE and the standard model of classical
electrodynamics, in which the potential is mathematical in nature.

Therefore the structure of the ECE field equations is a simple one based
directly on the Bianchi identity. The structure is seen the most clearly using
the shorthand notation of Eqs. (2.25) and (2.26) where all indices are omitted.
The notation of classical electrodynamics varies from subject to subject. In
advanced field theory the elegant but concise differential form notation is used,
and also the tensor notation. In electrical engineering the vector notation is
used. In ECE theory all three notations have been developed [1,12] in all detail,
and the ECE field equations developed into a vector form that is identical to the
MH equations. The main differences between ECE and MH is firstly that the
former is written in a four dimensional space-time with curvature and torsion
both present. This is a dynamic space-time whose connection must be more
general than the Christoffel connection. The MH equations, although having
the same vector form as ECE, are written in the Minkowski space-time of special
relativity. This is often referred to as “flat space-time”, whose metric is time
and space independent. Secondly the relation between the field and potential in
ECE includes the connection, whereas in MH the connection is not present. The
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inclusion of the connection has the all important effect of making the equations
of classical electrodynamics resonance equations of the Bernoulli/Euler type.
This property means that it is possible to describe well known phenomena such
as those first observed by Tesla, and to produce circuits that take electric power
from a new source, the Cartan torsion.

The concise tensorial expression of the equations (2.25) and (2.26) is in
general [1, 12]

DµF̃
aµν = A(0)R̃aµ

µν (2.28)

and

DµF
aµν = A(0)Raµ

µν (2.29)

where the covariant derivative appears on one side and a Ricci type curvature
tensor on the other. It has been shown [1,12] that these reduce in the laboratory,
and for all practical purposes, to:

∂µF̃
aµν = 0 (2.30)

and

∂µF
aµν = A(0)Raµ

µν . (2.31)

The index a in these equations comes from the well known [13] tangent space-
time of Cartan geometry. However, it has been shown [1, 12] that Eqs. (2.30)
and (2.31) can be written in the base manifold as a special case of Eqs. (2.28)
and (2.29), whereupon we arrive at:

∂µF̃
κµν = 0 (2.32)

and

∂µF
κµν = A(0)Rκµ

µν . (2.33)

Therefore the electromagnetic field tensor in general relativity (ECE theory)
develops into a three index tensor. In special relativity (MH theory) it is a
two-index tensor as is well known. The equivalents of (2.32) and (2.33) in MH
theory are the tensor equations:

∂µF̃
µν = 0 (2.34)

and

∂µF
µν = Jν/ε0. (2.35)

The meaning of the three-index field tensor has been developed [1, 12] in detail.
It originates in the well known [18] three index angular energy/ momentum ten-
sor density, Jκµν which is proportional to the three index Cartan torsion tensor.
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It is well known that the electromagnetic field carries angular momentum which
in the Beth effect [20] is experimentally observable Therefore the Cartan torsion
tensor is the expression of this well known angular energy/momentum density
tensor of Minkowski space-time [18] in a more general manifold with curvature
and torsion. The meaning of the vector form of the ECE field equations is
further developed in Section 2.5.

The classical field equations of gravitation in ECE are also based directly on
the Bianchi identity and its Hodge dual. The EH equation, as argued already, is
incompatible with the Bianchi identity in its rigorously correct form, Eq. (2.5),
so during the course of development of ECE theory the well known EH equation
has been developed with the proportionalities:

Tκµν = kJκµν (2.36)

and

Rκ µν
µ = kTκµ

µν (2.37)

which give:

DµJ
κµν = Tκµ

µν . (2.38)

This novel field equation of classical gravitation is based directly on the tensorial
formulations (2.11) and (2.12) of the Bianchi identity. The Newton inverse
square law for example has been derived straightforwardly from Eq. (2.38) in
the limit where the connection goes to zero:

∂µJ
κµν + Tκµ

µν (2.39)

whereupon we obtain:

∇ · g = kc2ρm (2.40)

an equation which is equivalent to the Newton inverse square law. Here g is the
acceleration due to gravity, k is Einstein’s constant, ρm and is the mass density
in kilograms per cubic meter. Similarly the Coulomb inverse square law can be
obtained straightforwardly [1, 12] by considering the same type of limit of the
inhomogeneous ECE field equation:

DµF
κµν = A(0)Rκµ

µν . (2.41)

The appropriate limit in this case is:

∂µF
κµν + A(0)Rκµ

µν (2.42)

and leads to the Coulomb inverse square law:

∇ ·E = ρe/ε0 (2.43)
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where ρe is the charge density in coulombs per cubic meter. These procedures il-
lustrate one aspect of the unified nature of ECE, because both laws are obtained
from the Bianchi identity. Many other examples of the unification properties of
ECE have been discussed [1, 12].

In order to unify the electromagnetic and weak fields in a field equation,
the representation space is chosen to be SU(2) instead of O(3) and the parity
violating nature of the weak field carefully considered. Similarly the electromag-
netic and strong fields are unified with an SU(3) representation space, and we
have already discussed the unification of the electromagnetic and gravitational
fields. Any permutation or combination of fields may be unified, and several
examples have been given [1,12] in various contexts. These are discussed further
in Section 2.7.

The ECE wave equation was developed [1,12] from the tetrad postulate [13]:

Dµq
a
ν = 0 (2.44)

via the identity:

Dµ(Dµq
a
ν ) := 0. (2.45)

This was re-expressed as the ECE Lemma:

�qaλ = Rqaλ (2.46)

in which appears the scalar curvature:

R = qλa∂
µ(Γνµλq

a
ν − ωaµbqbλ). (2.47)

Here tensor notation is used, ωaµb being the spin connection and Γνµλ the general
connection. The Lemma becomes the ECE wave equation using a generalization
to all fields of the Einstein gravitational equation [1, 13]:

R = −kT. (2.48)

Here T is an index contracted energy momentum tensor. The main wave equa-
tions of physics were all obtained [1,12] as limits of Eq. (2.46), notably the Proca
and Dirac wave equations. In so doing however the causal realist philosophy of
Einstein and de Broglie was adhered to. This is the original philosophy of wave
mechanics. The Schrödinger and Heisenberg equations were also obtained as
non-relativistic quantum limits of the ECE wave equation, but the Heisenberg
indeterminacy principle was not used in accord with the basic philosophy of
relativity and with recent experimental data [21] which refute the uncertainty
principle by as much as nine orders of magnitude.

2.4 Aharonov Bohm and Phase Effects in ECE
Theory

The well known Aharonov Bohm (AB) effects have been observed using mag-
netic, electric and gravitational fields [1, 12] and as shown by ECE theory are
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ubiquitous for ALL electromagnetic and optical effects, including phase effects:
the subject of this section. These must all be explained by general relativity, and
not by the obsolete special relativistic methods of the standard model. There-
fore it is important to define the various AB conditions in ECE theory. In so
doing a unified description of phase effects such as the electromagnetic, Dirac,
Wu Yang and Berry phases may also be developed.

In general, the AB condition is defined in ECE theory by the first Cartan
structure equation (adopting the index-less short-hand notation [1, 12]):

T = D ∧ q := d ∧ q + ω ∧ q. (2.49)

Using the ECE hypothesis:

A = A(0)q (2.50)

this becomes:

F = D ∧A := d ∧A+ ω ∧A (2.51)

where F is short-hand for the electromagnetic field form and where A is short-
hand for the electromagnetic potential form. The AB effects in ECE theory
[1, 12] were developed with the spin connection term ω ∧ A in Eq. (2.51). The
accepted notation [13] of Cartan geometry uses the tangent space-time indices
without the base manifold indices, because the latter are always the same on
both sides of an equation of Cartan geometry. So in the standard notation
Eq. (2.51) is:

F a = d ∧Aa + ωab ∧Ab (2.52)

This denotes that the electromagnetic field is a vector-valued two-form and the
potential is a vector-valued one-form. In the standard model the spin connection
is zero and the standard relation between field and potential is:

F = d ∧A. (2.53)

In Eq. (2.53), F is a scalar-valued two-form, and A is a scalar valued one-
form [13] The spin connection is zero in Eq. (2.53) because the latter is written in
a Minkowski space-time. In the standard model, classical electrodynamics is still
represented by the MH equations, which are Lorentz covariant, but not generally
covariant. In other words the MH equations are those of special relativity and
not general relativity as required by the philosophy of relativity and objectivity.
The latter demands that every equation of physics should be an equation of
a generally covariant unified field theory. It is well known that the standard
model complies with this only in its gravitational sector: the electro-weak and
strong fields of the standard model are sectors of special relativity only. The
standard model does not comply with general relativity, notably standard model
quantum mechanics is philosophically different from relativity (Einstein Bohr
dialogue). ECE complies rigorously with the philosophy of general relativity in
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all its sectors, and unifies all sectors with geometry as required. In ECE the
spin connection is ALWAYS non-zero because the fundamental space-time being
used is not a flat space-time, it always contains both torsion and curvature in
all sectors of the generally covariant unified field theory [1, 12]. Torsion and
curvature are ineluctably inter-related in the Bianchi identity (Section 2.2), and
during the course of development of ECE theory it was shown that there is
only one true Bianchi identity, which always links torsion to curvature and vice
versa. This is an important mathematical advance of ECE theory, another
(Section 2.2) being the development of the Hodge dual of the Bianchi identity.

It has been shown [1, 12] that there is a fundamental error in the standard
model explanation of the magnetic AB effect [22]. In differential form notation
the standard explanation is based on the two equations:

F = d ∧A, d ∧ F = 0 (2.54)

whose mathematical structure implies:

d ∧ (d ∧A) = 0. (2.55)

It is well known that this structure is invariant under the archetypical gauge
transformation:

A→ A+ dχ (2.56)

because of the Poincaré Lemma:

d ∧ dχ := 0. (2.57)

As explained in paper 56 of the ECE series (www.aias.us), the standard model
uses the mathematical result (2.57) to claim that:∮

dχ =
∫
s

d ∧ dχ 6= 0. (2.58)

This claim is incorrect because it does not agree with the Stokes Theorem. The
latter applies [23] in non simply connected spaces. The Poincaré Lemma (2.57)
implies therefore that:∮

dχ =
∫
s

d ∧ dχ := 0 (2.59)

in all types of spaces, including non simply connected spaces and there cannot
be an Aharonov Bohm effect due to the contour integral of dχ. The incorrect
claim of the standard model [22] is that non simply connected spaces allow∮
dχ to be non-zero. A counter example to this claim was given in paper 56 of

www.aias.us. in full detail.
The explanation of the Aharonov Bohm (AB) effects in ECE theory is not

based on the mathematical abstractions of gauge theory but on Einstein’s phi-
losophy of relativity and Faraday’s philosophy of the potential as a physically

22



CHAPTER 2. A REVIEW OF EINSTEIN CARTAN EVANS (ECE) . . .

effective entity (the electrotonic state). This philosophy of Faraday was also
accepted by Maxwell and his followers. The idea that the potential is a math-
ematical abstraction is based on the perceived redundancy exemplified by Eq.
(2.57), and this idea has been made into the basis of the mathematical gauge
theory of the standard model, developed in the late twentieth century. It ap-
pears in standard model textbooks such as that of Jackson for example [1, 24].
The idea of a mathematical potential and a physical field in classical electrody-
namics is contradicted by the well known minimal prescription of field theory
and quantum electrodynamics, where the PHYSICAL momentum eA is added
to the momentum p. The idea of an abstract potential ran into trouble following
the demonstration by Chambers of the first AB effect to be observed, the mag-
netic AB effect. It is well known that Chambers placed a magnetic iron whisker
between the apertures of a Young interferometer and isolated the magnetic field
from interfering electron beams. Therefore, if the potential is mathematical as
claimed in gauge theory, it should have no effect on the electronic interference
pattern. The experimental result showed a shift in the interference pattern,
and so contradicts the standard model, meaning that Faraday was correct: the
potential is a physically effective entity. The same results were later obtained
experimentally in the electric and gravitational AB effects. As argued in this
section, various phase effects also indicate the existence of an electromagnetic
AB effect if interpreted by general relativity, of which ECE theory is an example.

The AB effect in ECE theory is summarized as follows:

F = D ` A = 0, r ω ` A ≠ 0,  ω ≠ 0

rA ≠ 0

F = D ` A ≠ 0

Figure 2.1: ECE Explanation of the Aharonov Bohm Effect.

It has been shown [1, 12] that the observable phase shift of the Chambers
experiment in ECE theory is:

∆φ =
e

~
Φ (2.60)

where

Φ =
∮
A := −

∫
s

ω ∧A (2.61)

in short-hand or index free notation. In the area between the inner and outer
rings in Fig. 2.1:

F = D ∧A = 0, A 6= 0, ω 6= 0. (2.62)

The electromagnetic field (F ) is zero by experimental arrangement. However,
the potential (A) and the spin connection (ω) are not zero in general in this same

23



2.4. AHARONOV BOHM AND PHASE EFFECTS IN ECE THEORY

region between the inner and outer rings. The phase shift is due therefore to
the contour integral around A in Eq. (2.61), as indicated in Fig. 2.1. Therefore
ECE theory gives a simple explanation of the AB effects as being due to a
physical A and a physical ω. The latter indicates that the ECE space-time is
not a Minkowski space-time as in the attempted standard model explanation of
the AB effect. In the standard model the equivalent of Fig. 2.1 is:

F = d ` A = 0, A ≠ 0, r A = 0

rA = 0

F = d ` A ≠ 0

Figure 2.2: Standard Attempt at Explaining the Aharonov Bohm Effect.

and the contour integral of A is zero. In the standard model the contour integral
of the potential is zero in the area between the inner and outer rings of Fig. 2.2
because:

F = d ∧A = 0, A 6= 0, (2.63)∫
s

d ∧A =
∮
A = 0. (2.64)

So when F is zero in the standard model, so is d ∧ A. It is possible therefore
for A to be non-zero in the standard model while F is zero, but the incorrect
twentieth century idea of a non-physical A means that in the standard model
A must have no physical effect. In the end analysis this is pure obscurity and
has caused great confusion. Such ideas are bad physics and must be discarded
sooner or later. The only clear thing about the attempted standard model
explanation of the magnetic AB effect is that in the area between the two rings
of Fig. 2.2:∫

s

F =
∫
s

d ∧A =
∮
A = 0. (2.65)

So the contour integral of A is zero by the Stokes Theorem and there is no AB
effect contrary to experiment. Therefore in the standard model, when F is zero
the contour integral of A is always zero even though A itself may be non-zero.
In other words Stokes’ Theorem implies that when F or d ∧ A is zero in the
standard model, the contour integral of A must vanish even though A itself may
be non-zero. As we have seen, adding a dχ in an assumed non simply connected
space-time does not solve this problem.

In ECE theory the presence of the spin connection ensures that when F is
zero, d ∧ A is not zero in general and the contour integral of A is not zero,
meaning a phase shift as observed, Eq. (2.61). The way that such an ECE con-
tour integral must be evaluated has been explained carefully [1, 12]. Therefore
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the AB effects show that ECE is preferred experimentally over the standard
model. This is one out of many experimental advantages of ECE theory over
the standard model. A table of about thirty such advantages is available on the
www.aias.us website and in the fourth volume of ref. (2.1). As argued already,
the standard model has attempted to obfuscate its way out of the AB paradox
by adding dχ to A and claiming that the AB effect is due to a non-zero con-
tour integral of dχ when the contour integral of A is zero. Paper 56 of ECE
(www.aias.us) shows that this claim is incorrect mathematically, and even if it
were correct just leads to obscure ideas, notably that [22] space-time itself must
be non-simply connected. This is typical of bad physics - the obscurantism of
the twentieth century in natural philosophy with its plethora of nigh incompre-
hensible and unprovable ideas. In contrast, the twenty first century ECE theory
explains the AB effect using the older but experimentally provable philosophy of
Faraday, Maxwell and Einstein. Therefore one of the key philosophical advances
of ECE theory is to discard standard model gauge theory as being obscurantist
and meaningless. In so doing, ECE adheres to Baconian philosophy: the theory
is fundamentally changed to successfully and simply explain data that clearly
refute the old theory (in this case the old theory is gauge theory).

For self-consistency there should be an AB effect whenever there is present
a field and its concomitant potential. So an electromagnetic AB effect should
be ubiquitous throughout electrodynamics and optics. This is indeed the case,
as manifested for example [1,12] in various well known phase effects interpreted
according to general relativity (exemplified in turn by ECE theory). Therefore
and in general the electromagnetic AB condition is:

F = d ∧A+ ω ∧A = 0,
A 6= 0, ω 6= 0,

}
(2.66)

and for the gravitational field the AB condition is:

T = d ∧ q + ω ∧ q = 0,
q 6= 0, ω 6= 0.

}
(2.67)

This short-hand notation has been translated in full detail [1, 12] into three
other notations: differential form, tensor and vector because notation is not
standardized and different subjects use different notations. In the vector nota-
tion of classical electrodynamics [24] and electrical engineering, Eq. (2.66) splits
into two equations. The first defines the magnetic field in terms of the vector
potential and the spin connection vector. This was developed further in paper
74 of ECE theory (www.aias.us) and published in a standard model journal,
Physica B [25]. In paper 74 the context was a balance condition for magnetic
motors, but the same equation is also an AB condition. It is:

B = ∇×A− ω ×A = 0. (2.68)

For spin torsion [1, 12] in gravitation the equivalent equation is:

T = ∇× q − ω × q = 0. (2.69)
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In ECE every kind of magnetic field is defined by:

B = ∇×A− ω ×A (2.70)

for self consistency. The spin connection vector is ubiquitous because it is a
property of space-time itself. This is pure relativity of Einstein, but is still
missing from the standard model of electrodynamics. The latter is still based on
the well known vector development due to Heaviside of the original quaternionic
Maxwell equations, and predates the philosophy of relativity.

If an electromagnetic AB effect is being considered the potential in Eq. (2.68)
may be modeled by a plane wave as in paper 74 (www.aias.us). In that case the
AB condition becomes a Beltrami condition:

∇×A(1) = −κA(1) (2.71)

∇×A(2) = κA(2) (2.72)

∇×A(3) = 0A(3) (2.73)

which can be developed in turn into a Helmholtz wave equation:

(∇2 + κ2)A(1) = 0. (2.74)

Considering the X component for example:

∂2A
(1)
X

∂Z2
+ κ2A

(1)
X = 0 (2.75)

which is an undamped Bernoulli/Euler resonance equation without a driving
force on the right hand side [1,12]. It is also a free space wave equation without
a source. It is however a wave equation in the potential ONLY, there being
no magnetic field present by Eq. (2.68). In other words there is no radiated
electromagnetic field but there is a radiated potential field. This is an example
of an electromagnetic AB effect. In ECE theory the radiated potential without
field may have a physical effect, in this case an electrodynamic or optical effect.

These arguments of ECE theory go to the root of what is meant by a photon
and what is meant by the electromagnetic field. In the standard model there
are two approaches to electromagnetic phenomena. As argued already in this
Section, the electromagnetic field F is physical but the electromagnetic potential
A is unphysical in the standard model on the classical level, whereas in standard
model quantum electrodynamics the minimal prescription is used with a physical
potential. Also in the standard model there are other concepts such as virtual
photons which occur in Feynman’s version of quantum electrodynamics. During
the course of ECE development however [1, 12] the claimed accuracy of the
Feynman type QED has been shown to be an exaggeration by several orders of
magnitude. It is possible to see this through the fact that accuracy of the fine
structure constant is limited by the accuracy of the Planck constant (paper 85
on www.aias.us). The standards laboratory data on fundamental constants were

26



CHAPTER 2. A REVIEW OF EINSTEIN CARTAN EVANS (ECE) . . .

shown in this paper to be self-inconsistent. Finally, Feynman’s QED method is
based on what are essentially adjustable parameters, in other words it is based
on obscurantist concepts such as dimensional renormalization, concepts which
cannot be proven experimentally and so distill down to parameters that are
adjusted to give a good fit of theory to experiment. It is also well known that
the series summation used in the Feynman calculus cannot be proven a priori
to converge, and thousands of terms have to be evaluated by computer even for
the simplest of problems such as one electron interacting with one photon. The
situation in quantum chromodynamics is much more complicated and much
worse. In QCD it takes Nobel Prizes to prove renormalization, which is just
an adjustable parameter. In a subject such as chemistry, such methods are
impractical and are never used. They are therefore confined to ultra-specialist
physics and even then are of dubious validity. This is typical of bad science,
to claim that a theory is fundamental when it is not. It is well known [1, 12]
that there are many weaknesses in the standard model of electrodynamics, for
example it is still not able to describe the Faraday disk generator of Dec. 26th,
1831 whereas ECE has offered a straightforward explanation.

In ECE the field and potential are both physical [1,12] on both the classical
and quantum levels, and in ECE there is no distinction between relativity and
wave mechanics. These ideas of natural philosophy all become aspects of the
same geometry, and in ECE this is the standard differential geometry of Cartan
routinely taught in mathematics. The field, potential and photon are defined by
this geometry. In the standard model there is also a distinction between locality
and non-locality, a distinction which enters into areas such as quantum entan-
glement and one photon Young interferometry, in which one photon appears to
self-interfere. In ECE [1, 12] there is no distinction between locality and non-
locality because of the ubiquitous spin connection of general relativity. Thus, in
ECE theory, the AB effects are effects of general relativity, and the labels “lo-
cal” and “non-local” becomes meaningless - all is geometry in four-dimensional
space-time.

Having described the essentials of the AB effects, the various phase effects
developed during the course of the development of ECE theory [1,12] have been
understood by a similar application of the Stokes theorem:∫

s

F =
∫
s

D ∧A =
∮
A+

∫
s

ω ∧A (2.76)

in which the covariant exterior derivative D∧ appears. The use of this type
of Stokes Theorem has been exemplified in volume 1 of ref. (1) by integrating
around a helix and by closing the contour in a well defined way. This type of
integration was used in the development in ECE theory of the well known Dirac
and Wu Yang phases, and in a generalization of the well known Berry phase
as for example in the well studied paper 6 of the ECE series (www.aias.us). in
which the origin of the Planck constant was discussed. (The extent to which
the 103 or so individual ECE papers are studied is measured accurately through
the feedback software of www.aias.us, and there can be no doubt that they are
all well studied by a high quality of readership.) In the development of the
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electromagnetic phase with ECE theory [1, 12] it has been demonstrated that
the phase is due to the well known B(3) spin field of ECE theory, first inferred in
1992 from the inverse Faraday effect. This generally relativistic development of
the electromagnetic phase is closely related to the AB effects and resolves basic
problems in the standard model electromagnetic phase [1, 12]. It has therefore
been shown that the B(3) field is ubiquitous in optics and electrodynamics,
because it derives from the ubiquitous spin connection of space-time itself.

These considerations have also been developed for the topological phases,
such as that of Berry, using for self consistency the same methodology as for the
electromagnetic, Dirac and Wu Yang phases [1, 12]. These well known phases
are again understood in ECE theory in terms of Cartan geometry by use of the
Stokes Theorem with D∧ in place of d∧. All phase theory in physics becomes
part of general relativity, and this methodology has been linked to traditional
Lagrangian methods based on the minimization of action.

2.5 Tensor and Vector Laws of Classical Dynam-
ics and Electrodynamics

The tensor law for the homogeneous field equation has been shown [1,12] to be:

∂µF̃
κµν = 0. (2.77)

For each κ index the structure of the matrix is:

F̃µν =


0 cBX cBY cBZ

−cBX 0 −EZ EY
−cBY EZ 0 −EX
−cBZ −EY EX 0

 =


0 F̃ 01 F̃ 02 F̃ 03

F̃ 10 0 F̃ 12 F̃ 13

F̃ 20 F̃ 21 0 F̃ 23

F̃ 30 F̃ 31 F̃ 32 0

 .
(2.78)

The Gauss law of magnetism in ECE theory has been shown to be obtained
from:

κ = ν = 0 (2.79)

and so:

∂1F̃
010 + ∂2F̃

020 + ∂3F̃
030 = 0 (2.80)

i.e.:

∇ ·B = 0 (2.81)

with:

B = BXi +BY j +BZk (2.82)
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and:

BX = B001, BY = B002, BZ = B003. (2.83)

These are orbital magnetic field components of the Gauss law of magnetism.
In ECE theory the Faraday law of induction is a spin law of electrodynamics

defined by:

∂0F̃
κ01 + ∂2F̃

κ21 + ∂3F̃
κ31 = 0

∂0F̃
κ02 + ∂1F̃

κ12 + ∂3F̃
κ32 = 0

∂0F̃
κ03 + ∂1F̃

κ13 + ∂2F̃
κ23 = 0

 . (2.84)

The ECE Faraday law of induction for all practical purposes is [1, 12]:

∇×E +
∂B

∂t
= 0 (2.85)

where the spin electric and magnetic components are:

EX = E332 = −E323, BX = −B110 = B101,

EY = E113 = −E131, BY = −B220 = B202,

EZ = E221 = −E112, BZ = −B330 = B303.

 (2.86)

The ECE Ampère Maxwell law is another spin law [1,12]:

∇×B − 1
c2
∂E

∂t
= µ0J (2.87)

where the components have been identified as:

EX = E101, BX = B332,

EY = E202, BY = B113,

EZ = E303, BZ = B221.

 (2.88)

Therefore in these two spin laws different components appear in ECE theory
of the electric and magnetic fields. In the MH theory of special relativity these
components are not distinguishable.

Finally the Coulomb law has been shown to be [1, 12]:

∇ ·E = ρ/ε0 (2.89)

and is an orbital law of electromagnetism as is the Gauss law of magnetism.
In ECE theory these individual spin and orbital components are proportional
to individual components of the three index Cartan torsion tensor and three
index angular energy/momentum density tensor. Therefore ECE theory comes
to the important conclusion that there are orbital and spin components of the
electric field, and orbital and spin components of the magnetic field. The orbital
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Table 2.1: Components of the Laws of Classical Electrodynamics

Law Electric Field Magnetic Field Type

BX = B001

Gauss BY = B002 orbital
BZ = B003

EX = −E001

Coulomb EY = −E002 orbital
EZ = −E003

EX = E332 BX = B101

Faraday EY = E113 BY = B202 spin
EZ = E221 BZ = B303

EX = −E101 BX = B332

Ampère Maxwell EY = −E202 BY = B113 spin
EZ = −E303 BZ = B221

components occur in the Gauss law of magnetism and Coulomb law and the spin
components in the Faraday law of induction and the Ampère Maxwell law. This
information, given by a generally covariant unified field theory, is not available
in Maxwell Heaviside (MH) theory of the un-unified, special relativistic, field.

Therefore each law develops an internal structure which is summarized in
Table 2.1. There are two orbital laws (Gauss and Coulomb) and two spin
laws (Faraday law of induction and Ampère Maxwell law). In each law the
components of the electric and magnetic fields are proportional to components
of the well known [18] angular energy/momentum density tensor. Therefore
for example the static electric field is distinguished form the radiated electric
field. This is correct experimentally, it is well known that the static electric
field exists between two static or unmoving charges, while the radiated electric
field requires accelerated charges for its existence. By postulate the components
of the electric and magnetic fields are also proportional to components of the
Cartan tensor, a rank three tensor in the base manifold (4-D space-time with
torsion and curvature).

In tensor notation the inhomogeneous ECE field equation in the base mani-
fold has been shown to be, for all practical purposes [1, 12]:

∂µF
κµν =

1
ε0
Jκν = cA(0)Rκ µν

µ . (2.90)
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The vacuum is defined by:

Rκ µν
µ = 0 (2.91)

and is Ricci flat by construction. This result is consistent with the fact that
the vacuum solutions of the EH equation are Ricci flat by construction. In
a Ricci flat space-time there is no canonical energy momentum density [1, 12]
and so there are no electric and magnetic fields because there is no angular
energy/momentum density. However, as in the theory of the Aharonov Bohm
effects developed in Section 2.4, there may be non-zero potential and spin con-
nection in a Ricci flat vacuum. Similarly, in the latter type of vacuum the Ricci
tensor vanishes but the Christoffel connection and metric of EH theory do not
vanish. Crothers has recently criticized the concept of the Ricci flat vacuum [19]
as contradicting the Einstein equivalence principle. He has also shown that the
mis-named Schwarzschild metric is inconsistent with the concept of a Ricci flat
vacuum and with the geometry of the EH equation. Crothers has also argued
that ideas such as Big Bang, black holes and dark matter are inconsistent with
the EH equation.

The Coulomb law is the case:

ν = 0 (2.92)

of Eq. (2.90). During the course of development of ECE theory it has been
shown by computer algebra that for all Ricci flat solutions of the EH equation:

Rκ µν
µ = 0 (2.93)

but for all other solutions of the EH equation the right hand sides of Eq. (2.90)
are non zero for the Christoffel connection. This result introduces a basic para-
dox in the EH equation as discussed already in this review paper.

The Ampère Maxwell law is the case:

ν = 1, 2, 3 (2.94)

in Eq. (2.90) and in tensor notation the ECE Ampère Maxwell law is:

∂0F
κ01 + ∂2F

κ21 + ∂3F
κ31 = cA(0)(Rκ0

01 +Rκ2
21 +Rκ3

31)

∂0F
κ02 + ∂1F

κ12 + ∂3F
κ32 = cA(0)(Rκ0

02 +Rκ1
12 +Rκ3

32)

∂0F
κ03 + ∂1F

κ13 + ∂2F
κ23 = cA(0)(Rκ0

03 +Rκ1
13 +Rκ2

23)

(2.95)

Therefore it is inferred that the time-like index is 0 and the space-like indices
are 1, 2 and 3. The left hand side of Eq. (2.89) is a scalar and so

κ = 0 (2.96)

is identified with a scalar index. So Eq. (2.89) of the Coulomb law is:

∂1F
010 + ∂2F

020 + ∂3F
030 = cA(0)(R0

1
10 +R0

2
20 +R0

3
30) (2.97)
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and is the orbital ECE Coulomb law. In vector notation this law is:

∇ ·E =
ρ

ε0
(2.98)

where:

EX = E010, EY = E020, EZ = E030,

ρ = ε0cA
(0)(R0

1
10 +R0

2
20 +R0

3
30).

(2.99)

The S.I. units of this law are:

A(0) = JsC−1m−1, R = m−2, ε0 = J−1c2m−1, ρ = Cm−3. (2.100)

In Eq. (2.90):

cA(0) = JC−1 = volts,

E = volt m−1,∇ ·E = volt m−2,

cA(0)R = volt m−2,

ρ/ε0 = JC−1m−2 = volt m−2,

 (2.101)

thus checking the S. I. units for self consistency. In the Ricci flat vacuum:

∇ ·E = 0 (2.102)

which is consistent with:

R0
1

10 +R0
2

20 +R0
3

30 = 0 (2.103)

for vacuum solutions of the EH equation as argued already. However, for com-
plete internal consistency the Christoffel symbol cannot be used, because it is
not internally consistent with the Bianchi identity as argued already in this
review paper.

It is possible to define a curvature scalar of the Coulomb law as:

R(0) := R0
1

10 +R0
2

20 +R0
3

30 (2.104)

so that:

∇ ·E =
ρ

ε0
= cA(0)R(0) (2.105)

and that the charge density of the Coulomb law becomes:

ρ = cA(0)ε0R(0) (2.106)

in coulombs per cubic meter. In the Cartesian system of coordinates the electric
field components of the Coulomb law are:

EX = E010, EY = E020, EZ = E030 (2.107)
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and are proportional to these same components of the three index angular energy
momentum density tensor. They are anti-symmetric in their last two indices:

E010 = −E001etc. (2.108)

In tensor notation the ECE Ampère Maxwell law is given by Eq. (2.95), i.e.:

∂µF
κµν = cA(0)Rκµ

µν ,

ν = 1, 2, 3

}
(2.109)

and in vector notation by:

∇×B − 1
c2
∂E

∂t
= µ0J . (2.110)

In the Cartesian system:

J = JXi + JY j + JZk (2.111)

where:

JX =
A(0)

µ0
(R1

0
01 +R1

2
21 +R1

3
31),

JY =
A(0)

µ0
(R2

0
02 +R2

1
12 +R3

2
32),

JZ =
A(0)

µ0
(R3

0
03 +R3

1
13 +R3

2
23),


(2.112)

and self consistently in the vacuum:

JX = JY = JZ = 0 (2.113)

for Ricci flat space-times. As argued this result has been demonstrated by
computer algebra [1,12]. In the Ampère Maxwell law the electric and magnetic
field components are proportional to spin angular energy momentum density
tensor components of the electromagnetic field as follows:

Eκµν =
c2

eω
Jκµν ,

Bκµν =
c

eω
Jκµν.

 (2.114)

The electric field components of the Coulomb law and the magnetic field compo-
nents of the Gauss law are all orbital angular energy density tensor components
of the electromagnetic field. The angular energy momentum density tensor may
be defined as [18]:

Jκµν = −1
2

(Tκµxν − Tκνxµ) (2.115)
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using the symmetric canonical energy momentum density tensor:

Tκµ = Tµκ (2.116)

and the components of the electric and magnetic fields are components of Jκµν
as follows:

E00i =
c2

eω
J00i, i = 1, 2, 3, (orbital),

Eii0 =
c2

eω
J ii0, i = 1, 2, 3, (spin),

B112 =
c

eω
J112, B221 =

c

eω
J221, B331 =

c

eω
J331.

(2.117)

The two index angular energy/momentum tensor of the electromagnetic field
is an integral over the three index density tensor. Ryder gives one example of
such an integral in Minkowski space-time [18]:

Mµν =
∫
M0µνd3x. (2.118)

Therefore the four laws of electrodynamics in ECE theory are:

∇ ·B = 0, (2.119)

∇×E +
∂B

∂t
= 0, (2.120)

∇ ·E = ρ/ε0, (2.121)

∇×B − 1
c2
∂E

∂t
= µ0J , (2.122)

and therefore have the same vector structure as the familiar MH equations.
However, as argued in this section, the ECE theory gives additional information.
In the four laws the components of the magnetic and electric fields are as follows.
The Gauss law of magnetism in ECE theory is, for all practical purposes (FAPP):

∇ ·B = 0 (2.123)

which is an orbital law in which the components of the magnetic field are propor-
tional to orbital components of the angular momentum/energy density tensor
and are:

B = B001i +B002j +B003k. (2.124)

The Faraday law of induction in ECE is a spin law with electric and magnetic
field components as follows:

E = E332i + E113j + E221k, (2.125)

B = B101i +B202j +B303k. (2.126)
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The Coulomb law in ECE is an orbital law with electric field components as
follows:

E = E010i + E020j + E030k, (2.127)

Finally the Ampère Maxwell law in ECE is a spin law with electric and magnetic
field components as follows:

E = E110i + E220j + E330k, (2.128)

B = B332i +B113j +B221k. (2.129)

As argued in Section 2.4 of this review paper, the relation between field and
potential is different in ECE theory and contains the spin connection [1, 12]. The
various notations for the relation between field and potential in ECE theory are
collected here for convenience. In the index-less notation:

F = d ∧A+ ω ∧A (2.130)

which is based on the first Cartan structure equation:

T = d ∧ q + ω ∧ q. (2.131)

In the standard notation of differential geometry:

F a = d ∧Aa + ωab ∧Ab. (2.132)

In tensor notation from differential geometry:

F aµν = (d ∧Aa)µν + (ωab ∧Ab)µν . (2.133)

In the base manifold Eq. (2.133) becomes:

Fκµν = ∂µAκν − ∂νAκµ + (ωκµλA
λν − ωκνλAλµ) (2.134)

In vector notation Eq. (2.134) splits into two equations, one for the electric field
and one for the magnetic field:

E = −∇φ− ∂A

∂t
+ φω − ωA (2.135)

and

B = ∇×A− ω ×A (2.136)

For the orbital electric field component of the Coulomb law Eq. (2.135) has the
following internal structure:

φ = cA00,A = A01i +A02j +A03k, (2.137)

ω = cω00
0 ,ω = (ω01

0i + ω02
0j + ω03

0k). (2.138)
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This result illustrates that the internal structure of the relation between field and
potential is different for each law of electrodynamics in ECE theory. Therefore
in a GCUFT such as ECE different types of field and potential exist for each
law, and also different types of spin connection.

For the orbital Gauss law of magnetism the internal structure of Eq. (2.136)
is:

A = A01i + A02j +A03k, (2.139)

ω = −(ω01
0i + ω02

0j + ω03
0k). (2.140)

For the Ampère Maxwell law, a spin law, the internal structure of Eqs. (2.135)
and (2.136) are again different, and are defined as follows. The structure of Eq.
(2.135) is:

φ = cA00 = cA01 = cA02 = cA03,

AX = A01 = A11 = A21 = A31,

AY = A02 = A12 = A22 = A32,

AZ = A03 = A13 = A23 = A33,

ωX = ω11
0 = ω11

1 = ω11
2 = ω11

3 ,

ωY = ω22
0 = ω22

1 = ω22
2 = ω22

3 ,

ωZ = ω33
0 = ω33

1 = ω33
2 = ω33

3 ,

ω = cω10
0 = cω10

1 = cω10
2 = cω10

3

= cω20
0 = cω20

1 = cω20
2 = cω20

3

= cω30
0 = cω30

1 = cω30
2 = cω30

3

(2.141)

and the structure of Eq. (2.136) is:

BX = B332 =
∂AZ
∂Y

− ∂AY
∂Z

+ ωZAY − ωYAZ ,

BY = B113 =
∂AX
∂Z

− ∂AZ
∂X

+ ωXAZ − ωZAX ,

BZ = B221 =
∂AY
∂X

− ∂AX
∂Y

+ ωYAX − ωXAY .

(2.142)

Finally the internal structures are again different for the Faraday law of induc-
tion. In arriving at these conclusions the relation between field and potential in
the base manifold is:

Fκµν = ∂µAκν − ∂νAκµ + (ωκµλA
λν − ωκνλAλµ). (2.143)

The Hodge dual of this equation is:

F̃κµν = (∂µAκν − ∂νAκµ + (ωκµλA
λν − ωκνλAλµ))HD (2.144)
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and this is needed to give the results for the homogenous laws. An example of
taking the Hodge dual is given below:

F̃ 001 = (∂0A01 − ∂1A00 + (ω00
λA

λ1 − ω01
λA

λ0))HD
= ∂2A03 − ∂3A02 + (ω02

λA
λ3 − ω03

λA
λ2).

(2.145)

With these rules the overall conclusion is that in a generally covariant unified
field theory (GCUFT) such as ECE the four laws of classical electrodynamics
can be reduced to the same vector form as the MH laws of un-unified special
relativity (nineteenth century), but the four laws are no longer written in a
flat, Minkowski spacetime. They are written in a four dimensional space-time
with torsion and curvature. This procedure reveals the internal structure of the
electric and magnetic fields appearing in each law, for example correctly makes
the distinction between a static and radiated electric field, and a static and
radiated magnetic field. The relation between field and potential also develops
an internal structure which is different for each law, but for each law, the vector
relation can be reduced to:

E = −∇φ− ∂A

∂t
+ φω − ωA (2.146)

and

B = ∇×A− ω ×A. (2.147)

In a GCUFT, gauge theory is not used because the potential has a physical
effect as in the electrotonic state of Faraday. The ECE theory is developed
entirely in four dimensions, is entirely self-consistent, and reproduces a range
of experimental data [1, 12] which the MH theory cannot explain. The ECE
theory is also philosophically consistent with the need to apply the philosophy
of relativity to the whole of physics. The latter becomes a unified field theory
based on geometry. The first attempts by Einstein to develop general relativity
were based on Riemann geometry and restricted to the theory of gravitation.
In the philosophy of relativity, however, the basic idea that physics is geometry
must be used for every equation of physics, and each equation must be part of
the same geometrical framework. This is achieved in a GCUFT such as ECE
theory by using Cartan’s standard differential geometry. This is a self-consistent
geometry that recognizes the existence of space-time torsion in the first Cartan
structure equation, and space-time curvature in the second. It is also recognized
that there is only one Bianchi identity, and that this must always inter-relate
torsion and curvature, both are fundamental to the structure of space-time.

2.6 Spin Connection Resonance
One of the most important consequences of general relativity applied to electro-
dynamics is that the spin connection enters into the relation between the field
and potential as described in Section 2.5. The equations of electrodynamics as
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written in terms of the potential can be reduced to the form of Bernoulli Euler
resonance equations. These have been incorporated during the course of devel-
opment of ECE theory into the Coulomb law, which is the basic law used in
the development of quantum chemistry in for example density functional code.
This process has been illustrated [1, 12] with the hydrogen and helium atoms.
The ECE theory has also been used to design or explain circuits which use spin
connection resonance to take power from space-time, notably papers 63 and 94
of the ECE series on www.aias.us. In paper 63, the spin connection was incor-
porated into the Coulomb law and the resulting equation in the scalar potential
shown to have resonance solutions using an Euler transform method. In paper
94 this method was extended and applied systematically to the Bedini motor.
The method is most simply illustrated by considering the vector form of the
Coulomb law deduced in Section 2.5:

∇ ·E = ρ/ε0 (2.148)

and assuming the absence of a vector potential (absence of a magnetic field).
The electric field is then described by:

E = −(∇ + ω)φ (2.149)

rather than the standard model’s:

E = −∇φ. (2.150)

Therefore Eq. (2.149) in (2.148) produces the equation

∇2φ+ ω ·∇φ+ (∇ · ω)φ = − ρ

ε0
(2.151)

which is capable of giving resonant solutions as described in paper 63. The
equivalent equation in the standard model is the Poisson equation, which is a
limit of Eq. (2.151) when the spin connection is zero. The Poisson equation does
not give resonant solutions. It is known from the work of Tesla for example that
strong resonances in electric power can be obtained with suitable apparatus,
and such resonances cannot be explained using the standard model. A plausible
explanation of Tesla’s well known results is given by the incorporation of the spin
connection into classical electrodynamics. Using spherical polar coordinates and
restricting consideration to the radial component:

∇2φ =
∂2φ

∂r2
+

2
r

∂φ

∂r
, (2.152)

ω ·∇φ = ωr
∂φ

∂r
, (∇ · ω)φ =

φ

r2

∂

∂r
(r2ωr), (2.153)

so that Eq. (2.151) becomes:

∂2φ

∂r2
+
(

2
r

+ ω

)
∂φ

∂r
+
φ

r2

(
2rωr + r2 ∂ωr

∂r

)
=
−ρ
ε0

(2.154)
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In paper 63 a spin connection was chosen of the simplest type compatible with
its dimensions of inverse meters:

ωr = −1
r

(2.155)

and thus giving the differential equation:

∂2φ

∂r2
+

1
r

∂φ

∂r
− 1
r2
φ =

−ρ
ε0

(2.156)

as a function of r. Eq. (2.156) becomes a resonance equation if the driving term
on the right hand side is chosen to be oscillatory, in the simplest instance:

ρ = ρ(0) cos(κrr). (2.157)

To obtain resonance solutions from Eq. (2.156), an Euler transform [1, 12] is
needed as follows:

κrr = exp(iκrR). (2.158)

This is a standard Euler transform extended to a complex variable. This simple
change of variable transforms Eq. (2.156) into:

∂2φ

∂R2
+ κ2

rφ =
ρ(0)
ε0

Real(e2iκrR cos(eiκrR)) (2.159)

which is an undamped oscillator equation as demonstrated in detail in Eq.
(2.63), where the domain of validity of the transformed variable was discussed in
detail. It is seen from feedback software to www.aias.us that paper 63 has been
studied in great detail by a high quality readership, so we may judge that its
impact has been extensive. The concept of spin connection resonance has been
extended to gravitational theory and magnetic motors and the theory published
in standard model journals [25, 27]. In paper 63 the simplest possible form of
the spin connection was used, Eq. (2.155) and the resulting Eq. (2.156) was
shown to have resonance solutions using a change of variable. There is therefore
resonance in the variable R. In paper 90 of www.aias.us this method was made
more general by considering the equation

∂2φ

∂r2
+
(

2
r

+ ωr

)
∂φ

∂r
+
φ

r2

(
2rωr + r2 ∂ωr

∂r

)
=
−ρ
ε0

(2.160)

which is a more general form of Eq. (2.156). When the spin connection is
defined as:

ωr = ω2
0r − 4β loge r −

4
r
. (2.161)

Eq. (2.160) becomes a simple resonance equation in r itself:
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∂2φ

∂r2
+ 2β

∂φ

∂r
+ ω2

0φ =
−ρ
ε0
. (2.162)

There is freedom of choice of the spin connection. The latter was unknown in
electrodynamics prior to ECE theory and must ultimately be determined ex-
perimentally. An example of this procedure is given in paper 94, where spin
connection resonance (SCR) theory is applied to a patented device. One of the
papers published in the standard model literature [26] applies SCR to magnetic
motors that are driven by space-time. It is probable that SCR was also dis-
covered and demonstrated by Tesla [28], but empirically before the emergence
of relativity theory. SCR has also been applied to gravitation and published
in the standard model literature [27]. So a gradual loosening of the ties to the
standard model is being observed at present.

In paper 92 of the ECE series (www.aias.us), Eq. (2.160) was further con-
sidered and shown to reduce to an Euler Bernoulli resonance equation of the
general type:

d2x

dr2
+ 2β

dx

dr
+ κ2

0x = A cos(κr) (2.163)

in which β plays the role of friction coefficient, κ0 is a Hooke’s law wave-number
and in which the right hand side is a cosinal driving term. Eq. (2.160) reduces
to Eq. (2.163) when:

ωr = 2
(
β − 1

r

)
, κ2

0 =
4
r

(
β − 1

r

)
+
∂ωr
∂r

(2.164)

Therefore the condition udner which the spin connection gives the simple reso-
nance Eq. (2.163) is defined by:

ωr = κ2
0 − 4β loge r −

4
r
. (2.165)

Reduction to the standard model Coulomb law occurs when:

β =
1
r

(2.166)

when

ωr = 0, κ2
0 = 0. (2.167)

In general there is no reason to assume that condition (2.166) always holds. The
reason why the standard model Coulomb law is so accurate in the laboratory
is that it is tested off resonance. In this off resonant limit the ECE theory
has been shown [1, 12] to give the Standard Coulomb law as required by a vast
amount of accumulated data of two centuries since Coulomb first inferred the
law. In general, ECE theory has been shown to reduce to all the known laws of
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physics, and in addition ECE gives new information. This is a classic hallmark
of a new advance in physics. It is probable that Tesla inferred methods of
tuning the Coulomb law (and other laws) to spin connection resonance. Many
other reports of such surges in power have been made, and it is now known
and accepted by the international community of scientists that they come from
general relativity applied to classical electrodynamics.

Paper 94 of the ECE series is a pioneering paper in which the theory of SCR
is applied to a patented device in order to explain in detail how the patented
device takes energy from space-time. No violation of the laws of conservation
of energy and momentum occurs in ECE theory or in SCR theory.

2.7 Effects of Gravitation on Optics and Spec-
troscopy

In the standard model of electrodynamics the electromagnetic sector is described
by the nineteenth century Maxwell Heaviside (MH) field theory, which in gauge
theory is U(1) invariant and Lorentz covariant in a Minkowski space-time. As
such MH theory cannot describe the effect of gravitation on optics and spec-
troscopy because gravitation requires a non-Minkowski space-time. In ECE
theory on the other hand all sectors are generally covariant, and during the
course of development of ECE theory several effects of gravitation on optics and
spectroscopy have been inferred, notably the effect of gravitation on the Sagnac
effect, RFR and on the polarization of light grazing a white dwarf. An explana-
tion for the well known Faraday disk generator has also been given in terms of
spinning space-time, an explanation which illustrates the fact that the torsion
of space-time produces effects not present in the standard model. Gravitation
is the curvature of space-time and in ECE theory the interaction of torsion and
curvature is determined by Cartan geometry.

The Faraday disk generator has been explained in ECE theory from the basic
assumption that the electromagnetic field is the Cartan torsion within a factor:

Fmech = A(0)Tmech (2.168)

where cA(0) is the primordial voltage. The factor A(0) is considered to originate
in the magnet of the Faraday disk generator. The Faraday disk generator con-
sists essentially of a spinning disk placed on a magnet, without the magnet no
induction is observed, i.e. no p.d.f. is generated between the center and rim of
the disk without a magnet being present. The original experiment by Faraday
on 26th Dec. 1831 consisted of spinning a disk on top of a static magnet, but
an e.m.f. is also observed if both the disk and the magnet are spun about their
common vertical axis. There continues to be no explanation for the Faraday
disk generator in the standard model, because in the latter there is no connec-
tion between the electromagnetic field and mechanical spin, angular momentum
and torsion, while ECE makes this connection in Eq. (2.168). The standard
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model law of induction of Faraday is:

∇×E +
∂B

∂t
= 0 (2.169)

and spinning the magnetic field about its own axis does not produce a non-
zero curl of the electric field as required. Clearly, a static magnetic field will
not cause induction from Eq. (2.169). So this is a weak point of the standard
model, in which induction is caused in the classical textbook description by
moving a bar magnet inside a coil, causing a current to appear. In ECE it has
been shown [1,12] that the explanation of the Faraday disk generator is simply:

F = F e/m + Fmech (2.170)

which in vector notation (section 2.5) produces the law of induction:

∇×Emech +
∂Bmech

∂t
= 0. (2.171)

Spinning the disk has the following effect in ECE theory.
In the complex circular basis [1,12] the magnetic flux density in ECE theory

is defined by:

B(1)∗ = ∇×A(1)∗ − i κ

A(0)
A(2) ×A(3) (2.172)

B(2)∗ = ∇×A(2)∗ − i κ

A(0)
A(3) ×A(1) (2.173)

B(3)∗ = ∇×A(3)∗ − i κ

A(0)
A(1) ×A(2) (2.174)

where

κ =
Ω
c

(2.175)

is a wave-number and Ω is an angular frequency in radians per second. When the
disk is stationary the ECE vector potential is [1,12] proportional by fundamental
hypothesis to the tetrad:

A(1) = A(0)q(1) (2.176)

A(2) = A(0)q(2) (2.177)

A(3) = A(0)q(3). (2.178)

In the complex circular basis the tetrads are:

q(1) =
1√
2

(i− ij), (2.179)

q(2) =
1√
2

(i + ij), (2.180)

q(3) = k, (2.181)
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and have O(3) symmetry as follows:

q(1) × q(2) = iq(3)∗, (2.182)

q(2) × q(1) = iq(1)∗, (2.183)

q(3) × q(1) = iq(2)∗. (2.184)

In the absence of rotation about Z :

∇×A(1) = ∇×A(2) = 0, (2.185)

A(3) = A(0)k. (2.186)

In the complex circular basis:

∇×E(1) + ∂B(1)/∂t = 0, (2.187)

∇×E(2) + ∂B(2)/∂t = 0, (2.188)

∇×E(3) + ∂B(3)/∂t = 0. (2.189)

Therefore from Eqs. (2.176) to (2.189) the only field present is:

B(3)∗ = B(3) = −iB(0)q(1) × q(2)

= B(3)
z k = Bzk

(2.190)

which is the static magnetic field of the bar magnet.
Now mechanically rotate the disk at an angular frequency Ω to produce:

A(1) =
A(0)

√
2

(i− ij) exp(iΩt), (2.191)

A(2) =
A(0)

√
2

(i + ij) exp(−iΩt). (2.192)

From Eqs. (2.176) to (2.192) electric and magnetic fields are induced in a di-
rection transverse to Z, i.e. in the XY plane of the spinning disk as observed
experimentally. However, the Z axis magnetic flux density is unchanged by
physical rotation about the same Z axis. This is again as observed experimen-
tally. The (2) component of the transverse electric field spins around the rim of
the disk and is defined from Eq. (2.151) as:

E(2) = E(1)∗ = −
(
∂

∂t
+ iΩ

)
A(2). (2.193)

It can be seen from section 2.5 that iΩ is a type of spin connection. The latter
is caused by mechanical spin, which in ECE is a spinning of space-time itself.
The real and physical part of the induced E(1) is:

Real(E(1)) =
2√
2
A(0)Ω(i sin Ωt− j cos Ωt) (2.194)
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and is proportional to the product of A(0) and Ω, again as observed experimen-
tally. An electromotive force is set up between the center of the disk and the
rotating rim, as first observed experimentally by Faraday. This e. m. f. is
measured experimentally with a voltmeter at rest with respect to the rotating
disk.

The homogeneous law (2.120) of ECE theory is generally covariant [1, 12]
by construction, so retains its form in any frame of reference. ECE therefore
produces a simple and complete description of the Faraday disk generator in
terms of the spinning of space-time, and concomitant spin connection. The
latter is therefore demonstrated in classical electrodynamics by the generator.
All known experimental features are explained straightforwardly by ECE theory,
but cannot be explained by MH theory, in which the spin connection is missing
because Minkowski space-time has no connection by construction - it is a “flat”
space-time. It is relatively easy to think of electrodynamics as spinning space-
time if we think of gravitation as curving space-time. This analysis also gives
confidence in the arguments of Section 2.6, where power is obtained from space-
time with spin connection resonance.

The same ECE concept just used to explain the Faraday disk generator has
been used [1, 12] to give a simple explanation of the Sagnac effect (ring laser
gyro). Again, the standard model has no satisfactory explanation for the Sagnac
effect [1,12]. Consider the rotation of a beam of light of any polarization around
a circle of area πr2 in the XY plane at an angular frequency ω1. The rotation is
a rotation of space-time itself in ECE theory, described by the rotating tetrad:

q(1) =
1√
2

(i− ij)eiω1t. (2.195)

This is rotation around the static platform of the Sagnac interferometer. The
fundamental ECE assumption means that this rotation produces the electro-
magnetic vector potential:

A
(1)
L = A(0)q(1) (2.196)

for left rotation and:

A
(1)
R =

A(0)

√
2

(i + ij)eiω1t (2.197)

for right rotation. When the platform is at rest a beam going around left-
wise takes the same time to reach its starting point as a beam going around
right-wise. The time delay is zero:

∆t = 2π
(

1
ω1
− 1
ω1

)
= 0. (2.198)

Eqs. (2.196) and (2.197) do not exist in special relativity because in the MH
theory electromagnetism is a nineteenth century entity superimposed on a space-
time that is flat and static and never rotates.
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Now consider the left - wise rotating beam (2.196) and spin the platform
mechanically in the same left-wise direction at an angular frequency Ω. The
result is an increase in the angular frequency of the rotating tetrad as follows:

ω1 → ω1 + Ω. (2.199)

Similarly consider the left wise rotating beam (2.196) and spin the platform
right-wise. The result is a decrease in the angular frequency of the rotating
tetrad:

ω1 → ω1 − Ω. (2.200)

The time delay between a beam circling left-wise with the platform, and one
circling left-wise against the platform is therefore:

∆t = 2π
(

1
ω1 − Ω

− 1
ω1 + Ω

)
(2.201)

which is the Sagnac effect. The angular frequency ω1 can be calculated from
the experimental result [1, 12]:

∆t =
4Ω
c2
Ar =

4πΩ
ω2

1 − Ω2
(2.202)

If

Ω� ω1 (2.203)

it is found that

ω1 =
c

r
= cκ (2.204)

Q.E.D. Therefore the Sagnac effect is another result of a spin connection, which
in this case can be thought of as the potential (2.196) itself.

Similarly, phase effects such as the Tomita Chao effect were also described
straightforwardly with the same basic concept during the development of ECE
theory.

In order to describe the effects of gravitation on optics and spectroscopy a
dielectric version of the ECE theory was developed and implemented to find
that the polarization of light is changed by light grazing a very massive object
such as a white dwarf, and the dielectric theory was also used to demonstrate
the effect of gravitation on the Sagnac effect [1,12]. The standard model is not
capable of such descriptions without the use of adjustable parameters in such
transient twentieth century artifacts as superstring theory, now being essentially
discarded as being untestable experimentally. ECE is far simpler and is also
capable of describing data such as the Faraday disk generator and the Sagnac
effect straightforwardly. During the course of its development the ECE theory
has also been applied to the interaction of three fields [27] and the effect of
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gravitation on the inverse Faraday effect and its resonance counterpart, known
as radiatively induced fermion resonance (RFR).

The interaction of fields in ECE theory is controlled by Cartan geometry, in
the particular case of the interaction of gravitation and electromagnetism, there
is a very small homogeneous charge current density in the Gauss law and in the
Faraday law of induction. For all practical purpose in the laboratory this is not
observable. However, it has been shown in ECE theory to result in changes of
polarization and other optical properties of light grazing a white dwarf, which
is an object many times heavier than the sun. Such changes of polarization are
not described by the Einstein Hilbert equation.

2.8 Radiative Corrections in ECE Theory

During the course of development of ECE theory the anomalous g factor of the
electron and Lamb shifts in hydrogen and helium have been explained satisfac-
torily in a far simpler manner than the standard model and using the causal and
objective principles of Einsteinian relativity. The usual approach to the radia-
tive corrections in quantum electrodynamics (QED) has been criticized [1, 12],
especially its claim to accuracy. The QED method of the standard model re-
lies on assumptions that are not present in Einsteinian relativity, and also on
adjustable parameters. The Feynman method consists of assuming the exis-
tence of virtual particles and on a perturbation method of quantum mechanics
which sums thousands of terms of increasing complexity. There is no proof that
this sum converges. It is also claimed in standard model QED that the accu-
racy of the fine structure constant is reproduced theoretically to high precision.
However the fine structure constant in S.I. units is:

α =
e2

4πε~c
(2.205)

and its accuracy is limited by the experimental accuracy of the Planck constant.
There is no way that a theory can produce a higher accuracy than experiment,
and the theoretical value of the g factor of the electron is based on the value
of the fine structure constant. Thus g cannot be known with greater accuracy
than that of the fine structure constant. These surprising inconsistencies in the
standard model data were discussed in detail [1,12] and a brief summary is given
here.

The fundamental constants of physics are agreed upon by treaty and are
given on sites such as that of the National Institute for Standards and Technol-
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ogy (www.nist.gov). This site gives:

g(exptl.) = 2.0023193043718± 0.0000000000075 (2.206)

~(exptl) = (6.6260693± 0.0000011)× 10−34Js (2.207)

e(exptl.) = (1.60217653± 0.00000014)× 10−19C (2.208)

c(exact) = 2.99792458× 108ms−1 (2.209)

ε0(exact) = 8.854187817× 10−12J−1C2m−1 (2.210)

µ0(exact) = 4π × 10−7Js2C−2m−1 (2.211)

with relative standard uncertainties. With a sufficiently precise value of:

π = 3.141592653590 (2.212)

gives, from these data:

α = 0.007297(34) (2.213)

where the result has been rounded off to the relative standard uncertainty of
the Planck constant h. This is an experimentally determined uncertainty. The
theoretical value of g from ECE theory was found by using Eq. (2.213) in

g = 2
(

1 +
α

4π

)2

(2.214)

and gives:

g(ECE) = 2.002323(49). (2.215)

The experimental value of g is known to a much higher precision than the
experimental value of h, and is:

g(exptl.) = 2.0023193043718± 0.0000000000075. (2.216)

It is seen that:

g(ECE)− g(exptl.) = 0.000004 (2.217)

which is about the same order of magnitude as the experimental uncertainty of h.
Therefore it was shown that ECE theory gives g as precisely as the experimental
uncertainty in h will allow. The standard model literature was found to be
severely self-inconsistent. For example a much used text by Atkins [29] gives h
as:

h (Atkins) = 6.62818× 10−34Js (2.218)
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without uncertainty estimates. This is different in the fourth decimal place from
the NIST value given above, a discrepancy of four orders of magnitude. Despite
this, Atkins gives:

α(Atkins) = 0.00729351 (2.219)

which claims to be different from Eq. (2.213) only in the sixth decimal place.
Atkins gives the g factor of the electron as:

g(Atkins) = 2.002319314 (2.220)

which is different from the NIST value in the eighth decimal place, while it is
claimed at NIST that g(exp) from Eq. (2.216) is accurate to the twelfth decimal
place. So there is another discrepancy of four orders of magnitude. Ryder on
the other hand [18] gives:

g(Ryder) = 2.0023193048 (2.221)

which is different from the NIST value in the tenth decimal place, a discrepancy
of two orders of magnitude. One could try to explain these discrepancies by
increasing accuracy of experimental method over the years, but there is no way
in which QED can reproduce g to the tenth decimal place as claimed by Ryder.
This is easily seen from the fact that g is calculated theoretically in QED from
the fine structure constant, whose accuracy is limited by h as we have argued.
There is also no way in which QED can be a fundamental theory as is often
claimed in the standard model literature. This is again easily seen from the fact
that QED has several assumptions extraneous to the theory of relativity [1,12].
Examples are virtual particles, acausality (the electron can do what it likes,
g backwards in time and so on), dimensional regularization, re-normalization
and the hugely elaborate perturbation method known as the Feynman calculus.
It is not known whether the series expansion used in the Feynman calculus
converges. Its thousands of terms are just worked out by computer in the hope
that it converges. In summary:

g(Schwinger) = 2 + α/π = 2.002322(8) (2.222)

g(ECE) = 2 + α/π +
α2

8π2
= 2.002323(49) (2.223)

g(exptl.) = 2.0023193043718± 0.0000000000075 (2.224)

g(Atkins) = 2.002319314± (?) (2.225)

g(Ryder) = 2.0023193048± (?) (2.226)

and there is little doubt that other textbooks and sources give further different
values of g to add to the confusion in the standard model literature. So where
does this analysis leave the claims of QED? The Wolfram site claims that QED
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gives g using the series

g = 2
(

1 +
α

2π
− 0.328

( α
2π

)2

+ 1.181
(α
π

)3

− 1.510
(α
π

)4

+ ... + 4.393× 10−12
) (2.227)

which is derived from thousands of Feynman diagrams (sic). However, the
numbers in Eq. (2.227) all come from the various assumptions of QED, none
of which are present in Einsteinian relativity. The latter is causal and objective
by construction. An even worse internal inconsistency emerges within the NIST
site itself, because the fine structure constant is claimed to be:

α(NIST) = (7.297352560± 0.000000024)× 10−3 (2.228)

both experimentally and theoretically. This cannot be true because Eq. (2.228)
is different in the eighth decimal place from Eq. (2.213), which is calculated
with NIST’s OWN data, Eqs. (2.206) to (2.211). So the NIST site is internally
inconsistent to several orders of magnitude, because it is at the same time
claimed that Eq. (2.228) is accurate to the tenth decimal place. From Eq.
(2.207) however it is seen that h at NIST is accurate only to the sixth decimal
place, which limits the accuracy of α to this, i.e. four orders of magnitude less
precise than claimed.

The theoretical claim for the fine structure constant at NIST comes from
QED, which his described as a theory in which an electron emits a virtual
photon, which in turn emits virtual electron positron pairs. The virtual positron
is attracted and the virtual electron is repelled from the real electron. This
process results in a screened charge, a mathematical concept with a limiting
value defined as the limit of zero momentum transfer or infinite distance. At
high energies the fine structure constant drops to 1/128, and so is not a constant
at all. It cannot therefore be claimed to be precise to the relative standard
uncertainty of Eq. (2.228), taken directly from the NIST website itself. There
is therefore no direct way of proving experimentally the existence of virtual
electron positron pairs, or of virtual photons. The experimental claim for the fine
structure constant at NIST comes from the quantum Hall effect combined with
a calculable cross capacitor to measure standard resistance. The von Klitzing
constant:

Rκ =
~
e2

=
µ0c

2
(sic) (2.229)

is used in this experimental determination. However, this method is again lim-
ited by the experimental accuracy of h. The accuracy of e is only ten times
better than h from NIST’s own data, and Rκ cannot be more accurate than h.
If α were really as accurate as claimed in Eq. (2.228), both h and e would have
to be this accurate experimentally, and this is obviously not true.

In view of these severe inconsistencies in the standard model and in view of
the many ad hoc and indeed unprovable assumptions of QED, it is considered

49



2.8. RADIATIVE CORRECTIONS IN ECE THEORY

that the so called “precision tests” of QED are of no utility and no meaning.
These include the g factor of the electron, the Lamb shift, the Casimir effect,
positronium, and so forth.

The ECE theory of these radiative corrections therefore set out to reproduce
what is really known experimentally in the simplest way. These methods are of
course those of William of Ockham and Francis Bacon. In the non-relativistic
quantum approximation to ECE theory the Schrödinger equation was modified
as follows [1, 12]:

− ~2

2m
∇2

(
α

2π
+

α2

16π2

)
ψ =

e2

4πε0

(
1
r
− 1
r + r(vac)

)
ψ (2.230)

in which the effect of the vacuum potential is considered to be a shift in the
electron to proton distance for each orbital of an atom or molecule, in the
simplest case atomic hydrogen (H). Computer algebra was used to show that:

r(vac)(2s)
r + (r + r(vac))

− r(vac)(2ρz, cos θ = 1)
r(r + r(vac))

=
1

4π
~
mc

1
r2

(2.231)

so that the simple ECE method of Eq. (2.230) gives the correct qualitative
result observed first by Lamb in atomic H. This is known as the Lamb shift.
Computer algebra was used to show that the ECE Lamb shift is:

∆E =
(

1
16π3/2

α

a

~
mc

)
1
r

= 0.0353 cm−1 (2.232)

in the approximation in which the angular dependence if the Lamb shift is not
considered.

The potential energy of the unperturbed H atom in wave-numbers is:

V0 = −α
r

(2.233)

and the vacuum perturbs this as follows:

V = − α

r + r(vac)
. (2.234)

So the change in potential energy due to the vacuum (i.e. the radiative correc-
tion) is positive valued as follows:

∆V = |V − V0| = α

(
1
r
− 1
r + r(vac)

)
. (2.235)

This equation was obtained by assuming that the Schrödinger equation of H in
the presence of the radiative correction due to the vacuum is, to first order in
α:

− ~2

2m

(
1 +

α

2π

)
∇2ψ − e2

4πε0r
ψ = Eψ (2.236)
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and that this is equivalent to:

− ~2

2m
∇2ψ − e2

4πε0(r + r(vac))
ψ = Eψ. (2.237)

It was assumed that r(vac) is small enough to justify using the analytically
known unperturbed wave-functions of H (ψ0) to a good approximation. So:

ψ ∼ ψ0 (2.238)

and:

∇2ψ0 = −4πmc
~

(
1
r
− 1
r + r(vac)

)
ψ0. (2.239)

Using computer algebra this approximation gives [1, 12]:

1
r + r2ρ(vac)

− 1
r + r2s(vac)

=
1

2π3/2

~
mc

1
r2
. (2.240)

The change in potential energy due to the radiative correction of the vacuum is
thus:

∆V =
α

2π3/2

~
mc

1
r2

(2.241)

and the change in total energy is:

∆E =
r

2n2a
∆V =

(
1

16π3/2

α

a

~
mc

)
1
r

= 0.0353 cm−1 (2.242)

which is the Lamb shift of atomic H. Here:

r = 1.69× 10−7m (2.243)

From Eq. (240):

r2s(vac)− r2p(vac)
(r + r2p(vac))(r + r2s(vac))

=
1

2π3/2

~
mc

1
r2
. (2.244)

Eq. (238) implies:

r � r2s(vac) ∼ r2p(vac) (2.245)

so in this approximation Eq. (2.244) becomes:

r2s(vac)− r2p(vac) =
1

2π3/2

~
mc

(2.246)

i.e.

r2s(vac)− r2p(vac) =
1

4π5/2

~
mc

(2.247)
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where the standard Compton wavelength is:

h

mc
= 2.426× 10−12m. (2.248)

Thus we arrive at:

r2s(vac)− r2p(vac) = 3.48× 10−13m. (2.249)

This is a plausible result because the classical electron radius is:

r(classical) =
1

4πε0
e2

mc2
= 2.818× 10−15m (2.250)

and the Bohr radius is:

a = 5.292× 10−11m. (2.251)

So the radiative correction perturbs the electron orbitals by about ten times the
classical radius of the electron and by orders less than the Bohr radius. The
ECE theory also shows why the Lamb shift is constant as observed because for
a given orientation:

cos θ = 1 (2.252)

the shift is determined completely by 1/r within a constant of proportionality
defined by:

ζ =
1

32π3/2

α

a

~
mc

. (2.253)

The angular dependence of the Lamb shift in H was also considered [1,12] and
the method extended to the helium atom. Finally, consideration was given to
how radiative corrections may be amplified by spin connection resonance.

Therefore in summary, the accuracy of the fine structure constant is deter-
mined experimentally by that of the Planck constant h. The LEAST accurately
known constant determines the accuracy of the fine structure constant, as should
be well known. There is no way that any theory can determine the fine struc-
ture constant more accurately than it is known experimentally. Therefore ECE
theory sets out to use the experimental accuracy in α. The latter is determined
by the accuracy in h as argued. This was done as simply as possible in accor-
dance with Ockham’s Razor. QED on the other hand is hugely elaborate, and
its claims to be an accurate fundamental theory are unjustifiable. There can be
no experimental justification for the existence of virtual particle pairs because of
the gross internal inconsistencies in data reviewed in this section. Additionally,
there are several ad hoc assumptions in the theory of QED itself.
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2.9 Summary of Advances Made by ECE Theory,
and Criticisms of the Standard Model

In this section a summary is given of the main advances of ECE theory over the
past five years since inception in Spring 2003, and also a summary of implied
criticisms of the current model of physics known as the standard model.

The major advantage of ECE theory is that it relies on the original principles
of the theory and philosophy of relativity, without any extraneous input. This
approach adheres therefore to the Ockham Razor of philosophy, the simpler the
better. It also adheres to the principles of Francis Bacon, that every theory is
tested experimentally, and not against another theory.

1. The inverse Faraday effect. This is described by the spinning of space-time
and the B(3) field (see www.aias.us Omnia Opera) from first principles.
In the standard model the effect cannot be described self consistently and
cannot be described without an ad hoc conjugate product of non-linear
optics. The latter is introduced phenomenologically in the standard model
of non-linear optics, a theory of special relativity. In ECE theory the B(3)
spin field indicates that optics and spectroscopy are parts of a generally
covariant unified field theory (GCUFT).

2. The Aharonov Bohm effects. These are described self consistently in
ECE through the spin connection using the principles of general relativ-
ity. As shown in this review paper, the standard model description of the
Aharonov Bohm (AB) effects is at best controversial and at worst erro-
neous. A satisfactory description of the AB effects in ECE leads to a new
understanding of quantum entanglement and one photon interferometry.

3. The polarization change in light deflected by gravitation. This is not
described in the Einstein Hilbert (EH) equation of the standard model
because it is a purely kinematic equation relying on the gravitational at-
traction between a photon and a mass M, for example the solar mass. In
ECE all the optical effects of gravitation are developed self consistently
from the Bianchi identity of Cartan geometry.

4. The Faraday disk generator. This is described in ECE through the Car-
tan torsion of space-time introduced by mechanical spin, this concept is
missing entirely from the standard model, which still cannot describe the
1831 Faraday disk generator.

5. The Sagnac effect and ring laser gyro. These are described again by the
Cartan torsion of space-time introduced by spinning the platform of the
Sagnac interferometer. The Sagnac effect is very difficult to understand
using Maxwell Heaviside theory, but is easily described in ECE theory.
The latter offers a far simpler description than other available attempts
at explaining the Sagnac effect of 1913.
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6. The velocity curve of a spiral galaxy. This is described straightforwardly
and simply in ECE theory by introducing again the concept of constant
space-time torsion. The spiral galaxies main features cannot be described
at all in the standard model. This is because the latter relies on an ad
hoc “dark matter” that originates in the EH equation. The latter is self
inconsistent as argued in this review paper.

7. The topological phases such as the Berry phase. These are derived in
ECE from first principles, and are rigorously inter-related. In the stan-
dard model their description is incomplete, and in the case of the electro-
magnetic phase, erroneous.

8. The electromagnetic phase. This is described self consistently in terms of
the B(3) spin field of ECE theory using general relativity. In the standard
model the phase is incompletely determined mathematically, and violates
parity in simple effects such as reflection.

9. Snell’s law, reflection, refraction, diffraction, interferometry and related
optical effects. These can be described correctly only in a GCUFT such
as ECE. In the standard model the theory of reflection for example, does
not fit with parity inversion symmetry due to the neglect of the B(3) spin
field.

10. Improvements to the Heisenberg Uncertainty Principle. Various experi-
ments have shown that the principle is incorrect by orders of magnitude,
in ECE theory it is developed with causal and objective general relativity
and the concept of quantum of action density.

11. The unification of wave mechanics and general relativity. This has been
achieved straightforwardly in ECE theory through the use of Cartan ge-
ometry. In the standard model it is still not possible to make this basic
unification. The Dirac, Proca and other wave equations are limits of the
ECE wave equation, which is derived easily from the tetrad postulate of
Cartan. So ECE allows the description of the effect of gravitation on such
equations, and on such phenomena as the Sagnac effect. This is again not
possible in the standard model.

12. Description of particle interaction. This description is achieved with simul-
taneous ECE equations without assuming the existence either of virtual
particles or of the Higgs mechanism. The Higgs boson still has not been
verified experimentally, and its energy is not defined theoretically.

13. The photon mass. The Proca equation is derived easily from Cartan ge-
ometry using the simple hypothesis that the potential is proportional to
the Cartan tetrad. In the standard model the Proca equation is directly
incompatible with gauge invariance, a fundamental self-inconsistency of
the standard model, one of many self - inconsistencies.
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14. Replacement of the gauge principle. The gauge principle is not tenable
in a GCUFT such as ECE because the potential in ECE is physically
meaningful as in Faraday’s original electrotonic state. Abandonment of
the gauge principle allows a return to the earlier concepts of relativity
without introducing an ad hoc and abstract internal space as in Yang
Mills theory. In ECE theory the tetrad postulate is invariant under the
general coordinate transform, and this is the principle that governs the
potential field in ECE.

15. Description of the electro-weak field without the Higgs mechanism. This
becomes possible in a relatively straightforward manner by using simulta-
neous ECE equations. The Higgs mechanism is ad hoc, and to date un-
proven experimentally, indeed it is unprovable because an energy cannot
be assigned to the Higgs boson. The Higgs boson, having no well defined
energy, cannot be proven experimentally by particle collision methods,
however powerful the accelerator. No sign of a Higgs boson was found at
LEP, and to date no sign at the CERN heavy hadron collider.

16. Description of neutrino oscillations. This is a relatively simple exercise
in ECE theory but in the standard model neutrino oscillations remained
deeply controversial for years because of adherence to the assumption that
the neutrino had no mass. In ECE all particles have mass - a fundamental
requirement of relativity.

17. The generally covariant description of the laws of classical electrodynam-
ics. These laws become laws of general relativity and a unified field the-
ory, they are no longer laws of a Minkowski space-time as in the standard
model. The concept of spin connection and spin connection resonance
make important advances and potentially open up new sources of energy.

18. Derivation of the quark model from general relativity. This has been
achieved in ECE theory by using an SU(n) representation space in the
wave and field equations. In the standard model the quark theory is one of
special relativity. QCD relies on ad hoc concepts such as re-normalization,
which as argued in section 2.8, are not internally consistent with data. The
situation in QCD is worse than that in QED.

19. Derivation of the quantum theory of electrodynamics. This is achieved
using the wave equation and the ECE hypothesis, resulting in a generally
covariant version of the Proca equation with non-zero photon mass. In so
doing a minimum particle volume is always present, so there are no point
particles and no need for re-normalization. Feynman’s QED is abandoned
as described in Section 2.8.

20. The origin of particle spin. This is traced to geometry and particle spins of
all kinds are successfully incorporated into general relativity. This is not
possible with the EH equation, which has been shown to be fundamentally
flawed.
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21. Development of cosmology. The major advantage of considering the Car-
tan torsion becomes abundantly clear in cosmology, in particular the ex-
planation of the spiral galaxies. Cosmology based on the EH equation has
been shown to be meaningless in several different ways.

22. No Singularities. This is a flawed concept introduced by incorrect solutions
of the EH equation. The latter is itself inconsistent with the Bianchi
identity. In ECE theory the concept of Big Bang is replaced with the
steady state universe with local oscillations. Similarly there are no black
holes and no dark matter. Applications of experimentally untestable string
theory to these concepts multiplies the heavily criticized obscurantism of
modern physics.

23. Explanation of the red shift. This is a simple optical effect in ECE theory,
there can be different red shifts in equidistant objects. ECE also offers a
new explanation of the background radiation if indeed it is not an artifact
of the Earth’s atmosphere as some scholars now think.

24. Spin connection resonance. This concept is made possible in ECE and has
been offered as an explanation of Tesla’s well known giant resonances and
similar reports of over a century of work. The latter cannot be explained
in the standard model yet is potentially a source of major new energy.

25. Spinning Space-time. This is a key new concept of electrodynamics, akin
to curving space-time in gravitation. ECE has made the major discovery
that the two concepts are linked ineluctably in relativity, and this has led
to the abandonment of the EH equation. A suggested replacement of the
equation has been made in recent work.

26. Counter gravitation. It has been shown that this is feasible only by using
resonance methods based again on the spin connection and the interaction
of gravitation and electromagnetism. It needs a GCUFT such as ECE to
begin to describe this interaction of the fundamental fields of force.

27. Gravitational Dynamics. These are developed in ECE in the same way
as electrodynamics. For example it is relatively easy to show that there
is a gravitational equivalent of the Faraday law of induction, as indeed
observed recently. A new approach to the derivation of the acceleration
due to gravity has also been made possible, an approach based on the
rigorous Bianchi identity given by Cartan.

28. Quantum Entanglement. These well known quantum effects can be un-
derstood using the spin connection of ECE in a similar way to the AB
effects. Similarly the argument can be extended to such phenomena as
one photon Young interferometry. In the standard model they are very
difficult to understand because of the use of a Minkowski space-time with
no connection. In the standard model these are mysterious effects with
many offered explanations, none convincing.
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29. Superconductivity and related fields. The equations governing the behav-
ior of classes of materials are all derived in ECE from geometry, so there
is an overall self-consistency which is often missing in the standard model.
For example plasma, semiconductors, superconductors, and so forth.

30. Quantum Field Theory. This is developed in ECE entirely without he use
of string theory or super-symmetry. String theory in particular has been
heavily criticized because it cannot be tested experimentally and makes
no new predictions at all. Such matters as photon mass theory, canonical
quantization, and creation annihilation operator theory are all improved
by ECE theory.

31. Radiative Corrections. These are understood in a far simpler way in ECE
theory as discussed in Section 2.8. The claims of QED theory have been
shown to be false by several orders of magnitude, and the complacency of
the standard physics community heavily criticized thereby.

32. Fermion Resonance. New methods of detecting and developing fermion
resonance have been developed and it is shown that such resonance can be
induced without the use of magnets. This method is known as radiatively
induced fermion resonance (RFR). It has been clearly understood to be
due to the B(3) field.

33. Ubiquitous B(3) Field. It has been shown that the B(3) field is the one
responsible for the general relativistic description of the electromagnetic
phase, so it occurs throughout optics and spectroscopy, in everyday phe-
nomena such as reflection.

34. Fundamental Advances in Geometry. In the course of developing ECE
theory it has been shown that there is only one Bianchi identity, not two
unrelated identities used in the standard model. It has also been shown
rigorously in many ways that the Bianchi identity has a Hodge dual. These
properties lead to field equations with duality symmetry. Such a symmetry
is not present in the standard model.

35. Self Consistency of Cartan’s geometry. This has been tested in many
ways, and it has been shown that the tetrad postulate is rigorously self
consistent and fundamental to physics. Numerous tests of self consistency
have been made.

36. Development of Gravitational Relativity. It has been shown that the cor-
rect description of gravitation requires the Bianchi identity of Cartan,
which links torsion to curvature. The Bianchi identity used by Einstein
has been shown to be incomplete, and using computer algebra, it has been
shown that the EH equation is inconsistent with the use of a Christoffel
connection and symmetric metric. It has also been shown that claimed
solutions of the EH equation are often incorrect mathematically. Finally
it has been shown that the Ricci flat space-time is incompatible with the
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Einsteinian equivalence principle. Therefore the standard model literature
has to be read with considerable caution. Many claims of the standard
model have not stood up to scrutiny, whereas ECE has developed strongly.
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2.10 Appendix 1: Homogeneous Maxwell Heavi-
side Equations

In the first of several technical appendices it is shown how to translate the
homogeneous Maxwell Heaviside (MH) from tensor to vector notation, giving
details that are rarely found in textbooks. In tensor notation the equation is:

∂µF̃
µν = 0 (2.1)

and involves the Hodge dual of the 4 x 4 field tensor, defined as follows:

F̃µν =
1
2
εµνρσF

ρσ. (2.2)

Indices are raised using the Minkowski metric:

F̃µν = gµκgνρF̃κρ (2.3)

where:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.4)

Therefore the Hodge dual is:

F̃µν =


0 cB1 cB2 cB3

−cB1 0 −E3 E2

−cB2 E3 0 −E1

−cB3 −E2 E1 0

 (2.5)

For example:

F̃01 =
1
2

(ε0123F
23 + ε0132F

32) = F 23 (2.6)

and

F̃ 01 = g00g11F̃01 = −F̃10. (2.7)

The homogeneous laws of classical electrodynamics are the Gauss law and
Faraday law of induction. They are obtained as follows by choice of indices.
The Gauss law is obtained by choosing:

ν = 0 (2.8)

and so

∂1F̃
10 + ∂2F̃

20 + ∂3F̃
30 = 0. (2.9)
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In vector notation this is

∇ ·B = 0. (2.10)

The Faraday law of induction is obtained by choosing:

ν = 1, 2, 3 (2.11)

and is three component equations:

∂0F̃
01 + ∂2F̃

21 + ∂3F̃
31 = 0 (2.12)

∂0F̃
02 + ∂1F̃

12 + ∂3F̃
32 = 0 (2.13)

∂0F̃
03 + ∂1F̃

13 + ∂2F̃
23 = 0. (2.14)

These can be condensed into one vector equation, which is

∇×E +
∂B

∂t
= 0. (2.15)

The differential form, tensor and vector notations are summarized as follows:

d ∧ F = 0→ ∂µF̃
µν = 0→∇ ·B = 0 (2.16)

∇×E +
∂B

∂t
= 0

The homogeneous laws of classical electrodynamics are most elegantly repre-
sented by the differential form notation, but most usefully represented by the
vector notation.
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2.11 Appendix 2: The Inhomogeneous Equations
The inhomogeneous laws are the Coulomb law and the Ampère Maxwell law.
In tensor notation they are condensed into one equation:

∂µF
µν =

1
ε0
Jν (2.1)

where the charge current density is:

Jν =
(
ρ,

J

c

)
(2.2)

and where the partial derivative is:

∂µ =
(

1
c

∂

∂t
,
∂

∂X
,
∂

∂Y
,
∂

∂Z

)
(2.3)

The field tensor is:

Fµν =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

 =


0 F 01 F 02 F 03

F 10 0 F 12 F 13

F 20 F 21 0 F 23

F 30 F 31 F 32 0


(2.4)

and in S.I. units:

ε0µ0 =
1
c2
. (2.5)

In this notation:

EX = E1 = F 10,

EY = E2 = F 20,

EZ = E3 = F 30,

 (2.6)

and so on. The Coulomb law is obtained from choosing:

ν = 0 (2.7)

so that:

∂1F
10 + ∂2F

20 + ∂3F
30 =

1
ε0
J0. (2.8)

In vector component notation this is:

∂EX
∂X

+
∂EY
∂Y

+
∂EZ
∂Z

=
1
ε0
ρ (2.9)
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which in vector notation is:

∇ ·E =
ρ

ε0
. (2.10)

The Ampère Maxwell law is obtained from choosing

ν = 1, 2, 3 (2.11)

which gives three equations:

∂0F
01 + ∂2F

21 + ∂3F
31 =

1
ε0
J1 (2.12)

∂0F
02 + ∂1F

12 + ∂3F
32 =

1
ε0
J2 (2.13)

∂0F
03 + ∂1F

13 + ∂2F
23 =

1
ε0
J3. (2.14)

In vector component notation these are:

−1
c

∂EX
∂t

+ c

(
∂BZ
∂Y

− ∂BY
∂Z

)
=

1
ε0
JX (2.15)

−1
c

∂EY
∂t

+ c

(
∂BX
∂Z

− ∂BZ
∂X

)
=

1
ε0
JY (2.16)

−1
c

∂EZ
∂t

+ c

(
∂BY
∂X

− ∂BX
∂Y

)
=

1
ε0
JZ . (2.17)

The definition of the vector curl is

∇×B =

∣∣∣∣∣∣
i j k

∂/∂Z ∂/∂Y ∂/∂Z
BX BY BZ

∣∣∣∣∣∣ (2.18)

=
(
∂BZ
∂Y

− ∂BY
∂Z

)
i−

(
∂BZ
∂X

− ∂BX
∂Z

)
j +

(
∂BY
∂X

− ∂BX
∂Y

)
k,

so it is seen that the three equations (2.15) to (2.17) can be condensed into one
vector equation:

∇×B − 1
c2
∂E

∂t
= µ0J (2.19)

which is the Ampère Maxwell Law. The differential form, tensor and vector
formulations of the inhomogeneous laws of standard model classical electrody-
namics are summarized as follows:

d ∧ F̃ =
J

ε0
→ ∂µF

µν =
Jν

ε0
→∇ ·E =

ρ

ε0
, (2.20)

∇×B − 1
c2
∂E

∂t
= µ0J .
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2.12 Appendix 3: Some Examples of Hodge Du-
als in Minkowski Space-Time

In Minkowski space-time the Hodge dual of a rank two anti-symmetric tensor
(two-form) in four dimensions is defined by:

F̃µν =
1
2
εµνρσF

ρσ. (2.1)

For example, the B(3) field is defined by:

Fµν =


0 0 0 0
0 0 −cB(3) 0
0 cB(3) 0 0
0 0 0 0

 (2.2)

so its Hodge dual is:

F̃µν =


0 0 0 cB(3)

0 0 0 0
0 0 0 0

−cB(3) 0 0 0

 . (2.3)

It can be seen that the Hodge dual of the B(3) field does not imply the existence
of an E(3) field, it is a re-arrangement of matrix elements. There appears to
be no experimental evidence for the existence of a radiated E(3) field. In other
words there is no electric equivalent of the inverse Faraday effect, and there is
no electric equivalent of the Faraday effect.

The radiated B(3) field is generated by the spin connection, the static mag-
netic field of the standard model is defined without the spin connection as
follows:

B = ∇×A. (2.4)

In tensor form the static magnetic field is:

Fµν =


0 0 0 0
0 0 −cBZ cBY
0 cBZ 0 −cBX
0 −cBY cBX 0

 (2.5)

whose Hodge dual is:

F̃µν =


0 cBX cBY cBZ

−cBX 0 0 0
−cBY 0 0 0
−cBZ 0 0 0

 . (2.6)
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Again, the Hodge dual does not generate an electric field. In ECE theory the
magnetic field in vector notation always includes the spin connection vector as
follows:

B = ∇×A− ω ×A (2.7)

and this is true for all types of magnetic field.

64



CHAPTER 2. A REVIEW OF EINSTEIN CARTAN EVANS (ECE) . . .

2.13 Appendix 4: Standard Tensorial Formula-
tion of the Homogeneous Maxwell Heaviside
Field Equations

The standard tensorial formulation developed in this appendix is:

∂µF̃
µν = ∂µF̃µν = 0 (2.1)

and is needed as a baseline for the development of ECE theory. The field tensor
is defined as:

Fµν =


0 cB1 cB2 cB3

−cB1 0 −E3 E2

−cB2 E3 0 −E1

−cB3 −E2 E1 0

 . (2.2)

where, in standard covariant - contravariant notation and in S.I. units:

∂µ =
(

1
c

∂

∂t
,
∂

∂X
,
∂

∂Y
,
∂

∂Z

)
, (2.3)

∂µ =
(

1
c

∂

∂t
,− ∂

∂X
,− ∂

∂Y
,− ∂

∂Z

)
, (2.4)

xµ = (ct,X, Y, Z), (2.5)

xµ = (ct,−X,−Y,−Z). (2.6)

The metric and inverse metric tensors in Minkowski space-time are equal, and
are given by:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.7)

Indices are raised and lowered with the metric, for example:

F̃µν = gµρ gνσ F̃
ρσ (2.8)

where

g00 = 1, g11 = g22 = g33 = −1 (2.9)

and so on. Therefore:

F̃01 = g00 g11F
01 = −F̃ 01, F̃02 = −F̃ 02, F̃03 = −F̃ 03 (2.10)

65



2.13. APPENDIX 4: STANDARD TENSORIAL FORMULATION OF . . .

and so on. Therefore:

F̃µν =


0 cBX cBY cBZ
−cBx 0 −EZ EY
−cBY EZ 0 −EX
−cBZ −EY EX 0

 ,

F̃µν =


0 −cBX −cBY −cBZ

cBX 0 −EZ EY
cBY EZ 0 −EX
cBZ −EY EX 0

 .
(2.11)

If the field tensor is defined with raised indices then the Gauss law is given by:

∂1F̃
10 + ∂2F̃

20 + ∂3F̃
30 = 0 (2.12)

i.e.:

−∇ ·B = 0 (2.13)

and the Faraday law of induction is given by

∂0F̃
01 + ∂2F̃

21 + ∂3F̃
31 = 0 (2.14)

∂0F̃
02 + ∂1F̃

12 + ∂3F̃
32 = 0 (2.15)

∂0F̃
03 + ∂1F̃

13 + ∂2F̃
23 = 0 (2.16)

i.e.

∇×E +
∂B

∂t
= 0. (2.17)

In almost all textbooks the Gauss law is written as:

∇ ·B = 0, (2.18)

but the above is the rigorously correct result.
Similarly if the field tensor is written with lowered indices, : i.e.:

∂µF̃µν = 0 (2.19)

the rigorously correct result is:

−∇ ·B = 0 (2.20)

−
(

∇×E +
∂B

∂t

)
= 0

The minus signs are always omitted in textbook material.
If the field tensor is defined with indices raised:

∂µF
µν =

Jν

ε0
(2.21)
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where:

Fµν =
1
2
εµνρσF̃ρσ. (2.22)

The totally anti-symmetric unit tensor in four-dimensions has elements:

ε0123 = −ε1230 = ε2301 = −ε3012 = 1

ε1023 = −ε2130 = ε3201 = −ε0312 = −1

ε1032 = −ε2103 = ε3210 = −ε0321 = 1

ε1302 = −ε2013 = ε3120 = −ε0231 = −1

(2.23)

So for example:

F 01 =
1
2

(
ε0123F̃23 + ε0132F̃32

)
= F̃23 = −EX

F 02 =
1
2

(
ε0231F̃31 + ε0213F̃13

)
= F̃31 = −EY

F 03 =
1
2

(
ε0312F̃12 + ε0321F̃21

)
= F̃12 = −EZ

F 23 =
1
2

(
ε2301F̃01 + ε2310F̃10

)
= F̃01 = −cBX

F 13 =
1
2

(
ε1302F̃02 + ε1320F̃20

)
= −F̃02 = cBY

F 12 =
1
2

(
ε1230F̃30 + ε1203F̃03

)
= F̃03 = −cBZ

(2.24)

Therefore:

Fµν =


0 −EX EY −EZ
EX 0 −cBZ cBY
EY cBZ 0 −cBX
EZ −cBY cBX 0

 =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

 .
(2.25)

The charge current density is:

Jν =
(
ρ,
J

c

)
. (2.26)

The Coulomb law is:

∂1F
10 + ∂2F

20 + ∂3F
30 =

1
ε0
J0 =

ρ

ε0
(2.27)

which in vector notation is:

∇ ·E =
ρ

ε0
. (2.28)

67



2.13. APPENDIX 4: STANDARD TENSORIAL FORMULATION OF . . .

The Ampère Maxwell law is:

∂0F
01 + ∂2F

21 + ∂3F
31 = J1/ε0 (2.29)

∂0F
02 + ∂1F

12 + ∂3F
32 = J2/ε0 (2.30)

∂0F
03 + ∂1F

13 + ∂2F
23 = J3/ε0 (2.31)

i.e.:

−1
c

∂EX
∂t

+ c

(
∂BZ
∂Y

− ∂BY
∂Z

)
=

1
ε0
JX (2.32)

−1
c

∂EY
∂t

+ c

(
∂BX
∂Z

− ∂BZ
∂X

)
=

1
ε0
JY (2.33)

−1
c

∂EZ
∂t

+ c

(
∂BY
∂X

− ∂BX
∂Y

)
=

1
ε0
JZ (2.34)

which is:

∇×B − 1
c2
∂E

∂t
= µ0 J . (2.35)

Therefore the standard adopted is:

∂µF
µν =

1
ε0
Jν →∇ ·E = ρ/ε0 (2.36)

∇×B − 1
c2
∂E

∂t
= µ0 J .

To be precisely correct therefore, the tensorial formulation of the four laws of
electrodynamics is:

∂µF
µν =

1
ε0
Jν (2.37)

−∂µF̃µν = 0 (2.38)

where:

Fµν =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

 (2.39)

and

F̃µν =


0 −cB1 −cB2 −cB3

cB1 0 −E3 E2

cB2 E3 0 −E1

−cB3 −E2 E1 0

 . (2.40)
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In free space:

∂µF
µν = 0, (2.41)

−∂µF̃µν = 0. (2.42)

The free space equations are duality invariant under:

Fµν ↔ F̃µν (2.43)

i.e.:

EX ↔ cBX , EY ↔ cBY , EZ ↔ cBZ . (2.44)

The Hodge dual transform is:

Fµν =
1
2
εµνρσF̃ρσ (2.45)

and can be summarized as:

−∂
µ
F
~

µ ν = 0 ∂µ F
µ ν = 0

∇ ⋅ B = 0

∂B

∂t
+ ∇ × E = 0

∇ ⋅ E = 0

∇ × B −
1

c2

∂E

∂t
= 0

Figure 2.3: Homogeneous ECE Field Equation.

The presence of matter and charge-current density breaks the duality sym-
metry, or duality invariance.

2.14 Appendix 5: Illustrating the Meaning of the
Connection with Rotation in a Plane

Consider the clockwise rotation in a plane of a vector V 1 to V 2 as in Fig. 2.1.
This rotation is carried out by moving the vector and keeping the frame of ref-
erence fixed. This process is equivalent to keeping the vector fixed and rotating
the frame of reference anti-clockwise through an equal angle θ. In Cartesian
coordinates (Fig. 2.1):

V 1 = V 1
Xi + V 1

Y j (2.1)

V 2 = V 2
Xi + V 2

Y j (2.2)

where:

|V 1| = |V 2|, (2.3)

|V 1| = (V 1
X

2 + V 1
Y

2)
1
2 , (2.4)

|V 2| = (V 2
X

2 + V 2
Y

2)
1
2 . (2.5)
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θ

V 

1

Y

X

V 

2

Figure 2.4: Rotation of a Vector in a Plane.

This is a rotation in which the frame is fixed, i.e. the Cartesian unit vectors i
and j do not change. The rotation could equally well be represented by:

V 1 = VXi1 + VY j1, (2.6)

V 2 = VXi2 + VY j2, (2.7)

and in this case the vector is fixed and the frame rotated anti-clockwise. We
now have:

|V 1| = |V 2| = (V 2
X + V 2

Y )
1
2 (2.8)

because:

i1 · i1 = i2 · i2 = 1
j1 · j1 = j2 · j2 = 1

}
. (2.9)

The invariance under rotation of the complete vector field is true in both cases:

a) V 12 = V 12
X + V 12

Y = V 22
X + V 22

Y = V 22,

b) V 12 = V 2
X + V 2

Y = V 22.
(2.10)

The rotation can also be represented by: V 1
X

V 1
Y

V 1
Z

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 V 2
X

V 2
Y

V 2
Z

 (2.11)

i.e.:

V 1
X = V 2

X cos θ + V 2
Y sin θ (2.12)

V 1
Y = −V 2

X sin θ + V 2
Y cos θ (2.13)

V 1
Z = V 2

Z . (2.14)

These equations are usually interpreted as the vector rotated clockwise with
fixed frame. However they are also true for a fixed vector and frame rotated
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anti-clockwise. So this is an example of the frame itself moving. Therefore a
connection can be defined because the connection determines how the frame
itself moves. The general rule for covariant derivative is:

DνV
µ = ∂νV

µ + ΓµλνV
λ. (2.15)

This equation means that Dν acting on V µ is the four derivative ∂ν plus the
term ΓµλνV

λ. The three index symbol is referred to as “the connection”, and
describes the movement of the frame itself. The latter produces, for a given ν:

Uµ = ΓµλV
λ. (2.16)

It is seen that Eq. (2.11) is an example of Eq. (2.16) in three dimensions, X, Y,
and Z. So for a rotation of the frame anti-clockwise in three dimensions about
the Z axis the matrix is the rotation matrix:

Γµλ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (2.17)

Thus:

Γ1
1 = cos θ,Γ1

2 = sin θ,Γ1
3 = 0,

Γ2
1 = − sin θ,Γ2

2 = cos θ,Γ2
3 = 0,

Γ3
1 = 0,Γ3

2 = 0,Γ3
3 = 1

 . (2.18)

for each ν. Summation over repeated indices is used in Eq. (2.16) so:

U1 = Γ1
1V

1 + Γ1
2V

2 + Γ1
3V

3,

U2 = Γ2
1V

1 + Γ2
2V

2 + Γ2
3V

3,

U3 = Γ3
1V

1 + Γ3
2V

2 + Γ3
3V

3,

 (2.19)

for each ν. These equations (2.19) are the same as Eqs. (2.12) to (2.14).
The covariant derivative of Eq. (2.15) in this case is therefore:

DνV
µ = (∂ + Γµλ)νV λ. (2.20)

For example:

DνV
1 = (∂ + Γ1

1)νV 1 + Γ1
2νV

2

DνV
1 = (∂ + cos θ)νV 1 + (sin θ)νV 2

DνV
1 = ∂νV

1 + (cos θ)νV 1 + (sin θ)νV 2

(2.21)

Thus:

Γ1
1ν = (cos θ)ν ,Γ1

2ν = (sin θ)ν . (2.22)
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These connections must have the units of inverse meters and must operate in
the same way as the four derivative ∂ν . So it is reasonable to assume:

Γ1
1ν =

1
2

cos θ ∂ν , Γ1
2ν =

1
2

sin θ ∂ν (2.23)

and

DνV
1 =

1
2

((1 + cos θ)∂νV 1 + sin θ∂νV 2) (2.24)

If there is no frame rotation:

θ = 0 (2.25)

and

DνV
1 = ∂νV

1. (2.26)

This method regards the connection as an operator. It is well known that the
set is a basis set in Riemann geometry. Others possibilities consistent with the
correct dimensions of the connection are

(cos θ)ν =
cos θ
r

, (sin θ)ν =
sin θ
r

. (2.27)
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T  

a = d ` q 
a + ω 

a
b ` q 

b

T 
a
µ ν = ∂µ 

q 
a
ν − ∂ν  

q 
a
µ + ω 

a
µ b 

q 
b
ν − ω 

a
ν b 

q 
b
µ

Dµ 
q 

a
ν
 = 0,

Tetrad Postulate

Links Cartan and

Riemann Geometry

∂µ 
q 

a
ν = q 

a
λ Γ 

λ
µ ν − q 

b
ν  ω 

a
µ b,

∂ν 
q 

a
µ = q 

a
λ Γ 

λ
νµ − q 

b
µ ω 

b
ν b

T 
a
µ ν = q 

a
λ 
(Γλ

µ ν − Γλ
νµ)

  = q 
a
λ T  

λ
µ ν

Torsion Tensor of Riemann Geometry

Flowchart 2.1: First Cartan Structure Equation.
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D ` T  : = R ` q ≠ 0

R 

λ
ρµ ν + R 

λ
µ νρ + R 

λ
νρµ

:= ∂µ 
Γ 

λ
νρ − ∂ν 

Γ
λ

 µ ρ + Γ 

λ
µ σ 

Γ
σ
νρ − Γ 

λ
ν σ 

Γ 

σ
µ ρ

+ ∂ν 
Γ 

λ
ρµ − ∂ρ 

Γ 

λ
νµ + Γ 

λ
ν σ 

Γ 

σ
ρµ − Γ 

λ
ρ σ 

Γ 

σ
νµ

+ ∂ρ 
Γ 

λ
µ

 
ν − ∂µ 

Γ 

λ
ρ

 
ν + Γ 

λ
ρ σ 

Γ 

σ
µ ν − Γ 

λ
µ σ 

Γ 

σ
ρ ν

≠ 0

T 
λ
µ ν = Γ 

λ
µ ν − Γ 

λ
νµ

T 
a
 = d ` q 

a + ω 

a
b ` q 

b

T = D ` q

Flowchart 2.2: The Bianchi Identity.
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Chapter 3

Fundamental Errors in the
General Theory of Relativity

by

Stephen J. Crothers1,

Alpha Institute for Advance Study (AIAS)
(www.aias.us, www.atomicprecision.com)

3.1 Introduction

The so-called ‘Schwarzschild solution’ is not Schwarzschild’s solution, but a cor-
ruption of the Schwarzschild/Droste solutions. In the so-called ‘Schwarzschild
solution’ the quantity m is alleged to be the mass of the source of a gravitational
field and the quantity r is alleged to be able to go down to zero (although no
valid proof of this claim has ever been advanced), so that there are two alleged
‘singularities’, one at r = 2m and another at r = 0. It is routinely asserted
that r = 2m is a ‘coordinate’ or ‘removable’ singularity which denotes the so-
called ‘Schwarzschild radius’ (event horizon) and that a ‘physical’ singularity is
at r = 0. The quantity r in the ‘Schwarzschild solution’ has never been rightly
identified by the physicists, who, although proposing many and varied concepts
for what r therein denotes, effectively treat it as a radial distance from the
claimed source of the gravitational field at the ‘origin of coordinates’. The con-
sequence of this is that the intrinsic geometry of the metric manifold has been
violated. It is easily proven that the said quantity r is in fact the inverse square
root of the Gaussian curvature of the spherically symmetric geodesic surface in
the spatial section of the ‘Schwarzschild solution’ and so does not in itself define

1e-mail: thenarmis@gmail.com
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any distance whatsoever in that manifold. Thus the ‘Schwarzschild radius’ is
not a distance of any sort. With the correct identification of the associated
Gaussian curvature it is also easily proven that there is only one singularity
associated with all Schwarzschild metrics, of which there is an infinite number
that are equivalent. Thus, the standard removal of the singularity at r = 2m is
erroneous, as the alleged singularity at r = 0 does not exist, very simply demon-
strated herein. This has major implications for the localisation of gravitational
energy, i.e. gravitational waves.

It is demonstrated herein that Special Relativity forbids infinite density and
in consequence of this General Relativity necessarily forbids infinite density,
and so the infinitely dense point-mass singularity of the alleged black hole is
forbidden by the Theory of Relativity. It is also shown that neither Einstein’s
Principle of Equivalence not his Laws of Special Relativity can manifest in
a spacetime that by construction contains no matter, and therefore Ric = 0
violates the requirement that both the said Principle and Special Relativity
manifest in Einstein’s gravitational field. The immediate implication of this
is that the total gravitational energy of Einstein’s gravitational field is always
zero, so that the energy-momentum tensor and the Einstein tensor must vanish
identically. Attempts to preserve the usual conservation of energy and momen-
tum by means of Einstein’s pseudo-tensor are fatally flawed owing to the fact
that the pseudo-tensor implies the existence of a first-order intrinsic differen-
tial invariant, dependent solely upon the components of the metric tensor and
their first derivatives, an invariant which however does not exist, proven by
the pure mathematicians G. Ricci-Curbastro and T. Levi-Civita, in 1900. Al-
though it is standard method to utilise the Kretschmann scalar to justify infinite
Schwarzschild spacetime curvature at the point-mass singularity, it is demon-
strated that the Kretschmann scalar is not an independent curvature invariant,
being in fact a function of the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section, and therefore constrained by the limita-
tions set on the said Gaussian curvature by the geometric ground-form of the
line-element itself. Since it is easily proven that the said Gaussian curvature
cannot become unbounded in Schwarzschild spacetime, the Kretschmann scalar
is necessarily finite everywhere in the Schwarzschild manifold.

3.2 Schwarzschild spacetime

It is reported almost invariably in the literature that Schwarzschild’s solution
for Ric=Rµν = 0 is (using c= 1, G= 1),

ds2 =
(

1− 2m
r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (3.1)

wherein it is asserted by inspection that r can go down to zero in some way,
producing an infinitely dense point-mass singularity there, with an event horizon
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at the ‘Schwarzschild radius’ at r= 2m: a black hole. Contrast this metric with
that actually obtained by K. Schwarzschild in 1915 (published January 1916),

ds2 =
(

1− α

R

)
dt2 −

(
1− α

R

)−1

dR2 −R2
(
dθ2 + sin2 θdϕ2

)
, (3.2)

R = R(r) =
(
r3 + α3

) 1
3 , 0 < r <∞,

wherein α is an undetermined constant. There is only one singularity in Schwarz-
schild’s solution, at r= 0, to which his solution is constructed. Contrary to the
usual claims made by the astrophysical scientists, Schwarzschild did not set
α= 2m where m is mass; he did not breathe a single word about the bizarre
object that is called a black hole; he did not allege the so-called ‘Schwarzschild
radius’; he did not claim that there is an ‘event horizon’ (by any other name);
and his solution clearly forbids the black hole because when Schwarzschild’s
r= 0, his R=α, and so there is no possibility for his R to be less than α,
let alone take the value R= 0. All this can be easily verified by simply read-
ing Schwarzschild’s original paper [1], in which he constructs his solution so
that the singularity occurs at the “origin” of coordinates. Thus, Eq. (3.1) for
0 < r < 2m is inconsistent with Schwarzschild’s true solution, Eq. (3.2). It is
also inconsistent with the intrinsic geometry of the line-element, whereas Eq.
(3.2) is geometrically consistent, as demonstrated herein. Thus, Eq. (3.1) is
meaningless for 0 ≤ r < 2m.

In the usual interpretation of Hilbert’s [2–4] version, Eq. (3.1), of Schwarz-
schild’s solution, the quantity r therein has never been properly identified.
It has been variously and vaguely called a “distance” [5, 6], “the radius” [6–
19,78,79], the “radius of a 2-sphere” [20], the “coordinate radius” [21], the “radial
coordinate” [22–25,78,79], the “radial space coordinate” [26], the “areal radius”
[21, 24, 27, 28], the “reduced circumference” [25], and even “a gauge choice: it
defines the coordinate r ” [29]. In the particular case of r= 2m= 2GM/c2 it is
almost invariably referred to as the “Schwarzschild radius” or the “gravitational
radius”. However, none of these various and vague concepts of what r is are
correct because the irrefutable geometrical fact is that r, in the spatial section of
Hilbert’s version of the Schwarzschild/Droste line-element, is the inverse square
root of the Gaussian curvature of a spherically symmetric geodesic surface in the
spatial section [30–32], and as such it does not of itself determine the geodesic
radial distance from the centre of spherical symmetry located at an arbitrary
point in the related pseudo-Riemannian metric manifold. It does not of itself
determine any distance at all in the spherically symmetric metric manifold. It
is the radius of Gaussian curvature merely by virtue of its formal geometric
relationship to the Gaussian curvature. It must also be emphasized that a
geometry is completely determined by the form of its line-element [33].

Since r in Eq. (3.1) can be replaced by any analytic function Rc(r) [4,
30, 32, 34] without disturbing spherical symmetry and without violation of the
field equations Rµν = 0, which is very easily verified, satisfaction of the field
equations is a necessary but insufficient condition for a solution for Einstein’s
static vacuum ‘gravitational’ field. Moreover, the admissible form of Rc(r) must
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be determined in such a way that an infinite number of equivalent metrics is
generated thereby [32,34]. In addition, the identification of the centre of spher-
ical symmetry, origin of coordinates and the properties of points must also be
clarified in relation to the non-Euclidean geometry of Einstein’s gravitational
field. In relation to Eq. (3.1) it has been routinely presumed that geomet-
ric points in the spatial section (which is non-Euclidean) must have the very
same properties of points in the spatial section (Euclidean) of Minkowski space-
time. However, it is easily proven that the non-Euclidean geometric points in
the spatial section of Schwarzschild spacetime do not possess the same charac-
teristics of the Euclidean geometric points in the spatial section of Minkowski
spacetime [32, 35]. This should not be surprising, since the indefinite metric
of Einstein’s Theory of Relativity admits of other geometrical oddities, such
as null vectors, i.e. non-zero vectors that have zero magnitude and which are
orthogonal to themselves [36].

3.3 Spherical Symmetry
Recall that the squared differential element of arc of a curve in a surface is given
by the first fundamental quadratic form for a surface,

ds2 = E du2 + 2F du dv +G dv2,

wherein u and v are curvilinear coordinates. If either u or v is constant the re-
sulting line-elements are called parametric curves in the surface. The differential
element of surface area is given by,

dA =
∣∣∣√EG− F 2 du dv

∣∣∣ .
An expression which depends only on E, F , G and their first and second deriva-
tives is called a bending invariant. It is an intrinsic (or absolute) property of a
surface. The Gaussian (or Total) curvature of a surface is an important intrinsic
property of a surface.

The ‘Theorema Egregium’ of Gauss

The Gaussian curvature K at any point P of a surface depends only
on the values at P of the coefficients in the First Fundamental Form
and their first and second derivatives. [37–39]

And so,

“The Gaussian curvature of a surface is a bending invariant.” [38]

The plane has a constant Gaussian curvature of K = 0. “A surface of positive
constant Gaussian curvature is called a spherical surface.” [39]

Now a line-element, or squared differential element of arc-length, in spherical
coordinates, for 3-dimensional Euclidean space is,

ds2 = dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3.3)
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0 ≤ r <∞.

The scalar r can be construed, verified by calculation, as the magnitude of
the radius vector ~r from the origin of the coordinate system, the said origin
coincident with the centre of the associated sphere. All the components of the
metric tensor are well-defined and related geometrical quantities are fixed by
the form of the line-element. Indeed, the radius Rp of the associated sphere
(θ= const., ϕ= const.) is given by,

Rp =
∫ r

0

dr = r,

the length of the geodesic Cp (a parametric curve; r= const., θ=π/2) in an
associated surface is given by,

Cp = r

∫ 2π

0

dϕ = 2πr,

the area Ap of an associated spherically symmetric surface (r= const.) is,

Ap = r2

∫ π

0

sin θdθ
∫ 2π

0

dϕ = 4πr2,

and the volume Vp of the sphere is,

Vp =
∫ r

0

r2dr

∫ π

0

sin θdθ
∫ 2π

0

dϕ =
4
3
πr3.

Now the point at the centre of spherical symmetry for any problem at hand
need not be coincident with the origin of the coordinate system. For example,
the equation of a sphere of radius ρ centered at the point C located at the
extremity of the fixed vector ~ro in Euclidean 3-space, is given by

(~r − ~ro) · (~r − ~ro) = ρ2.

If ~r and ~ro are collinear, the vector notation can be dropped, and this expression
becomes,

|r − ro| = ρ,

where r= |~r| and ro = |~ro|, and the common direction of ~r and ~ro becomes
entirely immaterial. This scalar expression for a shift of the centre of spherical
symmetry away from the origin of the coordinate system plays a significant rôle
in the equivalent line-elements for Schwarzschild spacetime.

Consider now the generalisation of Eq. (3.3) to a spherically symmetric
metric manifold, by the line-element,

ds2 = dR2
p +R2

c

(
dθ2 + sin2 θdϕ2

)
= Ψ (Rc) dR

2
c +R2

c

(
dθ2 + sin2 θdϕ2

)
, (3.4)

Rc = Rc(r)
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Rc(0) ≤ Rc(r) <∞,

where both Ψ(Rc) and Rc(r) are a priori unknown analytic functions. Since
neither Ψ(Rc) nor Rc(r) are known, Eq. (3.4) may or may not be well-defined at
Rc(0): one cannot know until Ψ(Rc) and Rc(r) are somehow specified. With this
proviso, there is a one-to-one point-wise correspondence between the manifolds
described by metrics (3) and (4), i.e. a mapping between the auxiliary Euclidean
manifold described by metric (3) and the generalised non-Euclidean manifold
described by metric (4), as the differential geometers have explained [30]. If Rc
is constant, metric (4) reduces to a 2-dimensional spherically symmetric geodesic
surface described by the first fundamental quadratic form,

ds2 = R2
c

(
dθ2 + sin2 θdϕ2

)
. (3.5)

If r is constant, Eq. (3.3) reduces to the 2-dimensional spherically symmetric
surface described by the first fundamental quadratic form,

ds2 = r2
(
dθ2 + sin2 θdϕ2

)
. (3.6)

Although Rc and r are constants in equations (5) and (6) respectively, they
share a definite geometric identity in their respective surfaces: but it is not
that of being a radial quantity, or of a distance.

A surface is a manifold in its own right. It need not be considered in relation
to an embedding space. Therefore, quantities appearing in its line-element must
be identified in relation to the surface, not to any embedding space it might be
in:

“And in any case, if the metric form of a surface is known for a
certain system of intrinsic coordinates, then all the results concern-
ing the intrinsic geometry of this surface can be obtained without
appealing to the embedding space.” [40]

Note that eqs. (3) and (4) have the same metrical form and that eqs. (5)
and (6) have the same metrical form. Metrics of the same form share the
same fundamental relations between the components of their respective metric
tensors. For example, consider Eq. (3.4) in relation to Eq. (3.3). For Eq. (3.4),
the radial geodesic distance (i.e. the proper radius) from the point at the centre
of spherical symmetry (θ= const., ϕ= const.) is,

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
Ψ(Rc(r))dRc(r) =

∫ r

0

√
Ψ(Rc(r))

dRc(r)
dr

dr,

the length of the geodesic Cp (a parametric curve; Rc(r) = const., θ=π/2 ) in
an associated surface is given by,

Cp = Rc(r)
∫ 2π

0

dϕ= 2πRc(r),
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the areaAp of an associated spherically symmetric geodesic surface (Rc(r)) = const.)
is,

Ap = R2
c(r)

∫ π

0

sin θdθ
∫ 2π

0

dϕ = 4πR2
c(r),

and the volume Vp of the geodesic sphere is,

Vp =
∫ Rp

0

R2
c (r) dRp

∫ π

0

sin θdθ
∫ 2π

0

dϕ = 4π
∫ Rc(r)

Rc(0)

√
Ψ (Rc (r))R2

c(r)dRc

= 4π
∫ r

0

√
Ψ (Rc (r))R2

c(r)
dRc(r)
dr

dr.

Remarkably, in relation to metric (1), Celotti, Miller and Sciama [11] make
the following false assertion:

“The ‘mean density’ ρ of a black hole (its mass M divided by 4
3πr

3
s)

is proportional to 1/M2”

where rs is the so-called “Schwarzschild radius”. The volume they adduce for a
black hole cannot be obtained from metric (1): it is a volume associated with
the Euclidean 3-space described by metric (3).

Now in the case of the 2-dimensional metric manifold given by Eq. (3.5)
the Riemannian curvature associated with Eq. (3.4) (which depends upon both
position and direction) reduces to the Gaussian curvature K (which depends
only upon position), and is given by [30,38,39,41–45],

K =
R1212

g
, (3.7)

where R1212 is a component of the Riemann tensor of the 1st kind and g =
g11g22 = gθθgϕϕ (because the metric tensor of Eq. (3.5) is diagonal). Gaussian
curvature is an intrinsic geometric property of a surface (Theorema Egregium2);
independent of any embedding space.

Now recall from elementary differential geometry and tensor analysis that

Rµνρσ = gµγR
γ
. νρσ

R1
. 212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk22Γ1

k1 − Γk21Γ1
k2

Γiij = Γiji =
∂
(

1
2 ln

∣∣gii∣∣)
∂xj

Γijj = − 1
2gii

∂gjj
∂xi

, (i 6= j) (3.8)

2i.e. Gauss’ Most Excellent Theorem.
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and all other Γijk vanish. In the above, i, j, k= 1, 2, x1 = θ, x2 =ϕ. Applying
expressions (7) and (8) to expression metric (5) gives,

K =
1
R2
c

(3.9)

so that Rc(r) is the inverse square root of the Gaussian curvature, i.e. the ra-
dius of Gaussian curvature, and hence, in Eq. (3.6) the quantity r therein is
the radius of Gaussian curvature because this Gaussian curvature is intrinsic to
all geometric surfaces having the form of Eq. (3.5) [30], and a geometry is com-
pletely determined by the form of its line-element [33]. Note that according to
Eqs. (3.3), (3.6) and (3.7), the radius calculated for (3) gives the same value as
the associated radius of Gaussian curvature of a spherically symmetric surface
embedded in the space described by Eq. (3.3). Thus, the Gaussian curvature
(and hence the radius of Gaussian curvature) of the spherically symmetric sur-
face embedded in the space of (3) can be associated with the radius calculated
from Eq. (3.3). This is a consequence of the Euclidean nature of the space
described by metric (3), which also describes the spatial section of Minkowski
spacetime. However, this is not a general relationship. The inverse square root
of the Gaussian curvature (the radius of Gaussian curvature) is not a distance
at all in Einstein’s gravitational manifold but in fact determines the Gaussian
curvature of the spherically symmetric geodesic surface through any point in
the spatial section of the gravitational manifold, as proven by expression (9).
Thus, the quantity r in Eq. (3.1) is the inverse square root of the Gaussian
curvature (i.e. the radius of Gaussian curvature) of a spherically symmetric
geodesic surface in the spatial section, not the radial geodesic distance from the
centre of spherical symmetry of the spatial section, or any other distance.

The platitudinous nature of the concepts “reduced circumference” and “areal
radius” is now plainly evident - neither concept correctly identifies the geometric
nature of the quantity r in metric (1). The geodesic Cp in the spherically
symmetric geodesic surface in the spatial section of Eq. (3.1) is a function
of the curvilinear coordinate ϕ and the surface area Ap is a function of the
curvilinear coordinates θ and ϕ where, in both cases, r is a constant. However,
r therein has a clear and definite geometrical meaning: it is the inverse square
root of the Gaussian curvature of the spherically symmetric geodesic surface in
the spatial section. The Gaussian curvature K is a positive constant bending
invariant of the surface, independent of the values of θ and ϕ. Thus, neither Cp
nor Ap, or the infinite variations of them by means of the integrated values of θ
and ϕ, rightly identify what r is in line-element (1). To illustrate further, when
θ = constant, the arc-length in the spherically symmetric geodesic surface is
given by:

s = s(ϕ) = r

∫ ϕ

0

sin θ dϕ = r sin θ ϕ, 0 ≤ ϕ ≤ 2π,

where r = constant. This is the equation of a straight line, of gradient ds/dϕ =
r sin θ. If θ = const. = 1

2π then s = s(ϕ) = rϕ, which is the equation of a
straight line of gradient ds/dϕ = r. The maximum arc-length of the geodesic
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θ = const. = 1
2π is therefore s(2π) = 2πr = Cp . Similarly the surface area is:

A = A(ϕ, θ) = r2

∫ θ

0

∫ ϕ

0

sin θ dθ dϕ = r2ϕ (1− cos θ) ,

0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π, r = constant.

The maximum area (i.e. the area of the entire surface) is A (2π, π) = 4πr2 = Ap.
Clearly, neither s nor A are functions of r, because r is a constant, not a variable.
And since r appears in each expression (and so having the same value in each
expression), neither s nor A rightly identify the geometrical significance of r
in the 1st fundamental form for the spherically symmetric geodesic surface,
ds2 = r2

(
dθ2 + sin2 θ dϕ2

)
, because r is not a distance in the surface and is

not the “radius” of the surface. The geometrical significance of r is intrinsic to
the surface and is determined from the components of the metric tensor and
their derivatives (Gauss’ Theorema Egregium): it is the inverse square root of
the Gaussian curvature K of the spherically symmetric surface so described (the
constant is K = 1/r2). Thus, Cp and Ap are merely platitudinous expressions
containing the constant r, and so the “reduced circumference” r=Cp/2π and the
“areal radius” r=

√
Ap/4π do not identify the geometric nature of r in either

metric (6) or metric (1), the former appearing in the latter. The claims by the
astrophysical scientists that the “areal radius” and the “reduced circumference”
each define [21, 25, 48] (in two different ways) the constant r in Eq. (3.1) are
entirely false. The “reduced circumference” and the “areal radius” are in fact
one and the same, namely the inverse square root of the Gaussian curvature of
the spherically symmetric geodesic surface in the spatial section of Eq. (3.1), as
proven above. No proponent of black holes is aware of this simple geometrical
fact, which completely subverts all claims made for black holes being predicted
by General Relativity.

3.4 Derivation of Schwarzschild spacetime
The usual derivation begins with the following metric for Minkowski spacetime
(using c= 1),

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (3.10)

0 ≤ r <∞,
and proposes a generalisation thereof as, or equivalent to,

ds2 = F (r)dt2 −G(r)dr2 −R2(r)
(
dθ2 + sin2 θdϕ2

)
, (3.11)

where F,G > 0 and r is that which appears in the metric for Minkowski space-
time, making r in Eq. (3.10) a parameter for the components of the metric
tensor of Eq. (3.11). The functions F (r), G(r), R(r) are to be determined such
that the signature of metric (10) is maintained in metric (11), at (+,−,−,−).
The substitution r∗=R(r) is then usually made, to get,

ds2 = W (r∗)dt2 −M(r∗)dr∗2 − r∗2
(
dθ2 + sin2 θdϕ2

)
, (3.11b)
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Then the * is simply dropped, and with that it is just assumed that 0 ≤ r <∞
can be carried over from Eq. (3.10), to get [5,8,9,21–23,26,30,33,34,36,47–55,79],

ds2 = eλdt2 − eβdr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (3.12)

0 ≤ r <∞,
the exponential functions being introduced for subsequent ease of mathematical
manipulations. It is then required that eλ(r) > 0 and eβ(r) > 0 be determined
so as to satisfy Rµν = 0.

Now note that in going from Eq. (3.11b) to Eq. (3.12), it is merely assumed
that R(0) = 0, making 0 ≤ r∗ < ∞ (and hence in Eq. (3.12), 0 ≤ r < ∞),
since r∗ = R(r): but this cannot be known since R(r) is a priori unknown [2,3].
One simply cannot treat r∗ in Eq. (3.11b), and hence r in Eqs. (3.12) and
(3.1), as the r in Eq. (3.10); contrary to the practice of the astrophysical
scientists and their mathematician collaborators. Also note that Eq. (3.12) not
only retains the signature −2, but also retains the signature (+,−,−,−),
because eλ > 0 and eβ > 0 by construction. Thus, neither eλ nor eβ can
change sign [5, 48, 55, 79]. This is a requirement since there is no possibility
for Minkowski spacetime (eq. 10) to change signature from (+,−,−,−) to, for
example, (−,+,−,−).

The Standard Analysis then obtains the solution given by Eq. (3.1), wherein
the constant m is claimed to be the mass generating the alleged associated
gravitational field. Then by mere inspection of Eq. (3.1) the Standard Analysis
asserts that there are two singularities, one at r= 2m and one at r= 0. It is
claimed that r= 2m is a removable coordinate singularity, and that r= 0 a
physical singularity. It is also asserted that r= 2m gives the event horizon (the
‘Schwarzschild radius’) of a black hole, from which the ‘escape velocity’ is that of
light (in vacuo), and that r= 0 is the position of the infinitely dense point-mass
singularity of the black hole, produced by irresistible gravitational collapse.

However, these claims cannot be true. First, the construction of Eq. (3.12)
to obtain Eq. (3.1) in satisfaction of Rµν = 0 is such that neither eλ nor eβ can
change sign, because eλ > 0 and eβ > 0. Therefore the claim that r in metric (1)
can take values less than 2m is false; a contradiction by the very construction of
the metric (12) leading to metric (1). Furthermore, since neither eλ nor eβ can
ever be zero, the claim that r= 2m is a removable coordinate singularity is also
false. In addition, the true nature of r in both Eqs. (3.12) and (3.1) is entirely
overlooked, and the geometric relations between the components of the metric
tensor, fixed by the form of the line-element, are not applied, in consequence of
which the Standard Analysis fatally falters.

In going from Eq. (3.11) to Eq. (3.12) the Standard Analysis has failed to
realise that in Eq. (3.11) all the components of the metric tensor are functions of
r by virtue of the fact that all the components of the metric tensor are functions
of R(r). Indeed, to illuminate this, consider the metric,

ds2 = B(R)dR2 +R2(dθ2 + sin2 θdϕ2),

B(R) > 0.
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This is the most general expression for the metric of a three-dimensional spher-
ically symmetric metric-space [30]. Now if R is a function of some parameter σ,
then the metric in terms of σ is,

ds2 = B(R(σ))
(
dR

dσ

)2

dσ2 +R2(σ)(dθ2 + sin2 θdϕ2),

B(R(σ)) ≡ B(σ) > 0.

Relabelling the parameter σ with r gives precisely the generalisation of the
spatial section of Minkowski spacetime. Now Eq. (3.11) is given in terms of the
parameter r of Minkowski spacetime, not in terms of the function R(r). In Eq.
(3.11), set G(r) = N(R(r)) (dR/dr)2, then Eq. (3.11) becomes,

ds2 = F (R(r))dt2 −N(R(r))
(
dR

dr

)2

dr2 −R2(r)
(
dθ2 + sin2 θdϕ2

)
, (3.11c)

or simply

ds2 = F (R)dt2 −N(R)dR2 −R2
(
dθ2 + sin2 θdϕ2

)
, (3.11d)

wherein R = R(r). Similarly, working backwards from Eq. (3.11b), using
r∗ = R(r), Eq. (3.11b) becomes,

ds2 = W (R(r))dt2 −M(R(r))dR2(r)−R2(r)
(
dθ2 + sin2 θdϕ2

)
, (3.11e)

or simply,

ds2 = W (R)dt2 −M(R)dR2 −R2
(
dθ2 + sin2 θdϕ2

)
,

wherein R=R(r); and in terms of the parameter r of Minkowski spacetime, this
becomes,

ds2 = W (r)dt2 −M(r)
(
dR

dr

)2

dr2 −R2(r)
(
dθ2 + sin2 θdϕ2

)
. (3.11f)

Writing W (r) = F (r) and G(r) = M(r) (dR/dr)2 gives,

ds2 = F (r)dt2 −G(r)dr2 −R2(r)
(
dθ2 + sin2 θdϕ2

)
,

which is Eq. (3.11). So Eq. (3.11) is a disguised form of Eq. (3.11d), and
so there is no need at all for the ‘transformations’ applied by the astrophysical
scientists to get their Eq. (3.12), from which they get their Eq. (3.1). In other
words, what the astrophysical scientists call r in their Eq. (3.1) is actually
R(r), for which they have not given any definite admissible form in terms of
the parameter r, and they incorrectly treat their R(r), labelled r in Eqs. (3.12)
and (3.1), as the r in Eq. (3.10), manifest in the miscarrying over of the range
0 ≤ r <∞ from Eq. (3.10).
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Nonetheless, R(r) is still an a priori unknown function, and so it cannot be
arbitrarily asserted that R(0) = 0; contrary to the assertions of the astrophysical
scientists. It is now quite plain that the ‘transformations’ used by the Standard
Analysis in going from Eq. (3.11) to Eq. (3.12) are rather pointless, since all
the relations are contained in Eq. (3.11) already, and by its pointless procedure
the Standard Analysis has confused matters and thereby introduced a major
error concerning the range on the quantity r in its expression (12) and hence
in its expression (1). One can of course, solve Eq. (3.11d), subject to Rµν = 0,
in terms of R(r), without determining the admissible form of R(r). However,
the range of R(r) must be ascertained by means of boundary conditions fixed
by the very form of the line-element in which it appears. And if it is required
that the parameter r appear explicitly in the solution, by means of a mapping
between the manifolds described by Eqs. (3.10) and (3.11), then the admissible
form of R(r) must also be ascertained, in which case r in Minkowski space is a
parameter, and Minkowski space a parametric space, for the related quantities
in Schwarzschild space. To highlight further, rewrite Eq. (3.11) as,

ds2 = A (Rc) dt
2 −B (Rc) dR

2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (3.13)

where A (Rc) , B (Rc) , Rc (r) > 0. The solution for Rµν = 0 then takes the form,

ds2 =
(

1 +
κ

Rc

)
dt2 −

(
1 +

κ

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
,

Rc = Rc(r),

where κ is a constant. There are two cases to consider; κ > 0 and κ < 0. In
conformity with the astrophysical scientists take κ < 0, and so set κ = −α,
α > 0. Then the solution takes the form,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (3.14)

Rc = Rc(r),

where α > 0 is a constant. It remains to determine the admissible form of Rc (r),
which, from Section II, is the inverse square root of the Gaussian curvature of
a spherically symmetric geodesic surface in the spatial section of the manifold
associated with Eq. (3.14), owing to the metrical form of Eq. (3.14). From
Section II herein the proper radius associated with metric (14) is,

Rp =
∫

dRc√
1− α

Rc

=
√
Rc (Rc − α) + α ln

[√
Rc +

√
Rc − α

]
+ k, (3.15)

where k is a constant. Now for some ro, Rp (ro) = 0. Then by (15) it is required
that Rc (ro) =α and k= − α ln

√
α, so

Rp (r) =
√
Rc (Rc − α) + α ln

[√
Rc +

√
Rc − α√
α

]
, (3.16)
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Rc = Rc(r).

It is thus also determined that the Gaussian curvature of the spherically sym-
metric geodesic surface of the spatial section ranges not from ∞ to 0, as it does
for Euclidean 3-space, but from α−2 to 0. This is an inevitable consequence of
the peculiar non-Euclidean geometry described by metric (14).

Schwarzschild’s true solution, Eq. (3.2), must be a particular case of the
general expression sought for Rc(r). Brillouin’s solution [2, 35] must also be a
particular case, viz.,

ds2 =
(

1− α

r + α

)
dt2 −

(
1− α

r + α

)−1

dr2 − (r + α)2 (
dθ2 + sin2 θdϕ2

)
,

(3.17)
0 < r <∞,

and Droste’s solution [46] must as well be a particular solution, viz.,

ds2 =
(

1− α

r

)
dt2 −

(
1− α

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

α < r <∞. (3.18)

All these solutions must be particular cases in an infinite set of equivalent metrics
[34]. The only admissible form for Rc (r) is [32],

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro, (3.19)

where ro and n are entirely arbitrary constants. So the solution for Rµν = 0 is,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
,

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro. (3.20)

Then if ro = 0, r > ro, n= 1, Brillouin’s solution Eq. (3.17) results. If ro = 0,
r > ro, n= 3, then Schwarzschild’s actual solution Eq. (3.2) results. If ro =α,
r > ro, n= 1, then Droste’s solution Eq. (3.18) results, which is the correct
solution in the particular metric of Eq. (3.1). In addition the required infinite
set of equivalent metrics is thereby obtained, all of which are asymptotically
Minkowski spacetime. Furthermore, if the constant α is set to zero, Eqs. (3.20)
reduces to Minkowski spacetime, and if in addition ro is set to zero, then the
usual Minkowski metric of Eq. (3.10) is obtained. The significance of the term
|r − ro| was given in Section II: it is a shift of the location of the centre of
spherical symmetry in the spatial section of the auxiliary manifold away from the
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origin of coordinates of the auxiliary manifold, along a radial line, to a point at
distance ro from the origin of coordinates. The point ro in the auxiliary manifold
is mapped into the point Rp (ro) = 0 in Schwarzschild space, irrespective of the
choice of the parametric point ro in the auxiliary manifold. Minkowski spacetime
is the auxiliary manifold for Schwarzschild spacetime. Strictly speaking, the
parameter r of the auxiliary manifold need not be incorporated into metric
(20), in which case the metric is defined only on α < Rc < ∞. I have retained
the quantity r to fully illustrate its rôle as a parameter and the part played by
Minkowski spacetime as an auxiliary manifold.

It is clear from expressions (20) that there is only one singularity, at the
arbitrary constant ro, where Rc (ro) = α ∀ ro ∀ n and Rp (ro) = 0 ∀ ro ∀ n,
and that all components of the metric tensor are affected by the constant α.
Hence, the “removal” of the singularity at r= 2m in Eq. (3.1) is fallacious be-
cause it is clear from expressions (20), in accordance with the intrinsic geometry
of the line-element as given in Section II, and the generalisation at Eq. (3.13),
that there is no singularity at r= 0 in Eq. (3.1) and so 0 ≤ r ≤ 2m therein is
meaningless [1–5,32,41,42,46,57,62]. The Standard claims for Eq. (3.1) violate
the geometry fixed by the form of its line-element and contradict the generalisa-
tions at Eqs. (3.11) and (3.12) from which it has been obtained by the Standard
method. There is therefore no black hole associated with Eq. (3.1) since there
is no black hole associated with Eq. (3.2) and none with Eq. (3.20), of which
Schwarzschild’s actual solution, Eq. (3.2), Brillouin’s solution, Eq. (3.17), and
Droste’s solution, Eq. (3.18), are just particular equivalent cases.

In the case of κ > 0 the proper radius of the line-element is,

Rp =
∫

dRc√
1 + κ

Rc

=
√
Rc (Rc + κ)− κ ln

[√
Rc +

√
Rc + κ

]
+ k,

Rc = Rc(r),

where k is a constant. Now for some ro, Rp (ro) = 0, so it is required that
Rc (ro) = 0 and k=κ ln

√
κ. The proper radius is then,

Rp (r) =
√
Rc (Rc + κ)− κ ln

[√
Rc +

√
Rc + κ

√
κ

]
,

Rc = Rc(r).

The admissible form of Rc(r) must now be determined. According to Ein-
stein, the metric must be asymptotically Minkowski spacetime. Since κ> 0 by
hypothesis, the application of the (spurious) argument for Newtonian approxi-
mation used by the astrophysical scientists cannot be applied here. There are
no other boundary conditions that provide any means for determining the value
of κ, and so it remains indeterminable. The only form that meets the condition
Rc (ro) = 0 and the requirement of asymptotic Minkowski spacetime is,

Rc(r) = |r − ro| =
1√
K
,
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r ∈ <,

where ro is entirely arbitrary. ThenRp (ro) = 0 ∀ ro andRc (ro) = 0 ∀ ro, and so,
if explicit reference to the auxiliary manifold of Minkowski spacetime is not de-
sired, Rc(r) becomes superfluous and can be simply replaced byRc(r) = |r − ro| = ρ,
0<ρ<∞. Thus, points in the spatial section of this spacetime have the very
same properties of points in the spatial section of Minkowski spacetime. The
line-element is again singular at only one point; ρ= 0 (i.e. in the case of explicit
inclusion of the auxiliary manifold, only at the point r= ro). The signature of
this metric is always (+,−,−,−). Clearly there is no possibility for a black hole
in this case either.

The usual form of Eq. (3.1) in isotropic coordinates is,

ds2 =

(
1− m

2r

)2(
1 + m

2r

)2 dt2 − (1 +
m

2r

)4 [
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
,

wherein it is again alleged that r can go down to zero. This expression has the
very same metrical form as Eq. (3.13) and so shares the very same geometrical
character. Now the coefficient of dt2 is zero when r=m/2, which, according to
the astrophysical scientists, marks the ‘radius’ or ‘event horizon’ of a black hole,
and where m is the alleged point-mass of the black hole singularity located at
r= 0, just as in Eq. (3.1). This further amplifies the fact that the quantity r
appearing in both Eq. (3.1) and its isotropic coordinate form is not a distance in
the manifold described by these line-elements. Applying the intrinsic geometric
relations detailed in Section II above it is clear that the inverse square root
of the Gaussian curvature of a spherically symmetric geodesic surface in the
spatial section of the isotropic coordinate line-element is given by,

Rc(r) = r
(

1 +
m

2r

)2

and the proper radius is given by,

Rp(r) = r +m ln
(

2r
m

)
− m2

4r
.

Hence, Rc(m/2) = 2m, and Rp(m/2) = 0, which are scalar invariants necessarily
consistent with Eq. (3.20). Furthermore, applying the same geometrical analysis
leading to Eq. (3.20), the generalised solution in isotropic coordinates is [57],

ds2 =

(
1− α

4h

)2(
1 + α

4h

)2 dt2 − (1 +
α

4h

)4 [
dh2 + h2

(
dθ2 + sin2 θdϕ2

)]
,

h = h(r) =
[
|r − ro|

n +
(α

4

)n] 1
n

,

r ∈ <, n ∈ <+, r 6= ro,
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wherein ro and n are entirely arbitrary constants. Then,

Rc(r) = h(r)
(

1 +
α

4h(r)

)2

=
1√
K(r)

,

Rp(r) = h(r) +
α

2
ln
(

4h(r)
α

)
− α2

16h(r)
,

and so
Rc(ro) = α, Rp(ro) = 0, ∀ ro ∀ n,

which are scalar invariants, in accordance with Eq. (3.20). Clearly in these
isotropic coordinate expressions r does not in itself denote any distance in the
manifold, just as it does not in itself denote any distance in Eq. (3.20) of which
Eqs. (3.1) and (3.2) are particular cases. It is a parameter for the Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section
and for the proper radius (i.e. the radial geodesic distance from the point at
the centre of spherical symmetry of the spatial section). The ‘interior’ of the
alleged Schwarzschild black hole does not form part of the solution space of the
Schwarzschild manifold [2, 4, 5, 32,41,42,57,61–63].

In the same fashion it is easily proven [32,61] that the general expression for
the Kerr-Newman geometry is given by,

ds2 =
∆
ρ2

(
dt− a sin2 θdϕ2

)2 − sin2 θ

ρ2

[(
R2 + a2

)
dϕ− adt

]2 − ρ2

∆
dR2 − ρ2dθ2

R = R(r) = (|r − ro|
n + βn)

1
n , β =

α

2
+

√
α2

4
− (q2 + a2 cos2 θ), a2+q2 <

α2

4
,

a =
2L
α
, ρ2 = R2 + a2 cos2 θ, ∆ = R2 − αR+ q2 + a2,

r ∈ <, n ∈ <+, r 6= ro.

The Kruskal-Szekeres coordinates, the Eddington-Finkelstein coordinates,
and the Regge-Wheeler coordinates do not take into account the rôle of Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section of
the Schwarzschild manifold [64], and so they thereby violate the geometric form
of the line-element, making them invalid.

The foregoing amplifies the inadmissibility of the introduction of the New-
tonian potential into Schwarzschild spacetime. The Newtonian potential is a
two-body concept; it is defined as the work done per unit mass against the
gravitational field. There is no meaning to a Newtonian potential for a single
mass in an otherwise empty Universe. Newton’s theory of gravitation is defined
in terms of the interaction of two masses in a space for which the ‘Principle of
Superposition’ applies. In Newton’s theory there is no limit set to the number
of masses that can be piled up in space, although the analytical relations for
the gravitational interactions of many bodies upon one another quickly become
intractable. In Einstein’s theory matter cannot be piled up in a given spacetime
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because the matter itself determines the structure of the spacetime containing
the matter. It is clearly impossible for Schwarzschild spacetime, which is al-
leged by the astrophysical scientists to contain one mass in an otherwise totally
empty Universe, to reduce to or otherwise contain an expression that is defined
in terms of the a priori interaction of two masses. This is illustrated even further
by writing Eq. (3.1) in terms of c and G explicitly,

ds2 =
(
c2 − 2Gm

r

)
dt2 − c2

(
c2 − 2Gm

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

The term 2Gm/r is the square of the Newtonian escape velocity from a mass
m. And so the astrophysical scientists assert that when the “escape velocity” is
that of light in vacuum, there is an event horizon (“Schwarzschild radius”) and
hence a black hole. But escape velocity is a concept that involves two bodies
- one body escapes from another body. Even though one mass appears in the
expression for escape velocity, it cannot be determined without recourse to a
fundamental two-body gravitational interaction. Recall that Newton’s Universal
Law of Gravitation is,

Fg = −GmM
r2

,

where G is the gravitational constant and r is the distance between the centre
of mass of m and the centre of mass of M . A centre of mass is an infinitely
dense point-mass, but it is not a physical object; merely a mathematical artifice.
Newton’s gravitation is clearly defined in terms of the interaction of two bodies.
Newton’s gravitational potential Φ is defined as,

Φ = lim
σ→∞

∫ r

σ

−
Fg
m
dr = −GM

r
,

which is the work done per unit mass in the gravitational field due to masses
M and m. This is a two-body concept. The potential energy P of a mass m in
the gravitational field due to masses M and m is therefore given by,

P = mΦ = −GmM
r

,

which is clearly a two-body concept.
Similarly, the velocity required by a mass m to escape from the gravitational

field due to masses M and m is determined by,

Fg = −GmM
r2

= ma = m
dv

dt
= mv

dv

dr
.

Separating variables and integrating gives,∫ 0

v

mv dv = lim
rf→∞

∫ rf

R

−GmM dr

r2
,
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whence

v =

√
2GM
R

,

where R is the radius of the mass M . Thus, escape velocity necessarily involves
two bodies: m escapes from M . In terms of the conservation of kinetic and
potential energies,

Ki + Pi = Kf + Pf

whence,
1
2
mv2 −GmM

R
=

1
2
mv2

f −G
mM

rf
.

Then as r f →∞, v f → 0, and the escape velocity of m from M is,

v =

√
2GM
R

.

Once again, the relation is derived from a two-body gravitational interaction.
The consequence of all this for black holes and their associated gravitational

waves is that there can be no gravitational waves generated by black holes
because the latter are fictitious.

3.5 The prohibition of point-mass singularities
The black hole is alleged to contain an infinitely dense point-mass singularity,
produced by irresistible gravitational collapse (see for example [17, 24, 77], for
the typical claim). According to Hawking [80]:

“The work that Roger Penrose and I did between 1965 and 1970
showed that, according to general relativity, there must be a singu-
larity of infinite density, within the black hole.”

The singularity of the alleged Big Bang cosmology is, according to many
proponents of the Big Bang, also infinitely dense. Yet according to Special
Relativity, infinite densities are forbidden because their existence implies that
a material object can acquire the speed of light c in vacuo (or equivalently,
the existence of infinite energies), thereby violating the very basis of Special
Relativity. Since General Relativity cannot violate Special Relativity, General
Relativity must therefore also forbid infinite densities. Point-mass singularities
are alleged to be infinitely dense objects. Therefore, point-mass singularities
are forbidden by the Theory of Relativity.

Let a cuboid rest-mass m0 have sides of length L0. Let m0 have a relative
speed v < c in the direction of one of three mutually orthogonal Cartesian axes
attached to an observer of rest-mass M0 . According to the observer M0 , the
moving mass m is

m =
m0√
1− v2

c2

,
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and the volume V thereof is

V = L3
0

√
1− v2

c2
.

Thus, the density D is

D =
m

V
=

m0

L3
0

(
1− v2

c2

) ,
and so v → c ⇒ D → ∞. Since, according to Special Relativity, no material
object can acquire the speed c (this would require an infinite energy), infinite
densities are forbidden by Special Relativity, and so point-mass singularities
are forbidden. Since General Relativity cannot violate Special Relativity, it too
must thereby forbid infinite densities and hence forbid point-mass singularities.
It does not matter how it is alleged that a point-mass singularity is generated by
General Relativity because the infinitely dense point-mass cannot be reconciled
with Special Relativity. Point-charges too are therefore forbidden by the Theory
of Relativity since there can be no charge without mass.

It is nowadays routinely claimed that many black holes have been found. The
signatures of the black hole are (a) an infinitely dense ‘point-mass’ singularity
and (b) an event horizon. Nobody has ever found an infinitely dense ‘point-
mass’ singularity and nobody has ever found an event horizon, so nobody has
ever assuredly found a black hole. It takes an infinite amount of observer time
to verify a black hole event horizon [24, 28, 36, 48, 54, 56, 71]. Nobody has been
around and nobody will be around for an infinite amount of time and so no
observer can ever verify the presence of an event horizon, and hence a black
hole, in principle, and so the notion is irrelevant to physics. All reports of black
holes being found are patently false; the product of wishful thinking.

3.6 Laplace’s alleged black hole
It has been claimed by the astrophysical scientists that a black hole has an escape
velocity c (or ≥ c, the speed of light in vacuo) [6,12–14,16,18,19,24,28,76,78,80–
82]. Chandrasekhar [24] remarked,

“Let me be more precise as to what one means by a black hole. One
says that a black hole is formed when the gravitational forces on the
surface become so strong that light cannot escape from it.

... A trapped surface is one from which light cannot escape to infin-
ity.”

According to Hawking,

“Eventually when a star has shrunk to a certain critical radius, the
gravitational field at the surface becomes so strong that the light cones
are bent inward so much that the light can no longer escape. Accord-
ing to the theory of relativity, nothing can travel faster than light.

103



3.6. LAPLACE’S ALLEGED BLACK HOLE

Thus, if light cannot escape, neither can anything else. Everything
is dragged back by the gravitational field. So one has a set of events,
a region of space-time from which it is not possible to escape to reach
a distant observer. Its boundary is called the event horizon. It coin-
cides with the paths of the light rays that just fail to escape from the
black hole.”

However, according to the alleged properties of a black hole, nothing at all
can even leave the black hole. In the very same paper Chandrasekhar made the
following quite typical contradictory assertion propounded by the astrophysical
scientists:

“The problem we now consider is that of the gravitational collapse of
a body to a volume so small that a trapped surface forms around it;
as we have stated, from such a surface no light can emerge.”

Hughes [28] reiterates,

“Things can go into the horizon (from r > 2M to r < 2M), but they
cannot get out; once inside, all causal trajectories (timelike or null)
take us inexorably into the classical singularity at r= 0.

“The defining property of black holes is their event horizon. Rather
than a true surface, black holes have a ‘one-way membrane’ through
which stuff can go in but cannot come out.”

Taylor and Wheeler [25] assert,

“... Einstein predicts that nothing, not even light, can be successfully
launched outward from the horizon ... and that light launched out-
ward EXACTLY at the horizon will never increase its radial position
by so much as a millimeter.”

In the Dictionary of Geophysics, Astrophysics and Astronomy [78], one finds
the following assertions:

“black hole A region of spacetime from which the escape velocity
exceeds the velocity of light. In Newtonian gravity the escape velocity
from the gravitational pull of a spherical star of mass M and radius
R is

vesc =

√
2GM
R

,

where G is Newton’s constant. Adding mass to the star (increasing
M), or compressing the star (reducing R) increases vesc. When the
escape velocity exceeds the speed of light c, even light cannot escape,
and the star becomes a black hole. The required radius RBH follows
from setting vesc equal to c:

RBH =
2GM
c2

.
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... “In General Relativity for spherical black holes (Schwarzschild
black holes), exactly the same expression RBH holds for the surface
of a black hole. The surface of a black hole at RBH is a null surface,
consisting of those photon trajectories (null rays) which just do not
escape to infinity. This surface is also called the black hole horizon.”

Now if its escape velocity is really that of light in vacuo, then by definition
of escape velocity, light would escape from a black hole, and therefore be seen
by all observers. If the escape velocity of the black hole is greater than that
of light in vacuo, then light could emerge but not escape, and so there would
always be a class of observers that could see it. Not only that, if the black hole
had an escape velocity, then material objects with an initial velocity less than
the alleged escape velocity, could leave the black hole, and therefore be seen by
a class of observers, but not escape (just go out, come to a stop and then fall
back), even if the escape velocity is ≥ c. Escape velocity does not mean that
objects cannot leave; it only means they cannot escape if they have an initial
velocity less than the escape velocity. So on the one hand it is claimed that
black holes have an escape velocity c, but on the other hand that nothing, not
even light, can even leave the black hole. The claims are contradictory - nothing
but a meaningless play on the words “escape velocity” [67,68]. Furthermore, as
demonstrated in Section III, escape velocity is a two-body concept, whereas
the black hole is derived not from a two-body gravitational interaction, but from
a one-body concept. The black hole has no escape velocity.

It is also routinely asserted that the theoretical Michell-Laplace (M-L) dark
body of Newton’s theory, which has an escape velocity ≥ c, is a kind of black
hole [6, 11, 14, 24, 78, 80] or that Newton’s theory somehow predicts “the radius
of a black hole” [25]. Hawking remarks,

“On this assumption a Cambridge don, John Michell, wrote a paper
in 1783 in the Philosophical Transactions of the Royal Society of
London. In it, he pointed out that a star that was sufficiently massive
and compact would have such a strong gravitational field that light
could not escape. Any light emitted from the surface of the star
would be dragged back by the star’s gravitational attraction before
it could get very far. Michell suggested that there might be a large
number of stars like this. Although we would not be able to see them
because light from them would not reach us, we could still feel their
gravitational attraction. Such objects are what we now call black
holes, because that is what they are – black voids in space.”

But the M-L dark body is not a black hole. The M-L dark body possesses
an escape velocity, whereas the black hole has no escape velocity; objects can
leave the M-L dark body, but nothing can leave the black hole; it does not
require irresistible gravitational collapse, whereas the black hole does; it has no
infinitely dense point-mass singularity, whereas the black hole does; it has no
event horizon, whereas the black hole does; there is always a class of observers
that can see the M-L dark body [67,68], but there is no class of observers that can
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see the black hole; the M-L dark body can persist in a space which contains other
matter and interact with that matter, but the spacetime of the “Schwarzschild”
black hole (and variants thereof) is devoid of matter by construction and so it
cannot interact with anything. Thus the M-L dark body does not possess the
characteristics of the alleged black hole and so it is not a black hole.

3.7 Black hole interactions and gravitational col-
lapse

The literature abounds with claims that black holes can interact in such sit-
uations as binary systems, mergers, collisions, and with surrounding matter
generally. According to Chandrasekhar [24], for example, who also cites S.
Hawking,

“From what I have said, collapse of the kind I have described must be
of frequent occurrence in the Galaxy; and black-holes must be present
in numbers comparable to, if not exceeding, those of the pulsars.
While the black-holes will not be visible to external observers, they
can nevertheless interact with one another and with the outside world
through their external fields.

“In considering the energy that could be released by interactions with
black holes, a theorem of Hawking is useful. Hawking’s theorem
states that in the interactions involving black holes, the total
surface area of the boundaries of the black holes can never
decrease; it can at best remain unchanged (if the conditions are
stationary).

“Another example illustrating Hawking’s theorem (and considered by
him) is the following. Imagine two spherical (Schwarzschild) black
holes, each of mass 1

2M , coalescing to form a single black hole; and
let the black hole that is eventually left be, again, spherical and have
a mass M . Then Hawking’s theorem requires that

16πM
2 ≥ 16π

[
2
(

1
2
M

)2
]

= 8πM2

or

M ≥M/
√

2.

Hence the maximum amount of energy that can be released in such
a coalescence is

M
(

1− 1/
√

2
)
c2 = 0.293Mc2.”
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Hawking [80] says,

“Also, suppose two black holes collided and merged together to form
a single black hole. Then the area of the event horizon of the final
black hole would be greater than the sum of the areas of the event
horizons of the original black holes.”

According to Schutz [48],

“... Hawking’s area theorem: in any physical process involving a
horizon, the area of the horizon cannot decrease in time. ... This
fundamental theorem has the result that, while two black holes can
collide and coalesce, a single black hole can never bifurcate sponta-
neously into two smaller ones.

“Black holes produced by supernovae would be much harder to observe
unless they were part of a binary system which survived the explosion
and in which the other star was not so highly evolved.”

Townsend [56] also arbitrarily applies the ‘Principle of Superposition’ to obtain
charged black hole (Reissner-Nordström) interactions as follows:

“The extreme RN in isotropic coordinates is

ds2 = V −2dt2 + V 2
(
dρ2 + ρ2dΩ2

)
where

V = 1 +
M

ρ

This is a special case of the multi black hole solution

ds2 = V −2dt2 + V 2d~x · d~x

where d~x · d~x is the Euclidean 3-metric and V is any solution of
∇2V = 0. In particular

V = 1 +
N∑
i= 1

Mi∣∣∣~x− ~xi∣∣∣
yields the metric for N extreme black holes of masses Mi at positions
xi.

Now Einstein’s field equations are non-linear, so the ‘Principle of Superpo-
sition’ does not apply [51,67,79]. Therefore, before one can talk of black hole
binary systems and the like it must first be proven that the two-body system is
theoretically well-defined by General Relativity. This can be done in only two
ways:
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(a) Derivation of an exact solution to Einstein’s field equations for the two-
body configuration of matter; or

(b) Proof of an existence theorem.

There are no known solutions to Einstein’s field equations for the interaction of
two (or more) masses (charged or not), so option (a) has never been fulfilled.
No existence theorem has ever been proven, by which Einstein’s field equations
can even be said to admit of latent solutions for such configurations of matter,
and so option (b) has never been fulfilled. The “Schwarzschild” black hole is
allegedly obtained from a line-element satisfying Ric= 0. For the sake of argu-
ment, assuming that black holes are predicted by General Relativity as alleged
in relation to metric (1), since Ric= 0 is a statement that there is no matter in
the Universe, one cannot simply insert a second black hole into the spacetime
of Ric= 0 of a given black hole so that the resulting two black holes (each ob-
tained separately from Ric= 0) mutually persist in and mutually interact in a
mutual spacetime that by construction contains no matter! One cannot
simply assert by an analogy with Newton’s theory that two black holes can be
components of binary systems, collide or merge [51, 67, 68], because the ‘Prin-
ciple of Superposition’ does not apply in Einstein’s theory. Moreover, General
Relativity has to date been unable to account for the simple experimental fact
that two fixed bodies will approach one another upon release. Thus, black hole
binaries, collisions, mergers, black holes from supernovae, and other black hole
interactions are all invalid concepts.

Much of the justification for the notion of irresistible gravitational collapse
into an infinitely dense point-mass singularity, and hence the formation of a
black hole, is given to the analysis due to Oppenheimer and Snyder [69]. Hughes
[28] relates it as follows;

“In an idealized but illustrative calculation, Oppenheimer and Snyder
... showed in 1939 that a black hole in fact does form in the collapse
of ordinary matter. They considered a ‘star’ constructed out of a
pressureless ‘dustball’. By Birkhof’s Theorem, the entire exterior of
this dustball is given by the Schwarzschild metric ... . Due to the self-
gravity of this ‘star’, it immediately begins to collapse. Each mass
element of the pressureless star follows a geodesic trajectory toward
the star’s center; as the collapse proceeds, the star’s density increases
and more of the spacetime is described by the Schwarzschild metric.
Eventually, the surface passes through r= 2M . At this point, the
Schwarzschild exterior includes an event horizon: A black hole has
formed. Meanwhile, the matter which formerly constituted the star
continues collapsing to ever smaller radii. In short order, all of the
original matter reaches r= 0 and is compressed (classically!) into a
singularity4.

4“Since all of the matter is squashed into a point of zero size, this classical
singularity must be modified in a a complete, quantum description. How-
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ever, since all the singular nastiness is hidden behind an event horizon
where it is causally disconnected from us, we need not worry about it (at
least for astrophysical black holes).”

Note that the ‘Principle of Superposition’ has again been arbitrarily applied by
Oppenheimer and Snyder, from the outset. They first assume a relativistic
universe in which there are multiple mass elements present a priori, where the
‘Principle of Superposition’ however, does not apply, and despite there being
no solution or existence theorem for such configurations of matter in General
Relativity. Then all these mass elements “collapse” into a central point (zero
volume; infinite density). Such a collapse has however not been given any specific
general relativistic mechanism in this argument; it is simply asserted that the
“collapse” is due to self-gravity. But the “collapse” cannot be due to Newtonian
gravitation, given the resulting black hole, which does not occur in Newton’s
theory of gravitation. And a Newtonian universe cannot “collapse” into a non-
Newtonian universe. Moreover, the black hole so formed is in an empty universe,
since the “Schwarzschild black hole” relates to Ric= 0, a spacetime that by
construction contains no matter. Nonetheless, Oppenheimer and Snyder permit,
within the context of General Relativity, the presence of and the gravitational
interaction of many mass elements, which coalesce and collapse into a point of
zero volume to form an infinitely dense point-mass singularity, when there is no
demonstrated general relativistic mechanism by which any of this can occur.

Furthermore, nobody has ever observed a celestial body undergo irresistible
gravitational collapse and there is no laboratory evidence whatsoever for such
a phenomenon.

3.8 Further consequences for gravitational waves
The question of the localisation of gravitational energy is related to the validity
of the field equations Rµν = 0, for according to Einstein, matter is the cause of
the gravitational field and the causative matter is described in his theory by a
mathematical object called the energy-momentum tensor, which is coupled to
geometry (i.e. spacetime) by his field equations, so that matter causes spacetime
curvature (his gravitational field). Einstein’s field equations,

“... couple the gravitational field (contained in the curvature of space-
time) with its sources.” [36]

“Since gravitation is determined by the matter present, the same
must then be postulated for geometry, too. The geometry of space
is not given a priori, but is only determined by matter.” [53]

“Again, just as the electric field, for its part, depends upon the charges
and is instrumental in producing mechanical interaction between the
charges, so we must assume here that the metrical field (or, in
mathematical language, the tensor with components gik) is related
to the material filling the world.” [5]
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“... we have, in following the ideas set out just above, to discover
the invariant law of gravitation, according to which matter
determines the components Γαβι of the gravitational field,
and which replaces the Newtonian law of attraction in Einstein’s
Theory.” [5]

“Thus the equations of the gravitational field also contain the equa-
tions for the matter (material particles and electromagnetic fields)
which produces this field.” [51]

“Clearly, the mass density, or equivalently, energy density % (~x, t)
must play the role as a source. However, it is the 00 component of a
tensor Tµν (x), the mass-energy-momentum distribution of matter.
So, this tensor must act as the source of the gravitational field.” [10]

“In general relativity, the stress-energy or energy-momentum tensor
T ab acts as the source of the gravitational field. It is related to
the Einstein tensor and hence to the curvature of spacetime via the
Einstein equation”. [79]

Qualitatively Einstein’s field equations are:

Spacetime geometry = -κ × causative matter (i.e. material sources)

where causative matter is described by the energy-momentum tensor and κ is a
constant. The spacetime geometry is described by a mathematical object called
Einstein’s tensor, Gµν , (µ, ν = 0, 1, 2, 3) and the energy-momentum tensor is
Tµν . So Einstein’s full field equations are3:

Gµν = Rµν −
1
2
Rgµν = −κTµν . (3.21)

Einstein asserted that his ‘Principle of Equivalence’ and his laws of Special
Relativity must hold in a sufficiently small region of his gravitational field. Here
is what Einstein [52] himself said in 1954, the year before his death:

“Let now K be an inertial system. Masses which are sufficiently far
from each other and from other bodies are then, with respect to K,
free from acceleration. We shall also refer these masses to a system
of co-ordinates K’,uniformly accelerated with respect to K. Relatively
to K’ all the masses have equal and parallel accelerations; with re-
spect to K’ they behave just as if a gravitational field were present and
K’ were unaccelerated. Overlooking for the present the question as
to the ‘cause’ of such a gravitational field, which will occupy us later,
there is nothing to prevent our conceiving this gravitational field as
real, that is, the conception that K’ is ‘at rest’ and a gravitational
field is present we may consider as equivalent to the conception that

3The so-called “cosmological constant” is not included.
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only K is an ‘allowable’ system of co-ordinates and no gravitational
field is present. The assumption of the complete physical equiva-
lence of the systems of coordinates, K and K’, we call the ‘principle
of equivalence’; this principle is evidently intimately connected with
the law of the equality between the inert and the gravitational mass,
and signifies an extension of the principle of relativity to co-ordinate
systems which are in non-uniform motion relatively to each other.
In fact, through this conception we arrive at the unity of the nature
of inertia and gravitation. For, according to our way of looking at it,
the same masses may appear to be either under the action of inertia
alone (with respect to K) or under the combined action of inertia
and gravitation (with respect to K’).

“Stated more exactly, there are finite regions, where, with respect to
a suitably chosen space of reference, material particles move freely
without acceleration, and in which the laws of special relativity, which
have been developed above, hold with remarkable accuracy.”

In their textbook, Foster and Nightingale [36] succinctly state the ‘Principle
of Equivalence’ thus:

“We may incorporate these ideas into the principle of equivalence,
which is this: In a freely falling (nonrotating) laboratory occupying
a small region of spacetime, the laws of physics are the laws of special
relativity.”

According to Pauli [53],

“We can think of the physical realization of the local coordinate sys-
tem Ko in terms of a freely floating, sufficiently small, box which is
not subjected to any external forces apart from gravity, and which is
falling under the influence of the latter. ... “It is evidently natural
to assume that the special theory of relativity should remain valid in
Ko .”

Taylor and Wheeler state in their book [25],

“General Relativity requires more than one free-float frame.”

In the Dictionary of Geophysics, Astrophysics and Astronomy [78],

“Near every event in spacetime, in a sufficiently small neighborhood,
in every freely falling reference frame all phenomena (including grav-
itational ones) are exactly as they are in the absence of external
gravitational sources.”

Note that the ‘Principle of Equivalence’ involves the a priori presence of
multiple arbitrarily large finite masses. Similarly, the laws of Special Relativity
involve the a priori presence of at least two arbitrarily large finite masses; for
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otherwise relative motion between two bodies cannot manifest. The postulates
of Special Relativity are themselves couched in terms of inertial systems, which
are in turn defined in terms of mass via Newton’s First Law of motion.

In the space of Newton’s theory of gravitation, one can simply put in as
many masses as one pleases. Although solving for the gravitational interaction
of these masses rapidly becomes beyond our capacity, there is nothing to prevent
us inserting masses conceptually. This is essentially the ‘Principle of Superpo-
sition’. However, one cannot do this in General Relativity, because Einstein’s
field equations are non-linear. In General Relativity, each and every configura-
tion of matter must be described by a corresponding energy-momentum tensor
and the field equations solved separately for each and every such configuration,
because matter and geometry are coupled, as Eq. (3.21) describes. Not so in
Newton’s theory where geometry is independent of matter. The ‘Principle of
Superposition’ does not apply in General Relativity:

“In a gravitational field, the distribution and motion of the matter
producing it cannot at all be assigned arbitrarily — on the contrary
it must be determined (by solving the field equations for given ini-
tial conditions) simultaneously with the field produced by the same
matter.” [51]

“An important characteristic of gravity within the framework of gen-
eral relativity is that the theory is nonlinear. Mathematically, this
means that if gab and γab are two solutions of the field equations,
then agab + bγab (where a, b are scalars) may not be a solution.
This fact manifests itself physically in two ways. First, since a lin-
ear combination may not be a solution, we cannot take the overall
gravitational field of the two bodies to be the summation of the indi-
vidual gravitational fields of each body.” [79]

Now Einstein and the relevant physicists assert that the gravitational field
“outside” a mass contains no matter, and so they assert that Tµν = 0, and that
there is only one mass in the whole Universe with this particular problem state-
ment. But setting the energy-momentum tensor to zero means that there is no
matter present by which the gravitational field can be caused! Nonetheless, it
is so claimed, and it is also claimed that the field equations then reduce to the
much simpler form,

Rµν = 0. (3.22)

So this is a clear statement that spacetime is devoid of matter.

“Black holes were first discovered as purely mathematical solutions
of Einstein’s field equations. This solution, the Schwarzschild black
hole, is a nonlinear solution of the Einstein equations of General
Relativity. It contains no matter, and exists forever in an asymptot-
ically flat space-time.” [78]
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However, since this is a spacetime that by construction contains no matter,
Einstein’s ‘Principle of Equivalence’ and his laws of Special Relativity cannot
manifest, thus violating the physical requirements of the gravitational field that
Einstein himself laid down. It has never been proven that Einstein’s ‘Principle
of Equivalence’ and his laws of Special Relativity, both of which are defined
in terms of the a priori presence of multiple arbitrary large finite masses, can
manifest in a spacetime that by construction contains no matter. Indeed, it is a
contradiction; so Rµν = 0 fails. Now Eq. (3.1) relates to Eq. (3.22). However,
there is allegedly mass present, denoted by m in Eq. (3.1). This mass is not
described by an energy-momentum tensor. That m is actually responsible for
the alleged gravitational field associated with Eq. (3.1) is confirmed by the fact
that if m= 0, Eq. (3.1) reduces to Minkowski spacetime, and hence no gravita-
tional field. So if not for the presence of the alleged mass m in Eq. (3.1) there is
no gravitational field. But this contradicts Einstein’s relation between geometry
and matter, since m is introduced into Eq. (3.1) post hoc, not via an energy-
momentum tensor describing the matter causing the associated gravitational
field. The components of the metric tensor are functions of only one another,
and reduce to functions of only one component of the metric tensor. None of the
components of the metric tensor contain matter, because the energy-momentum
tensor is zero. There is no transformation of matter in Minkowski spacetime
into Schwarzschild spacetime, and so the laws of Special Relativity are not trans-
formed into a gravitational field by Ric = 0. The transformation is merely from
a pseudo-Euclidean geometry containing no matter into a pseudo-Riemannian
(non-Euclidean) geometry containing no matter. Matter is introduced into the
spacetime of Ric = 0 by means of a vicious circle, as follows. It is stated at the
outset that Ric = 0 describes spacetime “outside a body”. The words “outside
a body” introduce matter, contrary to the energy-momentum tensor, Tµν = 0,
that describes the causative matter as being absent. There is no matter involved
in the transformation of Minkowski spacetime into Schwarzschild spacetime via
Ric= 0, since the energy-momentum tensor is zero, making the components of
the resulting metric tensor functions solely of one another, and reducible to
functions of just one component of the metric tensor. To satisfy the initial
claim that Ric = 0 describes spacetime “outside a body”, so that the resulting
spacetime is caused by the alleged mass present, the alleged causative mass is
inserted into the resulting metric ad hoc, by means of a contrived analogy with
Newton’s theory, thus closing the vicious circle. Here is how Chandrasekhar [24]
presents the vicious circle:

“That such a contingency can arise was surmised already by Laplace
in 1798. Laplace argued as follows. For a particle to escape from
the surface of a spherical body of mass M and radius R, it must be
projected with a velocity v such that 1

2v
2 > GM/R; and it cannot

escape if v2 < 2GM/R. On the basis of this last inequality, Laplace
concluded that if R < 2GM/c2 =Rs (say) where c denotes the ve-
locity of light, then light will not be able to escape from such a body
and we will not be able to see it!

113



3.8. FURTHER CONSEQUENCES FOR GRAVITATIONAL WAVES

“By a curious coincidence, the limit Rs discovered by Laplace is ex-
actly the same that general relativity gives for the occurrence of the
trapped surface around a spherical mass.”

But it is not surprising that general relativity gives the same Rs “discovered by
Laplace” because the Newtonian expression for escape velocity is deliberately
inserted post hoc by the astrophysical scientists, into the so-called “Schwarzschild
solution” in order to make it so. Newton’s escape velocity does not drop out
of any of the calculations to Schwarzschild spacetime. Furthermore, although
Ric= 0 is claimed to describe spacetime “outside a body”, the resulting metric
(1) is nonetheless used to describe the interior of a black hole, since the black
hole begins at the alleged “event horizon”, not at its infinitely dense point-mass
singularity (said to be at r= 0 in Eq. (3.1)).

In the case of a totally empty Universe, what would be the relevant energy-
momentum tensor? It must be Tµν = 0. Indeed, it is also claimed that space-
times can be intrinsically curved, i.e. that there are gravitational fields that
have no material cause. An example is de Sitter’s empty spherical Universe,
based upon the following field equations [33,34]:

Rµν = λgµν (3.23)

where λ is the so-called ‘cosmological constant’. In the case of metric (1) the
field equations are given by expression (22). On the one hand de Sitter’s empty
world is devoid of matter (Tµν = 0) and so has no material cause for the alleged
associated gravitational field. On the other hand it is claimed that the spacetime
described by Eq. (3.22) has a material cause, post hoc as m in metric (1), even
though Tµν = 0 there as well: a contradiction. This is amplified by the so-called
“Schwarzschild-de Sitter” line-element,

ds2 =
(

1− 2m
r
− λ

3
r2

)
dt2 −

(
1− 2m

r
− λ

3
r2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

(3.24)
which is the standard solution for Eq. (3.23). Once again, m is identified post
hoc as mass at the centre of spherical symmetry of the manifold, said to be at
r= 0. The completely empty universe of de Sitter [33, 34] can be obtained by
setting m= 0 in Eq. (3.24) to yield,

ds2 =
(

1− λ

3
r2

)
dt2 −

(
1− λ

3
r2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (3.25)

Also, if λ= 0, Eq. (3.23) reduces to Eq. (3.22) and Eq. (3.24) reduces to Eq.
(3.1). If both λ= 0 and m= 0, Eqs. (3.24) and (3.25) reduce to Minkowski
spacetime. Now in Eq. (3.23) the term λgµν is not an energy-momentum ten-
sor, since according to the astrophysical scientists, expression (25) describes a
world devoid of matter [33, 34]. The universe described by Eq. (3.25), which
also satisfies Eq. (3.23), is completely empty and so its curvature has no ma-
terial cause; in Eq. (3.23), just as in Eq. (3.22), Tµν = 0. So Eq. (3.25) is
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alleged to describe a gravitational field that has no material cause. Further-
more, although in Eq. (3.22), Tµν = 0, its usual solution, Eq. (3.1), is said to
contain a (post hoc) material cause, denoted by m therein. Thus for Eq. (3.1)
it is claimed that Tµν = 0 supports a material cause of a gravitational field, but
at the same time, for Eq. (3.25), Tµν = 0 is also claimed to preclude material
cause of a gravitational field. So Tµν = 0 is claimed to include and to exclude
material cause. This is not possible. The contradiction is due to the post hoc
introduction of mass, as m, in Eq. (3.1), by means of the Newtonian expression
for gravitational potential. Furthermore, there is no experimental evidence to
support the claim that a gravitational field can be generated without a material
cause. Material cause is codified theoretically in Eq. (3.21).

Since Rµν = 0 cannot describe Einstein’s gravitational field, Einstein’s field
equations cannot reduce to Rµν = 0 when Tµν = 0. In other words, if Tµν = 0 (i.e.
there is no matter present) then there is no gravitational field. Consequently
Einstein’s field equations must take the form [58,59],

Gµν
κ

+ Tµν = 0. (3.26)

The Gµν/κ are the components of a gravitational energy tensor. Thus the total
energy of Einstein’s gravitational field is always zero; the Gµν/κ and the Tµν
must vanish identically ; there is no possibility for the localization of gravita-
tional energy (i.e. there are no Einstein gravitational waves). This also means
that Einstein’s gravitational field violates the experimentally well-established
usual conservation of energy and momentum [53]. Since there is no experimen-
tal evidence that the usual conservation of energy and momentum is invalid,
Einstein’s General Theory of Relativity violates the experimental evidence, and
so it is invalid.

In an attempt to circumvent the foregoing conservation problem, Einstein
invented his gravitational pseudo-tensor, the components of which he says are
‘the “energy components” of the gravitational field ’ [60]. His invention had a
two-fold purpose (a) to bring his theory into line with the usual conservation
of energy and momentum, (b) to enable him to get gravitational waves that
propagate with speed c. First, Einstein’s gravitational pseudo-tensor is not
a tensor, and is therefore not in keeping with his theory that all equations be
tensorial. Second, he constructed his pseudo-tensor in such a way that it behaves
like a tensor in one particular situation, that in which he could get gravitational
waves with speed c. Now Einstein’s pseudo-tensor is claimed to represent the
energy and momentum of the gravitational field and it is routinely applied in
relation to the localisation of gravitational energy, the conservation of energy
and the flow of energy and momentum.

Dirac [54] pointed out that,

“It is not possible to obtain an expression for the energy of the grav-
itational field satisfying both the conditions: (i) when added to other
forms of energy the total energy is conserved, and (ii) the energy
within a definite (three dimensional) region at a certain time is in-
dependent of the coordinate system. Thus, in general, gravitational
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energy cannot be localized. The best we can do is to use the pseudo-
tensor, which satisfies condition (i) but not condition (ii). It gives us
approximate information about gravitational energy, which in some
special cases can be accurate.”

On gravitational waves Dirac [54] remarked,

“Let us consider the energy of these waves. Owing to the pseudo-
tensor not being a real tensor, we do not get, in general, a clear
result independent of the coordinate system. But there is one special
case in which we do get a clear result; namely, when the waves are
all moving in the same direction.”

About the propagation of gravitational waves Eddington [34] remarked (gµν =
δµν + hµν),

∂2hµν
∂t2

−
∂2hµν
∂x2

−
∂2hµν
∂y2

−
∂2hµν
∂z2

= 0,

“... showing that the deviations of the gravitational potentials are
propagated as waves with unit velocity, i.e. the velocity of light. But
it must be remembered that this representation of the propagation,
though always permissible, is not unique. ... All the coordinate-
systems differ from Galilean coordinates by small quantities of the
first order. The potentials gµν pertain not only to the gravitational
influence which is objective reality, but also to the coordinate-system
which we select arbitrarily. We can ‘propagate’ coordinate-changes
with the speed of thought, and these may be mixed up at will with the
more dilatory propagation discussed above. There does not seem to
be any way of distinguishing a physical and a conventional part in
the changes of the gµν .

“The statement that in the relativity theory gravitational waves are
propagated with the speed of light has, I believe, been based entirely
upon the foregoing investigation; but it will be seen that it is only
true in a very conventional sense. If coordinates are chosen so as
to satisfy a certain condition which has no very clear geometrical
importance, the speed is that of light; if the coordinates are slightly
different the speed is altogether different from that of light. The
result stands or falls by the choice of coordinates and, so far as can
be judged, the coordinates here used were purposely introduced in
order to obtain the simplification which results from representing the
propagation as occurring with the speed of light. The argument thus
follows a vicious circle.”

Now Einstein’s pseudo-tensor,
√
−g tµν , is defined by [23,33,34,53,54,58,60],

√
−g tµν =

1
2

(
δµνL−

∂L

∂gσρ,µ
gσρ,ν

)
, (3.27)

116



CHAPTER 3. FUNDAMENTAL ERRORS IN THE GENERAL . . .

wherein L is given by

L = −gαβ
(

ΓγακΓκβγ − ΓγαβΓκγκ
)
. (3.28)

According to Einstein [60] his pseudo-tensor “expresses the law of conservation
of momentum and of energy for the gravitational field.”

In a remarkable paper published in 1917, T. Levi-Civita [58] provided a clear
and rigorous proof that Einstein’s pseudo-tensor is meaningless, and therefore
any argument relying upon it is fallacious. I repeat Levi-Civita’s proof. Con-
tracting Eq. (3.27) produces a linear invariant, thus

√
−g tµµ =

1
2

(
4L− ∂L

∂gσρ,µ
gσρ,µ

)
. (3.29)

Since L is, according to Eq. (3.28), quadratic and homogeneous with respect
to the Riemann-Christoffel symbols, and therefore also with respect to gσρ,µ , one
can apply Euler’s theorem to obtain (also see [34]),

∂L

∂gσρ,µ
gσρ,µ = 2L. (3.30)

Substituting expression (30) into expression (29) yields the linear invariant at
L. This is a first-order, intrinsic differential invariant that depends only on
the components of the metric tensor and their first derivatives (see expression
(28) for L). However, the mathematicians G. Ricci-Curbastro and T. Levi-
Civita [65] proved, in 1900, that such invariants do not exist. This is sufficient
to render Einstein’s pseudo-tensor entirely meaningless, and hence all arguments
relying on it false. Einstein’s conception of the conservation of energy in the
gravitational field is erroneous.

Linearisation of Einstein’s field equations and associated perturbations have
been popular. “The existence of exact solutions corresponding to a solution to
the linearised equations must be investigated before perturbation analysis can be
applied with any reliability” [21]. Unfortunately, the astrophysical scientists have
not properly investigated. Indeed, linearisation of the field equations is inadmis-
sible, even though the astrophysical scientists write down linearised equations
and proceed as though they are valid, because linearisation of the field equa-
tions implies the existence of a tensor which, except for the trivial case of being
precisely zero, does not exist; proven by Hermann Weyl [66] in 1944.

3.9 Other Violations
In writing Eq. (3.1) the Standard Model incorrectly asserts that only the com-
ponents g00 and g11 are modified by Rµν = 0. However, it is plain by expressions
(20) that this is false. All components of the metric tensor are modified by the
constant α appearing in Eqs. (3.20), of which metric (3.1) is but a particular
case.
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The Standard Model asserts in relation to metric (1) that a ‘true’ singular-
ity must occur where the Riemann tensor scalar curvature invariant (i.e. the
Kretschmann scalar) is unbounded [21,23,50]. However, it has never been proven
that Einstein’s field equations require such a curvature condition to be fulfilled:
in fact, it is not required by General Relativity. Since the Kretschmann scalar is
finite at r= 2m in metric (1), it is also claimed that r= 2m marks a “coordinate
singularity” or “removable singularity”. However, these assertions violate the
intrinsic geometry of the manifold described by metric (1). The Kretschmann
scalar depends upon all the components of the metric tensor and all the com-
ponents of the metric tensor are functions of the Gaussian curvature of the
spherically symmetric geodesic surface in the spatial section, owing to the form
of the line-element. The Kretschmann scalar is not therefore an independent
curvature invariant. Einstein’s gravitational field is manifest in the curvature
of spacetime, a curvature induced by the presence of matter. It should not
therefore be unexpected that the Gaussian curvature of a spherically symmetric
geodesic surface in the spatial section of the gravitational manifold might also
be modified from that of ordinary Euclidean space, and this is indeed the case
for Eq. (3.1). Metric (20) gives the modification of the Gaussian curvature
fixed by the intrinsic geometry of the line-element and the required boundary
conditions specified by Einstein and the astrophysical scientists, in consequence
of which the Kretschmann scalar is constrained by the Gaussian curvature of
the spherically symmetric geodesic surface in the spatial section. Recall that
the Kretschmann scalar f is,

f = RαβγδR
αβγδ.

Using metric (20) gives,

f = 12α2K3 =
12α2

R6
c

=
12α2

(|r − ro|
n + αn)

6
n

,

then
f (ro) =

12
α4

∀ ro ∀ n,

which is a scalar invariant that corresponds to the scalar invariants Rp (ro) = 0,
Rc (ro) =α, K (ro) =α−2. The usual assumption that the Kretschmann scalar
must be unbounded (undefined) at a singularity in Schwarzschild spacetime
is just that, and has no valid physical or mathematical basis. It is evident
from the line-element that the Kretschmann scalar is finite everywhere. This is
reaffirmed by the Riemannian (or Sectional) curvature Ks of the spatial section
of Schwarzschild spacetime, given by

Ks =
−α2W1212 − α

2W1313 sin2 θ + αRc (Rc − α)W2323

R3
cW1212 +R3

cW1313 sin2 θ +R4
c sin2 θ (Rc − α)W2323

Rc = (|r − ro|
n + αn)

1
n
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where

Wijkl =
∣∣∣∣ U i U j

V i V j

∣∣∣∣ ∣∣∣∣ Uk U l

V k V l

∣∣∣∣
and

〈
U i
〉
and

〈
V i
〉
are two arbitrary non-zero contravariant vectors at any point

in the space. Thus, in general the Riemannian curvature is dependent upon both
position and direction (i.e. the directions of the contravariant vectors). Now

Ks (ro) = − 1
2α2

= −1
2
K (ro)

which is entirely independent of the contravariant vectors and is half the nega-
tive of the associated Gaussian curvature of the spherically symmetric geodesic
surface in the spatial section. This is a scalar invariant that corresponds to
Rc(ro) = α ∀ro ∀n and Rp(ro) = 0 ∀ro ∀n.

Doughty [70] has shown that the radial geodesic acceleration a of a point in
a manifold described by a line-element with the form of Eq. (3.13) is given by,

a =

√
−g11

(
−g11

)
|g00,1 |

2g00

.

Using metric (20) once again gives,

a =
α

R
3
2
c (r)

√
Rc (r)− α

.

Now,
lim
r→r±o

Rp (r) = 0, lim
r→r±o

Rc (r) =α,

and so
r → r±o ⇒ a→∞ ∀ ro ∀ n.

According to metric (20) there is no possibility for Rc ≤ α.
In the case of Eq. (3.1), for which ro =α= 2m, n= 1, r > α, the acceleration

is,

a =
2m

r
3
2
√
r − 2m

.

which is infinite at r= 2m. But the usual unproven (and invalid) assumption
that r in Eq. (3.1) can go down to zero means that there is an infinite acceler-
ation at r= 2m where, according to the Standard Model, there is no matter!
However, r can’t take the values 0≤ r≤ ro = 2m in Eq. (3.1), as Eq. (3.20)
shows, by virtue of the nature of the Gaussian curvature of spherically sym-
metric geodesic surfaces in the spatial section associated with the gravitational
manifold, and the intrinsic geometry of the line-element.

The proponents of the Standard Model admit that if 0 < r < 2m in Eq. (3.1),
the rôles of t and r are interchanged. But this violates their construction at Eq.
(3.12), which has the fixed signature (+,−,−,−), and is therefore inadmissible.
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To further illustrate this violation, when 2m < r <∞ the signature of Eq. (3.1)
is (+,−,−,−); but if 0 < r < 2m in Eq. (3.1), then

g00 =
(

1− 2m
r

)
is negative, and g11 = −

(
1− 2m

r

)−1

is positive.

So the signature of metric (1) changes to (−,+,−,−). Thus the rôles of t and
r are interchanged. According to Misner, Thorne and Wheeler, who use the
spacetime signature (−,+,+,+),

“The most obvious pathology at r= 2M is the reversal there of the
roles of t and r as timelike and spacelike coordinates. In the region
r > 2M , the t direction, ∂/∂t, is timelike (gtt < 0) and the r
direction, ∂/∂r, is spacelike (grr > 0); but in the region r < 2M ,
∂/∂t, is spacelike (gtt > 0) and ∂/∂r, is timelike (grr < 0).

“What does it mean for r to ‘change in character from a spacelike
coordinate to a timelike one’? The explorer in his jet-powered space-
ship prior to arrival at r= 2M always has the option to turn on his
jets and change his motion from decreasing r (infall) to increasing
r (escape). Quite the contrary in the situation when he has once
allowed himself to fall inside r= 2M . Then the further decrease of
r represents the passage of time. No command that the traveler can
give to his jet engine will turn back time. That unseen power of the
world which drags everyone forward willy-nilly from age twenty to
forty and from forty to eighty also drags the rocket in from time co-
ordinate r= 2M to the later time coordinate r= 0. No human act of
will, no engine, no rocket, no force (see exercise 31.3) can make time
stand still. As surely as cells die, as surely as the traveler’s watch
ticks away ‘the unforgiving minutes’, with equal certainty, and with
never one halt along the way, r drops from 2M to 0.

“At r= 2M , where r and t exchange roles as space and time coor-
dinates, gtt vanishes while grr is infinite.”

Chandrasekhar [24] has expounded the same claim as follows,

’There is no alternative to the matter collapsing to an infinite density
at a singularity once a point of no-return is passed. The reason is
that once the event horizon is passed, all time-like trajectories must
necessarily get to the singularity: “all the King’s horses and all the
King’s men” cannot prevent it.’

Carroll [50] also says,

“This is worth stressing; not only can you not escape back to region
I, you cannot even stop yourself from moving in the direction of
decreasing r, since this is simply the timelike direction. (This could
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have been seen in our original coordinate system; for r < 2GM , t
becomes spacelike and r becomes timelike.) Thus you can no more
stop moving toward the singularity than you can stop getting older.”

Vladmimirov, Mitskiévich and Horský [71] assert,

“For r < 2GM/c2, however, the component goo becomes negative,
and grr , positive, so that in this domain, the role of time-like co-
ordinate is played by r, whereas that of space-like coordinate by t.
Thus in this domain, the gravitational field depends significantly on
time ( r) and does not depend on the coordinate t.

To amplify this, set t= r∗ and r= t∗, and so for 0 < r < 2m, Eq. (3.1) becomes,

ds2 =
(

1− 2m
t∗

)
dr∗2 −

(
1− 2m

t∗

)−1

dt∗2 − t∗2
(
dθ2 + sin2 θdϕ2

)
,

0 < t∗ < 2m.

It now becomes quite clear that this is a time-dependent metric since all the
components of the metric tensor are functions of the timelike t∗, and so this
metric bears no relationship to the original time-independent problem
to be solved [35,46]. In other words, this metric is a non-static solution to
a static problem: contra hyp! Thus, in Eq. (3.1), 0 < r < 2m is meaningless,
as Eqs. (3.20) demonstrate.

Furthermore, if the signature of “Schwarzschild” spacetime is permitted to
change from (+,−,−,−) to (−,+,−,−) in the fashion claimed for black holes,
then there must be for the latter signature a corresponding generalisation of the
Minkowski metric, taking the fundamental form

ds2 = −eλdt2 + eβdr2 −R2
(
dθ2 + sin2 θdϕ2

)
,

where λ, β and R are all unknown real-valued functions of only the real variable
r, and where eλ> 0 and eβ > 0. But this is impossible because the Minkowski
spacetime metric has the fixed signature (+,−,−,−), since the spatial section of
Minkowski spacetime is a positive definite quadratic form; and so the foregoing
generalised metric is not a generalistion of Minkowski spacetime at all.

Also of importance is the fact that Hagihara [72] proved, in 1931, that all
geodesics that do not run into the boundary of the “Schwarzschild” metric at
r = 2m (i.e. at Rp(ro = 2m) = 0) are complete.

Nobody has ever found a black hole anywhere because nobody has found an
infinitely dense point-mass singularity and nobody has found an event horizon.

“Unambiguous observational evidence for the existence of astrophys-
ical black holes has not yet been established. [28]

All claims for detection of black holes are patently false.
It has recently been admitted by astronomers [73] at the Max Planck Insti-

tute for Extraterrestrial Physics that,
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(a) Nobody has ever found a black hole, despite the numerous claims for their
discovery;

(b) The infinitely dense point-mass singularity of the alleged black hole is
nonsense;

(c) The alleged black hole has no escape velocity, despite the claims of the
astrophysical scientists;

(d) They were until very recently informed, unaware of Schwarzschild’s actual
solution.

The LIGO project and its international counterparts have not detected grav-
itational waves [74]. They are destined to detect nothing. Furthermore, the
Lense-Thirring or ‘frame dragging’ effect was not detected by the Gravity Probe
B and NASA has terminated further funding of that project [75].

3.10 Three-dimensional spherically symmetric met-
ric manifolds - first principles

To complete the purely mathematical foundations of this paper, the differential
geometry expounded in the foregoing is now developed from first principles.

Following the method suggested by Palatini, and developed by Levi-Civita
[30], denote ordinary Euclidean 3-space by E3. Let M3 be a 3-dimensional
metric manifold. Let there be a one-to-one correspondence between all points
of E3 and M3. Let the point O ∈ E3 and the corresponding point in M3 be O′.
Then a point transformation T of E3 into itself gives rise to a corresponding
point transformation of M3 into itself.

A rigid motion in a metric manifold is a motion that leaves the metric d`
′2

unchanged. Thus, a rigid motion changes geodesics into geodesics. The metric
manifold M3 possesses spherical symmetry around any one of its points O′ if
each of the ∞3 rigid rotations in E3 around the corresponding arbitrary point
O determines a rigid motion in M3.

The coefficients of d`
′2 of M3 constitute a metric tensor and are naturally

assumed to be regular in the region around every point in M3, except possibly
at an arbitrary point, the centre of spherical symmetry O′ ∈M3.

Let a ray i emanate from an arbitrary point O ∈ E3. There is then a
corresponding geodesic i′ ∈M3 issuing from the corresponding point O′ ∈M3.
Let P be any point on i other than O. There corresponds a point P ′ on i′ ∈M3

different to O′. Let g′ be a geodesic in M3 that is tangential to i′ at P ′.
Taking i as the axis of ∞1 rotations in E3, there corresponds ∞1 rigid

motions in M3 that leaves only all the points on i′ unchanged. If g′ is distinct
from i′, then the ∞1 rigid rotations in E3 about i would cause g′ to occupy
an infinity of positions in M3 wherein g′ has for each position the property of
being tangential to i′ at P ′ in the same direction, which is impossible. Hence,
g′ coincides with i′.
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Thus, given a spherically symmetric surface Σ in E3 with centre of symmetry
at some arbitrary point O ∈ E3, there corresponds a spherically symmetric
geodesic surface Σ′ in M3 with centre of symmetry at the corresponding point
O′ ∈M3.

Let Q be a point in Σ ∈ E3 and Q′ the corresponding point in Σ′ ∈M3. Let
dσ2 be a generic line element in Σ issuing from Q. The corresponding generic
line element dσ′2 ∈ Σ′ issues from the point Q′. Let Σ be described in the usual
spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2 θdϕ2), (3.1.1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence also Q′ in Σ′. Therefore,
θ and ϕ can be considered to be curvilinear coordinates for Q′ in Σ′ and the line
element dσ′ ∈ Σ′ will also be represented by a quadratic form similar to (3.1.1).
To determine dσ′, consider two elementary arcs of equal length, dσ1 and dσ2 in
Σ, drawn from the point Q in different directions. Then the homologous arcs
in Σ′ will be dσ′1 and dσ′2, drawn in different directions from the corresponding
point Q′. Now dσ1 and dσ2 can be obtained from one another by a rotation
about the axis OQ in E3, and so dσ′1 and dσ′2 can be obtained from one another
by a rigid motion in M3, and are therefore also of equal length, since the metric
is unchanged by such a motion. It therefore follows that the ratio dσ′

dσ is the same
for the two different directions irrespective of dθ and dϕ, and so the foregoing
ratio is a function of position, i.e. of r, θ, ϕ. But Q is an arbitrary point in Σ,
and so dσ′

dσ must have the same ratio for any corresponding points Q and Q′.
Therefore, dσ

′

dσ is a function of r alone, thus

dσ′

dσ
= H(r),

and so
dσ
′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2 θdϕ2), (3.1.2)

where H(r) is a priori unknown. For convenience set Rc = Rc(r) = H(r)r, so
that (3.1.2) becomes

dσ
′2 = R2

c(dθ
2 + sin2 θdϕ2), (3.1.3)

where Rc is a quantity associated with M3. Comparing (3.1.3) with (3.1.1)
it is apparent that Rc is to be rightly interpreted in terms of the Gaussian
curvature K at the point Q′, i.e. in terms of the relation K = 1

R2
c
since the

Gaussian curvature of (3.1.1) is K = 1
r2 . This is an intrinsic property of all line

elements of the form (3.1.3) [30]. Accordingly, Rc, the inverse square root of
the Gaussian curvature, can be regarded as the radius of Gaussian curvature.
Therefore, in (3.1.1) the radius of Gaussian curvature is Rc = r. Moreover,
owing to spherical symmetry, all points in the corresponding surfaces Σ and
Σ′ have constant Gaussian curvature relevant to their respective manifolds and
centres of symmetry, so that all points in the respective surfaces are umbilics.
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Let the element of radial distance from O ∈ E3 be dr. Clearly, the radial
lines issuing from O cut the surface Σ orthogonally. Combining this with (3.1.1)
by the theorem of Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2 θdϕ2). (3.1.4)

Let the corresponding radial geodesic from the point O′ ∈M3 be dRp. Clearly
the radial geodesics issuing from O′ cut the geodesic surface Σ′ orthogonally.
Combining this with (3.1.3) by the theorem of Pythagoras gives the line element
in M3 as,

d`
′2 = dR2

p +R2
c(dθ

2 + sin2 θdϕ2), (3.1.5)

where dRp is, by spherical symmetry, also a function only of Rc. Set dRp =√
B(Rc)dRc, so that (3.1.5) becomes

d`
′2 = B(Rc)dR2

c +R2
c(dθ

2 + sin2 θdϕ2), (3.1.6)

where B(Rc) is an a priori unknown function.
Expression (3.1.6) is the most general for a metric manifold M3 having

spherical symmetry about some arbitrary point O′ ∈M3.
Considering (3.1.4), the distance Rp = |OQ| from the point at the centre of

spherical symmetry O to a point Q ∈ Σ, is given by

Rp =
∫ r

0

dr = r = Rc.

Call Rp the proper radius. Consequently, in the case of E3, Rp and Rc are
identical, and so the Gaussian curvature of the spherically symmetric geodesic
surface containing any point in E3 can be associated with Rp, the radial distance
between the centre of spherical symmetry at the point O ∈ E3 and the point
Q ∈ Σ. Thus, in this case, K = 1

R2
c

= 1
R2
p

= 1
r2 . However, this is not a general

relation, since according to (3.1.5) and (3.1.6), in the case of M3, the radial
geodesic distance from the centre of spherical symmetry at the point O′ ∈M3

is not the same as the radius of Gaussian curvature of the associated spherically
symmetric geodesic surface, but is given by

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

∫ r

0

√
B(Rc(r))

dRc(r)
dr

dr,

where Rc(0) is a priori unknown owing to the fact that Rc(r) is a priori un-
known. One cannot simply assume that because 0 ≤ r < ∞ in (3.1.4) that it
must follow that in (3.1.5) and (3.1.6) 0 ≤ Rc(r) < ∞. In other words, one
cannot simply assume that Rc(0) = 0. Furthermore, it is evident from (3.1.5)
and (3.1.6) that Rp determines the radial geodesic distance from the centre of
spherical symmetry at the arbitrary point O′ in M3 (and correspondingly so
from O in E3) to another point in M3. Clearly, Rc does not in general render
the radial geodesic length from the point at the centre of spherical symmetry to
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some other point in a metric manifold. Only in the particular case of E3 does
Rc render both the radius of Gaussian curvature of an associated spherically
symmetric surface and the radial distance from the point at the centre of spher-
ical symmetry, owing to the fact that Rp and Rc are identical in that special
case.

It should also be noted that in writing expressions (3.1.4) and (3.1.5) it is
implicit that O ∈ E3 is defined as being located at the origin of the coordinate
system of (3.1.4), i.e. O is located where r = 0, and by correspondence O′
is defined as being located at the origin of the coordinate system of (3.1.5)
and of (3.1.6); O′ ∈ M3 is located where Rp = 0. Furthermore, since it is
well known that a geometry is completely determined by the form of the line
element describing it [33], expressions (3.1.4), (3.1.5) and (3.1.6) share the very
same fundamental geometry because they are line elements of the same metrical
groundform.

Expression (3.1.6) plays an important rôle in Einstein’s alleged gravitational
field.

3.11 Conclusions

“Schwarzschild’s solution” is not Schwarzschild’s solution. Schwarzschild’s ac-
tual solution forbids black holes. The quantity ‘r’ appearing in the so-called
“Schwarzschild solution” is not a distance of any kind in the associated mani-
fold - it is the inverse square root of the Gaussian curvature of the spherically
symmetric geodesic surface in the spatial section. This simple fact completely
subverts all claims for black holes.

The generalisation of Minkowski spacetime to Schwarzschild spacetime, via
Ric = 0, a spacetime that by construction contains no matter, is not a gener-
alisation of Special Relativity. Neither Einstein’s ‘Principle of Equivalence’ nor
his laws of Special Relativity can manifest in a spacetime that by construction
contains no matter.

Despite claims for discovery of black holes, nobody has ever found a black
hole; no infinitely dense point-mass singularity and no event horizon have ever
been found. There is no physical evidence for the existence of infinitely dense
point-masses. The black hole is fictitious. The international search for black
holes is destined to find none.

The Michell-Laplace dark body is not a black hole. Newton’s theory of
gravitation does not predict black holes.

Curved spacetimes without material cause violate the physical principles of
General Relativity. There is no experimental evidence supporting the notion of
gravitational fields generated without material cause.

No celestial body has ever been observed to undergo irresistible gravitational
collapse. There is no laboratory evidence for irresistible gravitational collapse.
Infinitely dense point-mass singularities howsoever formed cannot be reconciled
with Special Relativity, i.e. they violate Special Relativity, and therefore violate
General Relativity.
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The Riemann tensor scalar curvature invariant (the Kretschmann scalar) is
not an independent curvature invariant - it is a function of the intrinsic Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section.

General Relativity cannot account for the simple experimental fact that
two fixed bodies will approach one another upon release. There are no known
solutions to Einstein’s field equations for two or more masses and there is no
existence theorem by which it can even be asserted that his field equations
contain latent solutions for such configurations of matter. All claims for black
hole interactions are invalid.

Einstein’s gravitational waves are fictitious; Einstein’s gravitational energy
cannot be localised; so the international search for Einstein’s gravitational waves
is destined to detect nothing. No gravitational waves have been detected. Ein-
stein’s pseudo-tensor is meaningless and linearisation of Einstein’s field equa-
tions inadmissible. And the Lense-Thirring effect was not detected by the Grav-
ity Probe B.

Einstein’s field equations violate the experimentally well-established usual
conservation of energy and momentum, and therefore violate the experimental
evidence.

Dedication
I dedicate this paper to my late brother,

Paul Raymond Crothers

12th May 1968 − 25th December 2008.
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Chapter 4

Violation of the Dual Bianchi
Identity by Solutions of the
Einstein Field Equation

by

Myron W. Evans1, Horst Eckardt2,

Alpha Institute for Advance Study (AIAS)
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4.1 Introduction

In chapter two it was shown that solutions of the Einstein field equation violate
the Hodge dual of the Bianchi identity of Cartan geometry. In tensor notation
the dual identity may be expressed as:

DµT
κµν = Rκ µν

µ (4.1)

which means that the covariant derivative of the torsion tensor Tκµν is the
curvature tensor Rκ µν

µ . In this chapter, various classes of exact solutions of the
Einstein field equation are tested numerically against equation (4.1), by directly
evaluating the curvature tensor. It is found that the Einstein field equation fails
the test of Eq. (4.1) because the Einstein field equation is based on a geometry
that neglects torsion as discussed in Chapter 2 of this book. In Chapter 3,
Crothers shows that the class of vacuum solutions of the Einstein field equation

1e-mail: emyrone@aol.com
2e-mail: horsteck@aol.com
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has no physical meaning, because that class of solutions is for the null Einstein
tensor of Riemann geometry:

Gµν = Rµν −
1
2
R gµν = 0. (4.2)

In Eq. (4.2), the canonical energy momentum density Tµν does not appear, so
Eq. (4.2) is one of pure geometry with no physical meaning. It is shown in this
chapter that all known solutions of the Einstein field equation:

Gµν = k Tµν (4.3)

violate Eq. (4.1), and therefore violate fundamental geometry. Here k is the
Einstein constant, Rµν is the Ricci tensor, R is the Ricci scalar and gµν is
the symmetric metric. These quantities all assume that there is no space-time
torsion, an arbitrary, untenable assumption. The Einstein field equation is not
physically meaningful under any circumstances - a fiasco for twentieth century
gravitational physics. The ECE gravitational equations [1]- [12] on the other
hand rigorously obey Eq. (4.1) and must be used to develop new cosmologies.

All solutions of the Einstein field equation assume the Christoffel or sym-
metric connection. The use of the symmetric connection means that the torsion
tensor vanishes [13]. Therefore for all solutions of the Einstein field equation:

Tκµν = 0 (4.4)

in Eq. (4.1). It is shown in this chapter that in general:

Rκ µν
µ 6= 0 (4.5)

for the same solutions of the Einstein field equation that produce Eq. (4.4).
So the fundamental geometry of Eq. (4.1) is violated, and the Einstein field
equation is mathematically incorrect. The one exception to this result is the
class of vacuum solutions, i.e. the purely geometrical solutions of Eq. (4.2).
These solutions produce:

Rκ µν
µ = 0 (4.6)

so that Eq. (4.1) is obeyed fortuitously. However, the class of vacuum solutions
by definition assumes that the curvature is zero. Therefore in this case Eq.
(4.1) is merely the result of this assumption. Vacuum solutions of the Einstein
field equation by definition assume that there is no canonical energy/momentum
density present. This concept is analogous to assuming that a field can propa-
gate without a source for that field, a logical self-contradiction. The process of
solving Eq. (4.2) without Tµν , to give the vacuum solutions, is not consistent
with the assumption that the solutions of Eq. (4.2) involve mass M, because
mass M is part of Tµν , which has already been assumed to be zero. It cannot
be first assumed zero and then assumed non-zero. Unfortunately this is the
self-inconsistent and meaningless procedure adopted in standard gravitational
physics, and it has been criticized by Crothers in chapter 3 of this book.
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4.2 Numerical procedure

The procedure adopted was to begin with line elements that are known [14] to
be solutions of the Einstein field equation (4.3). There are numerous solutions
now known of Eq. (4.3) and are usually classified [14] into groups. For each
class of solutions the metric matrix was constructed from the line element. In
some classes the metric has off diagonal elements, but in the majority of cases
the metric is diagonal. This was used as input parameters for numerical code
(see paper 93 of www.aias.us) based on Maxima. The code was rigorously tested
with known analytical results and passed this test. The code was then used to
evaluate the Christoffel symbols for each line element. It was found that the code
correctly reproduced all analytically known Christoffel symbols. The Christoffel
symbols were then used to compute all the elements of the Riemann tensor for
each line element. Again it was found that the code correctly gave analytically
known Riemann elements. The next step was to compute elements of the Ricci
tensor from the Riemann tensor elements, and finally to compute the Ricci scalar
and Einstein tensor. It was again found that the code correctly reproduced
analytically known Ricci tensor elements (for example those in ref [13]).

It is therefore considered that the code is fully accurate and reliable. It
was then used to compute the curvature tensor on the right hand side of Eq.
(4.1) for selected line elements known to be exact solutions of the Einstein field
equation [14]. In general the curvature tensor with raised last two indices is
defined by:

Rκ σρ
µ = gσαgρσRκµαβ (4.7)

where gµν are inverse metric elements from the known line elements which are
the starting point of the computation. Finally the curvature tensor Rκ µν

µ is
defined by summation over repeated indices of the tensor computed in Eq. (4.7):

Rκ µν
µ = Rκ 0ν

0 +Rκ 1ν
1 +Rκ 2ν

2 +Rκ 3ν
3 . (4.8)

The tensor in Eq. (4.8) was evaluated for:

κ = 0, 1, 2, 3. (4.9)

The results for

κ = 0 (4.10)

were denoted "charge density", and the results for:

κ = 1, 2, 3 (4.11)

were denoted as elements of the "current density". The reason for this is that
they appear as such in the inhomogeneous ECE electro-dynamical equations as
explained in chapter 2. For each class of solutions of selected line elements the
charge and current densities were evaluated numerically using Maxima. The
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line element was also tested with the Ricci cyclic equation, which for torsion
free situations is:

Rκµνσ +Rκσµν +Rκνσµ = 0 (4.12)

and also tested for metric compatibility:

Dµgνρ = 0. (4.13)

Eqs. (4.12) and (4.13) are fundamental requirements which must be satisfied
by any line element that claims to be correct, even in the restricted context of
torsion-less geometry as used in the Einstein field equation. Line elements that
failed the tests of Eqs. (4.12) and (4.13) are mathematically incorrect, and must
be discarded. Several well known line elements failed these tests, another fiasco
for standard gravitational physics.

Finally the results were graphed and displayed. The computed Christoffel,
Riemann, Ricci, Einstein, charge and current density elements and so on can
become very intricate, so the computer was used to prepare them in tabular
form without any transcription by hand or typesetter. This ensured maximum
accuracy.

4.3 Results and discussion
The results are classed into groups as is the custom in standard gravitational
physics. The results are given in tabular and graphical format for each class
of solutions, and graphed. This procedure was first adopted in paper 93 of
www.aias.us and is extended to many known solutions of the Einstein field
equation in this chapter. The result is a disaster of standard gravitational
physics, because it is shown clearly by computer that the Einstein field equation
is mathematically incorrect. This incorrectness is due to the neglect of torsion,
and in retrospect it ought to be obvious that an equation that arbitrarily neglects
torsion must be incorrect. The Einstein field equation is therefore historically
similar to phlogiston and so on.

The fundamental origin of space-time torsion and curvature was briefly dis-
cussed in chapter 2, and is presented in a text such as that of Carroll [13]. The
origin is as follows:

[Dµ, Dν ]V ρ = RρσµνV
σ − TλµνDλV

ρ. (4.14)

The commutator of covariant derivatives acting on the vector produces the tor-
sion tensor:

Tλµν = Γλµν − Γλνµ (4.15)

and the curvature tensor:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (4.16)

This result is true irrespective of any assumption on the connection, and ir-
respective even of the metric compatibility condition. This is well known and
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available in a first principles text [13]. The use of a symmetric connection elim-
inates the torsion tensor:

Γλµν = Γλνµ (4.17)

and this assumption was used by Einstein in the derivation of the famous field
equation. However, this assumption is arbitrary, it is a restriction on a general
geometry. The latter is expressed by Cartan through his two well known [1]- [13]
structure equations. The first of these defines the Cartan torsion form:

T a = d ∧ qa + ωab ∧ qb (4.18)

where T a is the Cartan torsion, qa is the Cartan tetrad, ωab is the spin con-
nection form, and d∧ is the exterior derivative. The second structure equation
defines the Cartan curvature form:

Rab = d ∧ ωab + ωac ∧ ωcb . (4.19)

The Bianchi identity:

d ∧ T a + ωab ∧ T b := Rab ∧ qb (4.20)

follows from the two Cartan structure equations, as is well known. The dual
identity:

d ∧ T̃ a + ωab ∧ T̃ b := R̃ab ∧ qb (4.21)

is an example [1]- [12] of the original identity (4.20), as has been proven recently
in several ways. Eq. (4.1) is an example of the dual identity (4.21).

There have been at least two major blunders in the development of standard
gravitational physics. These are fundamental errors of geometry. The first is
the incorrect elimination of torsion by using a symmetric connection, the second
is the use of restricted Bianchi identities instead of the rigorously correct (4.20)
and (4.21). The restricted Bianchi identities are known in standard gravitational
physics as the first and second Bianchi identities. These are respectively:

Rλρµν +Rλµνρ +Rλνρµ = 0 (4.22)

and:

DµR
κ
λνρ +DρR

κ
λµν +DνR

κ
λρµ = 0. (4.23)

However, these incorrectly omit torsion and in consequence are not true iden-
tities. The equation (4.22) was in fact first derived by Ricci and Levi Civita
and is true if and only if the torsion is zero and the connection and metric are
symmetric. This has been shown in detail in refs. [1] - [12] and is also shown in
ref. [13] for example. Upon translating from the language of differential forms
(Eq. (4.20)) to the language of tensors, the true identity that should be used
instead of Eq. (4.22) is [1] - [12]:

Rλρµν+Rλµνρ +Rλνρµ :=

∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ
+∂νΓλρµ − ∂ρΓλνµ + ΓλνσΓσρµ − ΓλρσΓσνµ
+∂ρΓλµν − ∂µΓλρν + ΓλρσΓσµν − ΓλµσΓσρν 6= 0

(4.24)
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in which the connection is not necessarily symmetric and in which the torsion
tensor is not zero. Eq. (4.24) is a rigorously correct mathematical identity,
the true Bianchi identity. The curvature tensors appearing in this identity are
defined by:

Rλρµν = ∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ (4.25)

and so on in cyclic permutation. However, these curvature tensors are NOT
defined in general by a symmetric connection, i.e. the curvature and torsion
tensors co-exist as indicated by the very fundamental result (4.14). It is incorrect
to claim, as in standard gravitational physics, that the torsion must be zero.
Eq. (4.14) is a basic result of geometry, and exists in Riemann geometry as well
as in Cartan geometry. The latter is a re-expression of Riemann geometry as is
well known [13]. Therefore it is incorrect to claim, as is often done in standard
physics, that the Einstein equation is somehow independent of Cartan geometry.
This is the same as claiming that the Einstein field equation is independent of
geometry, reductio ad absurdum.

The geometry of the Einstein field equation is found by using:

T a = 0 (4.26)

in Eqs. (4.18) to (4.21), and as developed in detail [1] - [12] is the geometry:

d ∧ qa = qb ∧ ωab , (4.27)
Rab ∧ qb = 0. (4.28)

Eq. (4.28) is Eq. (4.22) in the notation of differential geometry. Differential
forms and tensors are related by the tetrad, as is well known from any good
basic textbook [13]. For example the torsion tensor is defined from the torsion
form by:

Tκµν = qκa T
a
µν (4.29)

and the curvature tensor is defined from the curvature form by:

Rκµνσ = qκa q
b
µ R

a
bνσ. (4.30)

The way in which Riemann and Cartan geometry inter-relate has been demon-
strated recently [1] - [12] in comprehensive detail, not easily found elsewhere. It
is incorrect therefore to claim that Cartan and Riemann geometry are somehow
"independent". As shown by Eqs. (4.26) to (4.28), the Einstein field equation
cannot be independent of Cartan geometry.

In the latter geometry there are no restrictions in general on the connection,
because the torsion is in general non-zero. The torsion form is defined by:

T a = D ∧ qa

:= d ∧ qa + ωab ∧ qb
(4.31)

and the torsion tensor is defined by:

Tκµν = Γκµν − Γκνµ. (4.32)
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The latter equation may be obtained from the former using the definition:

Tκµν = qκa T
a
µν (4.33)

and the tetrad postulate [1]- [13]:

Dµq
a
µ = 0. (4.34)

As may be seen from Eq. (4.14), the torsion tensor (4.32) is the direct result of
the commutator of covariant derivatives acting on the vector. In the early days
of general relativity, it was assumed just for the sake of ease of calculation that
the connection is symmetric:

Γκµν = Γκνµ (4.35)

which means from Eq. (4.32) that the torsion is assumed to vanish. This
assumption is arbitrary, and the computer results of this chapter show that
the assumption leads to a violation of the dual identity. So the assumption
of vanishing torsion is not only restrictive, it is fundamentally incorrect. This
means that all inferences based on the Einstein field equation must be discarded
as obsolete.

As shown in a textbook such as ref. [13], the assumption of symmetric metric
leads in turn to the usual

Γσµν =
1
2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (4.36)

However it is almost never stated in standard physics that this definition depends
on assuming that the metric is symmetric:

gµν = gνµ (4.37)

and also depends on the assumption of metric compatibility:

Dµgνρ = 0. (4.38)

On the other hand, the fundamental Eq. (4.14) makes no such assumptions.
Also, the Cartan structure equations make no such assumptions, they depend
only on the tetrad postulate:

Dµq
a
ν = 0 (4.39)

which is the very fundamental requirement that a vector field be independent of
its coordinate system. For example a vector field in three dimensional Euclidean
space is the same vector field if expressed in the Cartesian system, or any other
valid system of coordinates such as the spherical polar or cylindrical polar. The
symmetric metric tensor as usually used in standard physics is defined in any
good textbook [13] as:

gµν = qaµ q
b
ν ηab (4.40)
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where ηab is the Minkowski metric. Eq. (4.40) is only a special case of a more
general tensor product:

gabµν = qaµ q
b
ν (4.41)

of two tetrads [13]. It is this special case that is used in Einsteinian gravitational
theory.

It has also been shown in detail [1]- [12] that the second Cartan structure
equation:

Rab = D ∧ ωab
:= d ∧ ωab + ωac ∧ ωcb

(4.42)

translates into the definition (4.25) of the curvature tensor by use of the tetrad
postulate and the definition:

Rabµν = qaκ q
ρ
b R

κ
ρµν . (4.43)

The two Cartan structure equations are therefore equivalent to the tensor equa-
tion (4.14). The Bianchi identity:

D ∧ T a = Rab ∧ qb (4.44)

and its dual identity:

D ∧ T̃ a = R̃ab ∧ qb (4.45)

are therefore the results of the two Cartan structure equations and of the tensor
Eq. (4.14). It has been indicated already that the tensorial expression of Eq.
(4.44) is Eq. (4.24). Similarly, the tensorial expression of Eq. (4.45) is the
rigorous identity:

R̃λρµν+R̃λµνρ + R̃λνρµ :=(
∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ

)
HD

+
(
∂νΓλρµ − ∂ρΓλνµ + ΓλνσΓσρµ − ΓλρσΓσνµ

)
HD

+
(
∂ρΓλµν − ∂µΓλρν + ΓλρσΓσµν − ΓλµσΓσρν

)
HD
6= 0

(4.46)

in which appear the definitions:

R̃λρµν =
(
∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ

)
HD

(4.47)

and so on in cyclic permutation [1]- [12]. These results have been proven in all
detail in several ECE papers. It has also been proven that the so called second
Bianchi identity of standard physics, Eq. (4.23), should be:

D ∧ (D ∧ T a) := D ∧
(
Rab ∧ qb

)
(4.48)

which again includes the torsion.
The Einstein field equation (4.3) was obtained from Eq. (4.23) [1]- [13],

which in the language of differential geometry is:

D ∧Rab = 0, (4.49)
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an equation in which the torsion is missing incorrectly. The torsionless Bianchi
identity (4.23) may be re-expressed [1]- [13] as:

DµGµν = 0. (4.50)

The covariant Noether Theorem is:

DµTµν = 0. (4.51)

and it was assumed in 1915 by Einstein that:

DµGµν = k DµTµν . (4.52)

The Einstein field equation (4.3) is a further assumption from Eq. (4.52).
The Maxima code uses Eq. (4.36) to compute the Christoffel connection

elements, and uses Eq. (4.25) to compute the Riemann tensor elements. The
Ricci tensor elements are computed from the standard Ricci index contraction:

Rµν = Rλµλν . (4.53)

and the Ricci scalar is defined by:

R = gµνRµν . (4.54)

All these quantities are computed by the code.

4.4 Exact solutions of the Einstein Field Equa-
tion

Recently the many known exact solutions of the Einstein field equation (4.3)
have been collected in a volume [14]. There are several classes of solutions
in this volume, and in this chapter examples of the classes of solutions have
been tested against the fundamental dual identity (4.1). It is found that all
solutions violate the dual identity or are otherwise physically meaningless. The
volume is typical of twentieth century standard physics in being abstract and
mathematical, losing touch with Baconian physics. For the sake of testing it is
sufficient to chose a few examples from the volume, representative of each class.
The results of the evaluation of these line elements are given in the Tables
and Graphs of this chapter. Each solution in the book assumes the Christoffel
symbol, so each solution incorrectly neglects torsion. The computer algebra
shows that this assumption leads to the following violation of eq. (4.1):

Tκµν = 0, Rκ µν
µ 6= 0 (4.55)

for each solution in which there is finite energy momentum density. The only
exception is the class of solutions described by:

Gµν = Rµν −
1
2
R gµν = 0. (4.56)
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In this case:

Tκµν = 0, Rκ µν
µ = 0 (4.57)

as shown in the Tables. However, the assumption (4.56) precludes the existence
of matter, and is merely a geometrical exercise (see chapter 3) again carried
out in the early days of general relativity merely for the sake of ease of hand
calculation.

The fact that the Einstein field equation is incorrect is a major disaster
for standard physics. A glance at the Tables in this chapter shows that the
calculation of the Christoffel symbols and Riemann tensor elements is in general
an intricately complicated process, essentially impossible by hand for any but
the simplest line elements. The key result of the work reported in refs. [1] to [12]
is the dual identity, eq. (4.1). Standard physics for the past ninety years has
not recognized the existence of this identity, and prior to the emergence of the
computer algebra such as Maxima, hand calculations were essentially impossible
because of their great complexity. The major problem is that the Einstein field
equation has been accepted uncritically. The various claims as to its precision
are in fact incorrect. As shown in chapter 2, the correct equations of physics
must always contain spacetime torsion as a central ingredient.
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4.4.1 Minkowski metric with shifted radial coordinate
This form of the spherically symmetric line element shows that Minowski space
is invariant against a shift in the r coordinate.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−1 0 0 0
0 1 0 0
0 0 (r0 − r)2 0
0 0 0 (r0 − r)2 sin2 ϑ


Contravariant Metric

gµν =


−1 0 0 0
0 1 0 0
0 0 1

(r−r0)2 0
0 0 0 1

(r−r0)2 sin2 ϑ


Christoffel Connection

Γ1
22 = − (r − r0)

Γ1
33 = − (r − r0) sin2 ϑ

Γ2
12 =

1
r − r0

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r − r0

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

———— all elements zero

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.2 Schwarzschild metric
This the so-called Schwarzschild metric. The interpretation of the parameters
(M: mass, G: Newton’s constant of gravitation, c: velocity of light) was added
later. The Schwarzschild metric is a true vacuum metric, i.e. Ricci and Einstein
tensors vahish.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


2GM
c2 r − 1 0 0 0

0 1
1− 2GM

c2 r

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


c2 r

2GM−c2 r 0 0 0
0 − 2GM−c2 r

c2 r 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


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Christoffel Connection

Γ0
01 = − GM

r (2GM − c2 r)

Γ0
10 = Γ0

01

Γ1
00 = −

GM
(
2GM − c2 r

)
c4 r3

Γ1
11 =

GM

r (2GM − c2 r)

Γ1
22 =

2GM − c2 r
c2

Γ1
33 =

sin2 ϑ
(
2GM − c2 r

)
c2

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 = − 2GM

r2 (2GM − c2 r)

R0
110 = −R0

101

R0
202 = −GM

c2 r

R0
220 = −R0

202

R0
303 = − sin2 ϑGM

c2 r

R0
330 = −R0

303

R1
001 = −

2GM
(
2GM − c2 r

)
c4 r4

R1
010 = −R1

001

R1
212 = −GM

c2 r

R1
221 = −R1

212

R1
313 = − sin2 ϑGM

c2 r

R1
331 = −R1

313

R2
002 =

GM
(
2GM − c2 r

)
c4 r4

R2
020 = −R2

002

R2
112 = − GM

r2 (2GM − c2 r)

R2
121 = −R2

112
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R2
323 =

2 sin2 ϑGM

c2 r

R2
332 = −R2

323

R3
003 =

GM
(
2GM − c2 r

)
c4 r4

R3
030 = −R3

003

R3
113 = − GM

r2 (2GM − c2 r)

R3
131 = −R3

113

R3
223 = −2GM

c2 r

R3
232 = −R3

223

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.3 General Crothers metric

This is a general spherical symmetric metric with a general function C(r). It
does not describe a vacuum in general since Ricci and Einstein tensors are
different from zero.

Coordinates

x =


t
r
ϑ
ϕ


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Metric

gµν =


−A
√
C 0 0 0

0 B
√
C 0 0

0 0 C 0
0 0 0 sin2 ϑC


Contravariant Metric

gµν =


− 1
A
√
C

0 0 0
0 1

B
√
C

0 0
0 0 1

C 0
0 0 0 1

sin2 ϑC


Christoffel Connection

Γ0
01 =

d
d r C

4C

Γ0
10 = Γ0

01

Γ1
00 =

A
(
d
d r C

)
4BC

Γ1
11 =

d
d r C

4C

Γ1
22 = −

d
d r C

2B
√
C

Γ1
33 = −

sin2 ϑ
(
d
d r C

)
2B
√
C

Γ2
12 =

d
d r C

2C

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

d
d r C

2C

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = −

C
(
d2

d r2 C
)
−
(
d
d r C

)2
4C2

R0
110 = −R0

101

R0
202 = −

(
d
d r C

)2
8BC

3
2

R0
220 = −R0

202

R0
303 = −

sin2 ϑ
(
d
d r C

)2
8BC

3
2

R0
330 = −R0

303

R1
001 = −

A
(
C
(
d2

d r2 C
)
−
(
d
d r C

)2)
4BC2

R1
010 = −R1

001

R1
212 = −

4C
(
d2

d r2 C
)
− 3

(
d
d r C

)2
8BC

3
2

R1
221 = −R1

212

R1
313 = −

sin2 ϑ
(

4C
(
d2

d r2 C
)
− 3

(
d
d r C

)2)
8BC

3
2

R1
331 = −R1

313

R2
002 = −

A
(
d
d r C

)2
8BC2
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R2
020 = −R2

002

R2
112 =

4C
(
d2

d r2 C
)
− 3

(
d
d r C

)2
8C2

R2
121 = −R2

112

R2
323 = −

sin2 ϑ
((

d
d r C

)2 − 4BC
3
2

)
4BC

3
2

R2
332 = −R2

323

R3
003 = −

A
(
d
d r C

)2
8BC2

R3
030 = −R3

003

R3
113 =

4C
(
d2

d r2 C
)
− 3

(
d
d r C

)2
8C2

R3
131 = −R3

113

R3
223 =

(
d
d r C

)2 − 4BC
3
2

4BC
3
2

R3
232 = −R3

223

Ricci Tensor

Ric00 =
A
(
d2

d r2 C
)

4BC

Ric11 = −
5C

(
d2

d r2 C
)
− 4

(
d
d r C

)2
4C2

Ric22 = −
d2

d r2 C − 2B
√
C

2B
√
C

Ric33 = −
sin2 ϑ

(
d2

d r2 C − 2B
√
C
)

2B
√
C
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Ricci Scalar

Rsc = −
5C

(
d2

d r2 C
)
− 2

(
d
d r C

)2 − 4BC
3
2

2BC
5
2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
A
(

2C
(
d2

d r2 C
)
−
(
d
d r C

)2 − 2BC
3
2

)
2BC2

G11 =

(
d
d r C

)2 − 2BC
3
2

2C2

G22 =
3C

(
d2

d r2 C
)
− 2

(
d
d r C

)2
4BC

3
2

G33 =
sin2 ϑ

(
3C

(
d2

d r2 C
)
− 2

(
d
d r C

)2)
4BC

3
2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
d2

d r2 C

4ABC2

Current Density Class 1 (-Ri µjµ )

J1 =
5C

(
d2

d r2 C
)
− 4

(
d
d r C

)2
4B2 C3

J2 =
d2

d r2 C − 2B
√
C

2BC
5
2

J3 =
d2

d r2 C − 2B
√
C

2 sin2 ϑB C
5
2
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.4 Crothers metric with generalized Schwarzschild pa-
rameters

The general Crothers metric has been taken with a special function C(r):

C(r) = (|r − r0|n + αn)2/n
.

Again this is not a vacuum metric.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
Metric

gµν =

0BBBBB@
−
q

(|r0 − r|n + αn)
2
n A 0 0 0

0

q
(|r0 − r|n + αn)

2
n B 0 0

0 0 (|r0 − r|n + αn)
2
n 0

0 0 0 (|r0 − r|n + αn)
2
n sin2 ϑ

1CCCCCA
Contravariant Metric

g
µν

=

0BBBBBBBBBBB@

−

r
(|r0−r|n+αn)

2
n

(|r0−r|n+αn)
2
n A

0 0 0

0

r
(|r0−r|n+αn)

2
n

(|r0−r|n+αn)
2
n B

0 0

0 0 1

(|r0−r|n+αn)
2
n

0

0 0 0 1

(|r0−r|n+αn)
2
n sin2 ϑ

1CCCCCCCCCCCA
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Christoffel Connection

Γ
0
01 = −

|r0 − r|n

2 (r0 − r) (|r0 − r|n + αn)

Γ
0
10 = Γ

0
01

Γ
1
00 = −

|r0 − r|n A
2 (r0 − r) (|r0 − r|n + αn) B

Γ
1
11 = −

|r0 − r|n

2 (r0 − r) (|r0 − r|n + αn)

Γ
1
22 =

|r0 − r|n
q

(|r0 − r|n + αn)
2
n

(r0 − r) (|r0 − r|n + αn) B

Γ
1
33 =

|r0 − r|n
q

(|r0 − r|n + αn)
2
n sin2 ϑ

(r0 − r) (|r0 − r|n + αn) B

Γ
2
12 = −

|r0 − r|n

(r0 − r) (|r0 − r|n + αn)

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
13 = −

|r0 − r|n

(r0 − r) (|r0 − r|n + αn)

Γ
3
23 =

cosϑ

sinϑ

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.
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Riemann Tensor

R
0
101 =

|r0 − r|n (|r0 − r|n − αn n+ αn)

2 (r0 − r)2 (|r0 − r|n + αn)2

R
0
110 = −R0

101

R
0
202 = −

|r0 − r|2n
q

(|r0 − r|n + αn)
2
n

2 (r0 − r)2 (|r0 − r|n + αn)2 B

R
0
220 = −R0

202

R
0
303 = −

|r0 − r|2n
q

(|r0 − r|n + αn)
2
n sin2 ϑ

2 (r0 − r)2 (|r0 − r|n + αn)2 B

R
0
330 = −R0

303

R
1
001 =

|r0 − r|n (|r0 − r|n − αn n+ αn) A

2 (r0 − r)2 (|r0 − r|n + αn)2 B

R
1
010 = −R1

001

R
1
212 =

|r0 − r|n (|r0 − r|n + αn)
2
n
−2 (|r0 − r|n − 2αn n+ 2αn)

2 (r0 − r)2
q

(|r0 − r|n + αn)
2
n B

R
1
221 = −R1

212

R
1
313 =

|r0 − r|n (|r0 − r|n + αn)
2
n
−2 (|r0 − r|n − 2αn n+ 2αn) sin2 ϑ

2 (r0 − r)2
q

(|r0 − r|n + αn)
2
n B

R
1
331 = −R1

313

R
2
002 = −

|r0 − r|2n A
2 (r0 − r)2 (|r0 − r|n + αn)2 B

R
2
020 = −R2

002

R
2
112 = −

|r0 − r|n (|r0 − r|n − 2αn n+ 2αn)

2 (r0 − r)2 (|r0 − r|n + αn)2

R
2
121 = −R2

112

R
2
323 =

sin2 ϑ
`
r0

2 |r0 − r|2n B − 2 r r0 |r0 − r|2n B + r2 |r0 − r|2n B + 2αn r0
2 |r0 − r|n B − 4αn r r0 |r0 − r|n B + ...

´
(r0 − r)2 (|r0 − r|n + αn)2 B
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R
2
332 = −R2

323

R
3
003 = −

|r0 − r|2n A
2 (r0 − r)2 (|r0 − r|n + αn)2 B

R
3
030 = −R3

003

R
3
113 = −

|r0 − r|n (|r0 − r|n − 2αn n+ 2αn)

2 (r0 − r)2 (|r0 − r|n + αn)2

R
3
131 = −R3

113

R
3
223 = −

r0
2 |r0 − r|2n B − 2 r r0 |r0 − r|2n B + r2 |r0 − r|2n B + 2αn r0

2 |r0 − r|n B − 4αn r r0 |r0 − r|n B + 2αn r2 |r0 − r|n B + α2n r0
2 B + ...

(r0 − r)2 (|r0 − r|n + αn)2 B

R
3
232 = −R3

223

Ricci Tensor

Ric00 =
|r0 − r|n (|r0 − r|n + αn n− αn) A

2 (r0 − r)2 (|r0 − r|n + αn)2 B

Ric11 =
|r0 − r|n (3 |r0 − r|n − 5αn n+ 5αn)

2 (r0 − r)2 (|r0 − r|n + αn)2

Ric22 =
r0

2 |r0 − r|2n
q

(|r0 − r|n + αn)
2
n B − 2 r r0 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + r2 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + ...

(r0 − r)2 (|r0 − r|n + αn)2
q

(|r0 − r|n + αn)
2
n B

Ric33 =

sin2 ϑ

„
r0

2 |r0 − r|2n
q

(|r0 − r|n + αn)
2
n B − 2 r r0 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + r2 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + ...

«
(r0 − r)2 (|r0 − r|n + αn)2

q
(|r0 − r|n + αn)

2
n B

Ricci Scalar

Rsc =

(|r0 − r|n + αn)−
2
n
−2
„

2 r0
2 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B − 4 r r0 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + ...

«
(r0 − r)2

q
(|r0 − r|n + αn)

2
n B

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 =

(|r0 − r|n + αn)−
2
n
−2 A

„
r0

2 |r0 − r|2n
q

(|r0 − r|n + αn)
2
n B − 2 r r0 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + ...

«
(r0 − r)2 B

G11 = −
(|r0 − r|n + αn)−

2
n
−2
„
r0

2 |r0 − r|2n
q

(|r0 − r|n + αn)
2
n B − 2 r r0 |r0 − r|2n

q
(|r0 − r|n + αn)

2
n B + ...

«
(r0 − r)2

G22 = −
|r0 − r|n

q
(|r0 − r|n + αn)

2
n (|r0 − r|n − 3αn n+ 3αn)

2 (r0 − r)2 (|r0 − r|n + αn)2 B

G33 = −
|r0 − r|n

q
(|r0 − r|n + αn)

2
n (|r0 − r|n − 3αn n+ 3αn) sin2 ϑ

2 (r0 − r)2 (|r0 − r|n + αn)2 B

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
|r0 − r|n (|r0 − r|n + αn)−

2
n
−2 (|r0 − r|n + αn n− αn)

2 (r0 − r)2 AB

Current Density Class 1 (-Ri µjµ )

J1 = −
|r0 − r|n (|r0 − r|n + αn)−

2
n
−2 (3 |r0 − r|n − 5αn n+ 5αn)

2 (r0 − r)2 B2

J2 = −
(|r0 − r|n + αn)−

4
n
−2 `r0

2 |r0 − r|2n B − 2 r r0 |r0 − r|2n B + r2 |r0 − r|2n B + 2αn r0
2 |r0 − r|n B − 4αn r r0 |r0 − r|n B + ...

´
(r0 − r)2 B

J3 = −
(|r0 − r|n + αn)−

4
n
−2 `r0

2 |r0 − r|2n B − 2 r r0 |r0 − r|2n B + r2 |r0 − r|2n B + 2αn r0
2 |r0 − r|n B − 4αn r r0 |r0 − r|n B + ...

´
(r0 − r)2 sin2 ϑB

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

158



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  1  2  3  4  5

C
h
a
rg

e
 D

e
n
s
it
y
 ρ

r

Fig. 4.1: Spherical metric of Crothers, charge density ρ for r0 = 0, α = 1, n =
3, A = B = 1.
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Fig. 4.2: Spherical metric of Crothers, current density Jr for r0 = 0, α = 1, n =
3, A = B = 1.
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Fig. 4.3: Spherical metric of Crothers, current density Jϑ, Jϕ for r0 = 0, α =
1, n = 3, A = B = 1.
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Fig. 4.4: Spherical metric of Crothers, charge density ρ for r0 = 1, α = 1, n =
1, A = B = 1.
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Fig. 4.5: Spherical metric of Crothers, current density Jr for r0 = 1, α = 1, n =
1, A = B = 1.
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Fig. 4.6: Spherical metric of Crothers, current density Jϑ, Jϕ for r0 = 1, α =
0, n = 1, A = B = 1.
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Fig. 4.7: Spherical metric of Crothers, charge density ρ for r0 = 0, α = 0, n =
1, A = B = 1.
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Fig. 4.8: Spherical metric of Crothers, current density Jr for r0 = 0, α = 0, n =
1, A = B = 1.
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Fig. 4.9: Spherical metric of Crothers, current density Jϑ, Jϕ for r0 = 0, α =
0, n = 1, A = B = 1.

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.5 Crothers metric with Schwarzschild parameters

The parameters in the general Crothers metric with:

C(r) = (|r − r0|n + αn)2/n

have been chosen as r0 = 0, α = 1, n = 3.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
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Metric

gµν =

0BBBB@
−
`
|r|3 + 1

´ 1
3 A 0 0 0

0
`
|r|3 + 1

´ 1
3 B 0 0

0 0
`
|r|3 + 1

´ 2
3 0

0 0 0
`
|r|3 + 1

´ 2
3 sin2 ϑ

1CCCCA
Contravariant Metric

g
µν

=

0BBBBBBBB@

− 1

(|r|3+1)
1
3 A

0 0 0

0 1

(|r|3+1)
1
3 B

0 0

0 0 1

(|r|3+1)
2
3

0

0 0 0 1

(|r|3+1)
2
3 sin2 ϑ

1CCCCCCCCA
Christoffel Connection

Γ
0
01 =

r3

2 (|r|+ r4)

Γ
0
10 = Γ

0
01

Γ
1
00 =

r3 A

2 (|r|+ r4) B

Γ
1
11 =

r3

2 (|r|+ r4)

Γ
1
22 = −

r3

|r|
`
|r|3 + 1

´ 2
3 B

Γ
1
33 = −

r3 sin2 ϑ

|r|
`
|r|3 + 1

´ 2
3 B

Γ
2
12 =

r3

|r|+ r4

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
13 =

r3

|r|+ r4

Γ
3
23 =

cosϑ

sinϑ

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23
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Metric Compatibility
———— o.k.

Riemann Tensor

R
0
101 =

r4 `r2 |r| − 2
´

2
`
|r|3 + r8 |r|+ 2 r6

´

R
0
110 = −R0

101

R
0
202 = −

r4

2 (r2 |r|+ 1)
`
|r|3 + 1

´ 2
3 B

R
0
220 = −R0

202

R
0
303 = −

r4 sin2 ϑ

2 (r2 |r|+ 1)
`
|r|3 + 1

´ 2
3 B

R
0
330 = −R0

303

R
1
001 =

r4 `r2 |r| − 2
´
A

2
`
|r|3 + r8 |r|+ 2 r6

´
B

R
1
010 = −R1

001

R
1
212 = −

r2 `3 r4 |r|3 − 4 r6 |r|+ 4 |r|+ 3 r4´
2
`
|r|3 + 1

´ 2
3
`
|r|5 + r4 |r|+ r8 + r2

´
B

R
1
221 = −R1

212

R
1
313 = −

r2 `3 r4 |r|3 − 4 r6 |r|+ 4 |r|+ 3 r4´ sin2 ϑ

2
`
|r|3 + 1

´ 2
3
`
|r|5 + r4 |r|+ r8 + r2

´
B

R
1
331 = −R1

313

R
2
002 = −

r4 A

2 (2 r2 |r|+ r6 + 1) B

R
2
020 = −R2

002

R
2
112 = −

r4 `r2 |r| − 4
´

2
`
|r|3 + r8 |r|+ 2 r6

´
R

2
121 = −R2

112

165



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

R
2
323 =

sin2 ϑ

„
r2 |r|

`
|r|3 + 1

´ 2
3 B +

`
|r|3 + 1

´ 2
3 B − r4

«
(r2 |r|+ 1)

`
|r|3 + 1

´ 2
3 B

R
2
332 = −R2

323

R
3
003 = −

r4 A

2 (2 r2 |r|+ r6 + 1) B

R
3
030 = −R3

003

R
3
113 = −

r4 `r2 |r| − 4
´

2
`
|r|3 + r8 |r|+ 2 r6

´

R
3
131 = −R3

113

R
3
223 = −

r2 |r|
`
|r|3 + 1

´ 2
3 B +

`
|r|3 + 1

´ 2
3 B − r4

(r2 |r|+ 1)
`
|r|3 + 1

´ 2
3 B

R
3
232 = −R3

223

Ricci Tensor

Ric00 =
r4 `2 |r|3 + r8 |r|+ 3 r2 |r|+ 4 r6 + 2

´
A

2
`
r6 |r|3 + |r|3 + r14 |r|+ 5 r8 |r|+ 4 r12 + 4 r6

´
B

Ric11 =
r4 `3 r2 |r| − 10

´
2
`
|r|3 + r8 |r|+ 2 r6

´

Ric22 =
2 |r|5

`
|r|3 + 1

´ 2
3 B + 2 r10 |r|

`
|r|3 + 1

´ 2
3 B + 4 r4 |r|

`
|r|3 + 1

´ 2
3 B + 6 r8 `|r|3 + 1

´ 2
3 B + 2 r2 `|r|3 + 1

´ 2
3 B...

2
`
|r|3 + 1

´ 2
3
`
|r|5 + r10 |r|+ 2 r4 |r|+ 3 r8 + r2

´
B

Ric33 =

sin2 ϑ

„
2 |r|5

`
|r|3 + 1

´ 2
3 B + 2 r10 |r|

`
|r|3 + 1

´ 2
3 B + 4 r4 |r|

`
|r|3 + 1

´ 2
3 B + 6 r8 `|r|3 + 1

´ 2
3 B + 2 r2 `|r|3 + 1

´ 2
3 B...

«
2
`
|r|3 + 1

´ 2
3
`
|r|5 + r10 |r|+ 2 r4 |r|+ 3 r8 + r2

´
B

Ricci Scalar

Rsc =
12 r12 |r|11 B + 14 r6 |r|11 B + 2 |r|11 B + 12 r20 |r|9 B + 38 r14 |r|9 B + 20 r8 |r|9 B + 2 r2 |r|9 B + 26 r22 |r|7 B + 88 r16 |r|7 B...`

|r|3 + 1
´ 2

3
`
6 r12 |r|11 + 7 r6 |r|11 + |r|11 + 6 r20 |r|9 + 19 r14 |r|9 + 10 r8 |r|9 + r2 |r|9 + 13 r22 |r|7 + ...

´
B

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.
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Einstein Tensor

G00 =
A
`
48 r20 |r|11 B + 104 r14 |r|11 B + 64 r8 |r|11 B + 8 r2 |r|11 B + 48 r28 |r|9 B + 200 r22 |r|9 B + 232 r16 |r|9 B + 88 r10 |r|9 B...

´
2 r2

`
|r|3 + 1

´ 1
3
`
24 r18 |r|11 + 52 r12 |r|11 + 32 r6 |r|11 + 4 |r|11 + 24 r26 |r|9 + 100 r20 |r|9 + 116 r14 |r|9 + 44 r8 |r|9 + ...

´
B

G11 = −
24 r14 |r|11 B + 28 r8 |r|11 B + 4 r2 |r|11 B + 24 r22 |r|9 B + 76 r16 |r|9 B + 40 r10 |r|9 B + 4 r4 |r|9 B + 52 r24 |r|7 B + 176 r18 |r|7 B + ...

2 r2
`
|r|3 + 1

´ 1
3
`
12 r12 |r|11 + 14 r6 |r|11 + 2 |r|11 + 12 r20 |r|9 + 38 r14 |r|9 + 20 r8 |r|9 + 2 r2 |r|9 + 26 r22 |r|7 + ...

´

G22 =
12 r8 |r|19 + 10 r2 |r|19 + 8 r16 |r|17 + 47 r10 |r|17 + 4 r4 |r|17 + 3 r24 |r|15 + 41 r18 |r|15 + 73 r12 |r|15 + 40 r6 |r|15 + 4 |r|15 + 10 r26 |r|13 + ...

2
`
|r|3 + 1

´ 2
3
`
18 r18 |r|11 + 27 r12 |r|11 + 10 r6 |r|11 + |r|11 + 18 r26 |r|9 + 63 r20 |r|9 + 49 r14 |r|9 + 13 r8 |r|9 + ...

´
B

G33 =

`
12 r8 |r|19 + 10 r2 |r|19 + 8 r16 |r|17 + 47 r10 |r|17 + 4 r4 |r|17 + 3 r24 |r|15 + 41 r18 |r|15 + 73 r12 |r|15 + 40 r6 |r|15 + 4 |r|15 + ...

´
sin2 ϑ

2
`
|r|3 + 1

´ 2
3
`
18 r18 |r|11 + 27 r12 |r|11 + 10 r6 |r|11 + |r|11 + 18 r26 |r|9 + 63 r20 |r|9 + 49 r14 |r|9 + 13 r8 |r|9 + r2 |r|9 + ...

´
B

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
r4 `|r|3 + 1

´ 1
3
`
4 |r|3 + r8 |r|+ r2 |r|+ 4 r6 + 2

´
2
`
|r|9 + r8 |r|7 + r2 |r|7 + r10 |r|5 + 2 r12 |r|3 + 5 r6 |r|3 + |r|3 + r14 |r|+ 3 r8 |r|+ r18 + 10 r12 + 5 r6

´
AB

Current Density Class 1 (-Ri µjµ )

J1 =
r4 `|r|3 + 1

´ 1
3
`
2 |r|5 + 14 r8 |r|3 + 8 r2 |r|3 − 13 r10 |r|+ 17 r4 |r| − 3 r14 + 21 r8 + 10 r2´

2
`
|r|11 + 2 r8 |r|9 + r2 |r|9 + r16 |r|7 + r10 |r|7 + r4 |r|7 + r12 |r|5 + 2 r6 |r|5 + 8 r14 |r|3 + ...

´
B2

J2 = −
4 r14 |r|7

`
|r|3 + 1

´ 2
3 B + 6 r8 |r|7

`
|r|3 + 1

´ 2
3 B + 2 r2 |r|7

`
|r|3 + 1

´ 2
3 B + 2 r16 |r|5

`
|r|3 + 1

´ 2
3 B + 10 r10 |r|5

`
|r|3 + 1

´ 2
3 B + ...

2
`
2 r14 |r|13 + 3 r8 |r|13 + r2 |r|13 + r16 |r|11 + 5 r10 |r|11 + 2 r4 |r|11 + 6 r12 |r|9 + 6 r6 |r|9 + 2 |r|9 + ...

´
B

J3 = −
4 r14 |r|7

`
|r|3 + 1

´ 2
3 B + 6 r8 |r|7

`
|r|3 + 1

´ 2
3 B + 2 r2 |r|7

`
|r|3 + 1

´ 2
3 B + 2 r16 |r|5

`
|r|3 + 1

´ 2
3 B + 10 r10 |r|5

`
|r|3 + 1

´ 2
3 B + ...

2
`
2 r14 |r|13 + 3 r8 |r|13 + r2 |r|13 + r16 |r|11 + 5 r10 |r|11 + 2 r4 |r|11 + 6 r12 |r|9 + 6 r6 |r|9 + 2 |r|9 + ...

´
sin2 ϑB

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.6 General spherical metric
The general spherically symmetric metric contains exponentials of functions α
and β which in turn are functions of t and r.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
Metric

gµν =

0BB@
−e2α 0 0 0

0 e2 β 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ

1CCA
Contravariant Metric

g
µν

=

0BB@
−e−2α 0 0 0

0 e−2 β 0 0
0 0 1

r2
0

0 0 0 1
r2 sin2 ϑ

1CCA
Christoffel Connection

Γ
0
00 =

d

d t
α

Γ
0
01 =

d

d r
α

Γ
0
10 = Γ

0
01

Γ
0
11 = e

2 β−2α
„
d

d t
β

«

Γ
1
00 =

d

d r
α e

2α−2 β

Γ
1
01 =

d

d t
β
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Γ
1
10 = Γ

1
01

Γ
1
11 =

d

d r
β

Γ
1
22 = −e−2 β

r

Γ
1
33 = −e−2 β

r sin
2
ϑ

Γ
2
12 =

1

r

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
13 =

1

r

Γ
3
23 =

cosϑ

sinϑ

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.

Riemann Tensor

R
0
101 = e

−2α

 
e
2 β

 
d2

d t2
β

!
+ e

2 β
„
d

d t
β

«2

−
d

d t
α e

2 β
„
d

d t
β

«
+ e

2α
„
d

d r
α

« „
d

d r
β

«
− e2α

 
d2

d r2
α

!
− e2α

„
d

d r
α

«2
!

R
0
110 = −R0

101

R
0
202 = −

d

d r
α e
−2 β

r

R
0
212 = −e−2α

„
d

d t
β

«
r

R
0
220 = −R0

202

R
0
221 = −R0

212

R
0
303 = −

d

d r
α e
−2 β

r sin
2
ϑ
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R
0
313 = −e−2α

„
d

d t
β

«
r sin

2
ϑ

R
0
330 = −R0

303

R
0
331 = −R0

313

R
1
001 = e

−2 β

 
e
2 β

 
d2

d t2
β

!
+ e

2 β
„
d

d t
β

«2

−
d

d t
α e

2 β
„
d

d t
β

«
+ e

2α
„
d

d r
α

« „
d

d r
β

«
− e2α

 
d2

d r2
α

!
− e2α

„
d

d r
α

«2
!

R
1
010 = −R1

001

R
1
202 = e

−2 β
„
d

d t
β

«
r

R
1
212 = e

−2 β
„
d

d r
β

«
r

R
1
220 = −R1

202

R
1
221 = −R1

212

R
1
303 = e

−2 β
„
d

d t
β

«
r sin

2
ϑ

R
1
313 = e

−2 β
„
d

d r
β

«
r sin

2
ϑ

R
1
330 = −R1

303

R
1
331 = −R1

313

R
2
002 = −

d
d r α e

2α−2 β

r

R
2
012 = −

d
d t β

r

R
2
020 = −R2

002

R
2
021 = −R2

012

R
2
102 = −

d
d t β

r

R
2
112 = −

d
d r β

r
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R
2
120 = −R2

102

R
2
121 = −R2

112

R
2
323 = e

−2 β
“
e
β − 1

” “
e
β

+ 1
”

sin
2
ϑ

R
2
332 = −R2

323

R
3
003 = −

d
d r α e

2α−2 β

r

R
3
013 = −

d
d t β

r

R
3
030 = −R3

003

R
3
031 = −R3

013

R
3
103 = −

d
d t β

r

R
3
113 = −

d
d r β

r

R
3
130 = −R3

103

R
3
131 = −R3

113

R
3
223 = −e−2 β

“
e
β − 1

” “
e
β

+ 1
”

R
3
232 = −R3

223

Ricci Tensor

Ric00 = −
e−2 β

“
e2 β

“
d2

d t2
β
”
r + e2 β

`
d
d t β

´2
r − d

d t α e
2 β ` d

d t β
´
r + e2α

`
d
d r α

´ `
d
d r β

´
r − e2α

“
d2

d r2
α
”
r − ...

”
r

Ric01 =
2
`
d
d t β

´
r

Ric10 = Ric01

Ric11 =
e−2α

“
e2 β

“
d2

d t2
β
”
r + e2 β

`
d
d t β

´2
r − d

d t α e
2 β ` d

d t β
´
r + e2α

`
d
d r α

´ `
d
d r β

´
r − e2α

“
d2

d r2
α
”
r − e2α

`
d
d r α

´2
r + ...

”
r

Ric22 = e
−2 β

„
d

d r
β r −

d

d r
α r + e

2 β − 1

«

Ric33 = e
−2 β

„
d

d r
β r −

d

d r
α r + e

2 β − 1

«
sin

2
ϑ
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Ricci Scalar

Rsc = 2 e
−2 β−2α

0@ e2 β
“
d2

d t2
β
”
r2

r2
+
e2 β

`
d
d t β

´2
r2

r2
−

d
d t α e

2 β ` d
d t β

´
r2

r2
+
e2α

`
d
d r α

´ `
d
d r β

´
r2

r2
−
e2α

“
d2

d r2
α
”
r2

r2

−
e2α

`
d
d r α

´2
r2

r2
+

2 e2α
`
d
d r β

´
r

r2
−

2 e2α
`
d
d r α

´
r

r2
+
e2 β+2α

r2
−
e2α

r2

!

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G00 =
e2α−2 β

“
2
`
d
d r β

´
r + e2 β − 1

”
r2

G01 =
2
`
d
d t β

´
r

G10 = G01

G11 =
2
`
d
d r α

´
r − e2 β + 1

r2

G22 = −e−2 β−2α
r

 
e
2 β

 
d2

d t2
β

!
r + e

2 β
„
d

d t
β

«2

r −
d

d t
α e

2 β
„
d

d t
β

«
r + e

2α
„
d

d r
α

« „
d

d r
β

«
r − e2α

 
d2

d r2
α

!
r − e2α

„
d

d r
α

«2

r + ...

!

G33 = −e−2 β−2α
r

 
e
2 β

 
d2

d t2
β

!
r + e

2 β
„
d

d t
β

«2

r −
d

d t
α e

2 β
„
d

d t
β

«
r + e

2α
„
d

d r
α

« „
d

d r
β

«
r − e2α

 
d2

d r2
α

!
r − ...

!
sin

2
ϑ

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
e−2 β−4α

“
e2 β

“
d2

d t2
β
”
r + e2 β

`
d
d t β

´2
r − d

d t α e
2 β ` d

d t β
´
r + e2α

`
d
d r α

´ `
d
d r β

´
r − e2α

“
d2

d r2
α
”
r − e2α

`
d
d r α

´2
r − ...

”
r

Current Density Class 1 (-Ri µjµ )

J1 = −
e−4 β−2α

“
e2 β

“
d2

d t2
β
”
r + e2 β

`
d
d t β

´2
r − d

d t α e
2 β ` d

d t β
´
r + e2α

`
d
d r α

´ `
d
d r β

´
r − e2α

“
d2

d r2
α
”
r − e2α

`
d
d r α

´2
r + ...

”
r

J2 = −
e−2 β

“
d
d r β r −

d
d r α r + e2 β − 1

”
r4

J3 = −
e−2 β

“
d
d r β r −

d
d r α r + e2 β − 1

”
r4 sin2 ϑ
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Fig. 4.10: General spherical metric, charge density ρ for α = 1/r, β = r.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.7 Spherically symmetric metric with perturbation a/r

This spherically symmetric metric contains an additional perturbation a/r.
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Fig. 4.11: General spherical metric, current density Jr for α = 1/r, β = r.
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Fig. 4.12: General spherical metric, current density Jθ, Jϕ for α = 1/r, β = r.
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Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−

2GM
c2

+ a
r

r − 1 0 0 0
0 1

2GM
c2

+ a
r

r +1

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− c2 r2

2 r GM+c2 r2+a c2 0 0 0
0 2 r GM+c2 r2+a c2

c2 r2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 = − r GM + a c2

r (2 r GM + c2 r2 + a c2)

Γ0
10 = Γ0

01

Γ1
00 = −

(
r GM + a c2

) (
2 r GM + c2 r2 + a c2

)
c4 r5

Γ1
11 =

r GM + a c2

r (2 r GM + c2 r2 + a c2)

Γ1
22 = −2 r GM + c2 r2 + a c2

c2 r

Γ1
33 = −

sin2 ϑ
(
2 r GM + c2 r2 + a c2

)
c2 r

Γ2
12 =

1
r
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Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = − 2 r GM + 3 a c2

r2 (2 r GM + c2 r2 + a c2)

R0
110 = −R0

101

R0
202 =

r GM + a c2

c2 r2

R0
220 = −R0

202

R0
303 =

sin2 ϑ
(
r GM + a c2

)
c2 r2

R0
330 = −R0

303

R1
001 = −

(
2 r GM + 3 a c2

) (
2 r GM + c2 r2 + a c2

)
c4 r6

R1
010 = −R1

001

R1
212 =

r GM + a c2

c2 r2
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R1
221 = −R1

212

R1
313 =

sin2 ϑ
(
r GM + a c2

)
c2 r2

R1
331 = −R1

313

R2
002 =

(
r GM + a c2

) (
2 r GM + c2 r2 + a c2

)
c4 r6

R2
020 = −R2

002

R2
112 = − r GM + a c2

r2 (2 r GM + c2 r2 + a c2)

R2
121 = −R2

112

R2
323 = −

sin2 ϑ
(
2 r GM + a c2

)
c2 r2

R2
332 = −R2

323

R3
003 =

(
r GM + a c2

) (
2 r GM + c2 r2 + a c2

)
c4 r6

R3
030 = −R3

003

R3
113 = − r GM + a c2

r2 (2 r GM + c2 r2 + a c2)

R3
131 = −R3

113

R3
223 =

2 r GM + a c2

c2 r2

R3
232 = −R3

223
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Ricci Tensor

Ric00 =
a
(
2 r GM + c2 r2 + a c2

)
c2 r6

Ric11 = − a c2

r2 (2 r GM + c2 r2 + a c2)

Ric22 =
a

r2

Ric33 =
a sin2 ϑ

r2

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
a
(
2 r GM + c2 r2 + a c2

)
c2 r6

G11 = − a c2

r2 (2 r GM + c2 r2 + a c2)

G22 =
a

r2

G33 =
a sin2 ϑ

r2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
a c2

r2 (2 r GM + c2 r2 + a c2)
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Current Density Class 1 (-Ri µjµ )

J1 =
a
(
2 r GM + c2 r2 + a c2

)
c2 r6

J2 = − a

r6

J3 = − a

r6 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.8 Spherically symmetric metric with general µ(r)

Spherically symmetric line element with a generalized dependence µ(r).

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−µr − 1 0 0 0

0 1
µ
r +1 0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


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Contravariant Metric

gµν =


− r
r+µ 0 0 0
0 r+µ

r 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 =

d
d r µ r − µ
2 r (r + µ)

Γ0
10 = Γ0

01

Γ1
00 =

(r + µ)
(
d
d r µ r − µ

)
2 r3

Γ1
11 = −

d
d r µ r − µ
2 r (r + µ)

Γ1
22 = − (r + µ)

Γ1
33 = − (r + µ) sin2 ϑ

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

180



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = −

d2

d r2 µ r
2 − 2

(
d
d r µ

)
r + 2µ

2 r2 (r + µ)

R0
110 = −R0

101

R0
202 = −

d
d r µ r − µ

2 r

R0
220 = −R0

202

R0
303 = −

(
d
d r µ r − µ

)
sin2 ϑ

2 r

R0
330 = −R0

303

R1
001 = −

(r + µ)
(
d2

d r2 µ r
2 − 2

(
d
d r µ

)
r + 2µ

)
2 r4

R1
010 = −R1

001

R1
212 = −

d
d r µ r − µ

2 r

R1
221 = −R1

212

R1
313 = −

(
d
d r µ r − µ

)
sin2 ϑ

2 r

R1
331 = −R1

313

R2
002 = −

(r + µ)
(
d
d r µ r − µ

)
2 r4

R2
020 = −R2

002
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R2
112 =

d
d r µ r − µ

2 r2 (r + µ)

R2
121 = −R2

112

R2
323 = −µ sin2 ϑ

r

R2
332 = −R2

323

R3
003 = −

(r + µ)
(
d
d r µ r − µ

)
2 r4

R3
030 = −R3

003

R3
113 =

d
d r µ r − µ

2 r2 (r + µ)

R3
131 = −R3

113

R3
223 =

µ

r

R3
232 = −R3

223

Ricci Tensor

Ric00 =
d2

d r2 µ (r + µ)
2 r2

Ric11 = −
d2

d r2 µ

2 (r + µ)

Ric22 = − d

d r
µ

Ric33 = − d

d r
µ sin2 ϑ

Ricci Scalar

Rsc = −
d2

d r2 µ r + 2
(
d
d r µ

)
r2
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
d
d r µ (r + µ)

r3

G11 =
d
d r µ

r (r + µ)

G22 =
d2

d r2 µ r

2

G33 =
d2

d r2 µ r sin2 ϑ

2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
d2

d r2 µ

2 (r + µ)

Current Density Class 1 (-Ri µjµ )

J1 =
d2

d r2 µ (r + µ)
2 r2

J2 =
d
d r µ

r4

J3 =
d
d r µ

r4 sin2 ϑ
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.9 Spherically symmetric metric with off-diagonal ele-
ments

This version of the spherically symmetric line element is a precursor form of the
diagonal metric. The functions A, B, C, D depend on t and r.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA

Metric

gµν =

0BB@
A −B 0 0
−B −C 0 0
0 0 −D 0
0 0 0 − sin2 ϑD

1CCA

Contravariant Metric

g
µν

=

0BBB@
C

AC+B2 − B
AC+B2 0 0

− B
AC+B2 − A

AC+B2 0 0

0 0 − 1
D 0

0 0 0 − 1
sin2 ϑD

1CCCA
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Christoffel Connection

Γ
0
00 =

d
d t AC + 2B

`
d
d t B

´
+ d
d r AB

2 (AC + B2)

Γ
0
01 =

B
`
d
d t C

´
+ d
d r AC

2 (AC + B2)

Γ
0
10 = Γ

0
01

Γ
0
11 =

C
`
d
d t C

´
+ B

`
d
d r C

´
− 2

`
d
d r B

´
C

2 (AC + B2)

Γ
0
22 =

C
`
d
d t D

´
− B

`
d
d r D

´
2 (AC + B2)

Γ
0
33 =

sin2 ϑ
`
C
`
d
d t D

´
− B

`
d
d r D

´´
2 (AC + B2)

Γ
1
00 =

2A
`
d
d t B

´
− d
d t AB + A

`
d
d r A

´
2 (AC + B2)

Γ
1
01 =

A
`
d
d t C

´
− d
d r AB

2 (AC + B2)

Γ
1
10 = Γ

1
01

Γ
1
11 = −

B
`
d
d t C

´
− A

`
d
d r C

´
− 2B

`
d
d r B

´
2 (AC + B2)

Γ
1
22 = −

B
`
d
d t D

´
+ A

`
d
d r D

´
2 (AC + B2)

Γ
1
33 = −

sin2 ϑ
`
B
`
d
d t D

´
+ A

`
d
d r D

´´
2 (AC + B2)

Γ
2
02 =

d
d t D

2D

Γ
2
12 =

d
d r D

2D

Γ
2
20 = Γ

2
02

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ
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Γ
3
03 =

d
d t D

2D

Γ
3
13 =

d
d r D

2D

Γ
3
23 =

cosϑ

sinϑ

Γ
3
30 = Γ

3
03

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.

Riemann Tensor

R
0
001 =

B
“

2AC
“
d2

d t2
C
”

+ 2B2
“
d2

d t2
C
”
− A

`
d
d t C

´2 − d
d t AC

`
d
d t C

´
− 2B

`
d
d t B

´ `
d
d t C

´
+ d
d r AB

`
d
d t C

´
+ 2A

`
d
d t B

´ `
d
d r C

´
− ...

”
4 (AC + B2)2

R
0
010 = −R0

001

R
0
101 =

C
“

2AC
“
d2

d t2
C
”

+ 2B2
“
d2

d t2
C
”
− A

`
d
d t C

´2 − d
d t AC

`
d
d t C

´
− 2B

`
d
d t B

´ `
d
d t C

´
+ d
d r AB

`
d
d t C

´
+ 2A

`
d
d t B

´ `
d
d r C

´
− ...

”
4 (AC + B2)2

R
0
110 = −R0

101

R
0
202 =

2AC2 D
“
d2

d t2
D
”

+ 2B2 C D
“
d2

d t2
D
”
− AC2 ` d

d t D
´2 − B2 C

`
d
d t D

´2
+ ABC

`
d
d r D

´ `
d
d t D

´
+ B3 ` d

d r D
´ `

d
d t D

´
+ ...

4 (AC + B2)2 D

R
0
212 = −

AC2 ` d
d r D

´ `
d
d t D

´
+ B2 C

`
d
d r D

´ `
d
d t D

´
− B2 ` d

d r C
´
D
`
d
d t D

´
+ d
d r AC

2 D
`
d
d t D

´
+ 2B

`
d
d r B

´
C D

`
d
d t D

´
+ ...

4 (AC + B2)2 D

R
0
220 = −R0

202

R
0
221 = −R0

212

R
0
303 =

sin2 ϑ
“

2AC2 D
“
d2

d t2
D
”

+ 2B2 C D
“
d2

d t2
D
”
− AC2 ` d

d t D
´2 − B2 C

`
d
d t D

´2
+ ABC

`
d
d r D

´ `
d
d t D

´
+ B3 ` d

d r D
´ `

d
d t D

´
+ ...

”
4 (AC + B2)2 D
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R
0
313 = −

sin2 ϑ
`
AC2 ` d

d r D
´ `

d
d t D

´
+ B2 C

`
d
d r D

´ `
d
d t D

´
− B2 ` d

d r C
´
D
`
d
d t D

´
+ d
d r AC

2 D
`
d
d t D

´
+ 2B

`
d
d r B

´
C D

`
d
d t D

´
+ ...

´
4 (AC + B2)2 D

R
0
330 = −R0

303

R
0
331 = −R0

313

R
1
001 =

A
“

2AC
“
d2

d t2
C
”

+ 2B2
“
d2

d t2
C
”
− A

`
d
d t C

´2 − d
d t AC

`
d
d t C

´
− 2B

`
d
d t B

´ `
d
d t C

´
+ d
d r AB

`
d
d t C

´
+ 2A

`
d
d t B

´ `
d
d r C

´
− ...

”
4 (AC + B2)2

R
1
010 = −R1

001

R
1
101 = −

B
“

2AC
“
d2

d t2
C
”

+ 2B2
“
d2

d t2
C
”
− A

`
d
d t C

´2 − d
d t AC

`
d
d t C

´
− 2B

`
d
d t B

´ `
d
d t C

´
+ d
d r AB

`
d
d t C

´
+ 2A

`
d
d t B

´ `
d
d r C

´
− ...

”
4 (AC + B2)2

R
1
110 = −R1

101

R
1
202 = −

2ABCD
“
d2

d t2
D
”

+ 2B3 D
“
d2

d t2
D
”
− ABC

`
d
d t D

´2 − B3 ` d
d t D

´2 − A2 C
`
d
d r D

´ `
d
d t D

´
− AB2 ` d

d r D
´ `

d
d t D

´
− ...

4 (AC + B2)2 D

R
1
212 =

ABC
`
d
d r D

´ `
d
d t D

´
+ B3 ` d

d r D
´ `

d
d t D

´
+ AC

`
d
d t C

´
D
`
d
d t D

´
+ B2 ` d

d t C
´
D
`
d
d t D

´
+ AB

`
d
d r C

´
D
`
d
d t D

´
− ...

4 (AC + B2)2 D

R
1
220 = −R1

202

R
1
221 = −R1

212

R
1
303 = −

sin2 ϑ
“

2ABCD
“
d2

d t2
D
”

+ 2B3 D
“
d2

d t2
D
”
− ABC

`
d
d t D

´2 − B3 ` d
d t D

´2 − A2 C
`
d
d r D

´ `
d
d t D

´
− AB2 ` d

d r D
´ `

d
d t D

´
− ...

”
4 (AC + B2)2 D

R
1
313 =

sin2 ϑ
`
ABC

`
d
d r D

´ `
d
d t D

´
+ B3 ` d

d r D
´ `

d
d t D

´
+ AC

`
d
d t C

´
D
`
d
d t D

´
+ B2 ` d

d t C
´
D
`
d
d t D

´
+ AB

`
d
d r C

´
D
`
d
d t D

´
− ...

´
4 (AC + B2)2 D

R
1
330 = −R1

303
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R
1
331 = −R1

313

R
2
002 =

2ACD
“
d2

d t2
D
”

+ 2B2 D
“
d2

d t2
D
”
− AC

`
d
d t D

´2 − B2 ` d
d t D

´2 − d
d t ACD

`
d
d t D

´
− 2B

`
d
d t B

´
D
`
d
d t D

´
− d
d r ABD

`
d
d t D

´
− ...

4 (AC + B2) D2

R
2
012 = −

AC
`
d
d r D

´ `
d
d t D

´
+ B2 ` d

d r D
´ `

d
d t D

´
+ B

`
d
d t C

´
D
`
d
d t D

´
+ d
d r ACD

`
d
d t D

´
− 2ACD

“
d2

d r d t D
”
− 2B2 D

“
d2

d r d t D
”

+ ...

4 (AC + B2) D2

R
2
020 = −R2

002

R
2
021 = −R2

012

R
2
102 = −

AC
`
d
d r D

´ `
d
d t D

´
+ B2 ` d

d r D
´ `

d
d t D

´
+ B

`
d
d t C

´
D
`
d
d t D

´
+ d
d r ACD

`
d
d t D

´
− 2ACD

“
d2

d r d t D
”
− 2B2 D

“
d2

d r d t D
”

+ ...

4 (AC + B2) D2

R
2
112 = −

C
`
d
d t C

´
D
`
d
d t D

´
+ B

`
d
d r C

´
D
`
d
d t D

´
− 2

`
d
d r B

´
C D

`
d
d t D

´
− 2ACD

“
d2

d r2
D
”
− 2B2 D

“
d2

d r2
D
”

+ AC
`
d
d r D

´2
+ ...

4 (AC + B2) D2

R
2
120 = −R2

102

R
2
121 = −R2

112

R
2
323 =

sin2 ϑ
“
C
`
d
d t D

´2 − 2B
`
d
d r D

´ `
d
d t D

´
− A

`
d
d r D

´2
+ 4ACD + 4B2 D

”
4 (AC + B2) D

R
2
332 = −R2

323

R
3
003 =

2ACD
“
d2

d t2
D
”

+ 2B2 D
“
d2

d t2
D
”
− AC

`
d
d t D

´2 − B2 ` d
d t D

´2 − d
d t ACD

`
d
d t D

´
− 2B

`
d
d t B

´
D
`
d
d t D

´
− d
d r ABD

`
d
d t D

´
− ...

4 (AC + B2) D2

R
3
013 = −

AC
`
d
d r D

´ `
d
d t D

´
+ B2 ` d

d r D
´ `

d
d t D

´
+ B

`
d
d t C

´
D
`
d
d t D

´
+ d
d r ACD

`
d
d t D

´
− 2ACD

“
d2

d r d t D
”
− 2B2 D

“
d2

d r d t D
”

+ ...

4 (AC + B2) D2

R
3
030 = −R3

003
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R
3
031 = −R3

013

R
3
103 = −

AC
`
d
d r D

´ `
d
d t D

´
+ B2 ` d

d r D
´ `

d
d t D

´
+ B

`
d
d t C

´
D
`
d
d t D

´
+ d
d r ACD

`
d
d t D

´
− 2ACD

“
d2

d r d t D
”
− 2B2 D

“
d2

d r d t D
”

+ ...

4 (AC + B2) D2

R
3
113 = −

C
`
d
d t C

´
D
`
d
d t D

´
+ B

`
d
d r C

´
D
`
d
d t D

´
− 2

`
d
d r B

´
C D

`
d
d t D

´
− 2ACD

“
d2

d r2
D
”
− 2B2 D

“
d2

d r2
D
”

+ AC
`
d
d r D

´2
+ ...

4 (AC + B2) D2

R
3
130 = −R3

103

R
3
131 = −R3

113

R
3
223 = −

C
`
d
d t D

´2 − 2B
`
d
d r D

´ `
d
d t D

´
− A

`
d
d r D

´2
+ 4ACD + 4B2 D

4 (AC + B2) D

R
3
232 = −R3

223

Ricci Tensor

Ric00 = −
4A2 C2 D

“
d2

d t2
D
”

+ 8AB2 C D
“
d2

d t2
D
”

+ 4B4 D
“
d2

d t2
D
”
− 2A2 C2 ` d

d t D
´2 − 4AB2 C

`
d
d t D

´2 − 2B4 ` d
d t D

´2 − ...
4 (AC + B2)2 D2

Ric01 =
2A2 C2 ` d

d r D
´ `

d
d t D

´
+ 4AB2 C

`
d
d r D

´ `
d
d t D

´
+ 2B4 ` d

d r D
´ `

d
d t D

´
+ 2ABC

`
d
d t C

´
D
`
d
d t D

´
+ 2B3 ` d

d t C
´
D
`
d
d t D

´
+ ...

4 (AC + B2)2 D2

Ric10 = Ric01

Ric11 =
2AC2 ` d

d t C
´
D
`
d
d t D

´
+ 2B2 C

`
d
d t C

´
D
`
d
d t D

´
+ 2ABC

`
d
d r C

´
D
`
d
d t D

´
+ 2B3 ` d

d r C
´
D
`
d
d t D

´
− 4A

`
d
d r B

´
C2 D

`
d
d t D

´
− ...

4 (AC + B2)2 D2

Ric22 =
2AC2

“
d2

d t2
D
”

+ 2B2 C
“
d2

d t2
D
”

+ AC
`
d
d t C

´ `
d
d t D

´
+ 2B2 ` d

d t C
´ `

d
d t D

´
+ AB

`
d
d r C

´ `
d
d t D

´
− d
d t AC

2 ` d
d t D

´
− ...

4 (AC + B2)2

Ric33 =
sin2 ϑ

“
2AC2

“
d2

d t2
D
”

+ 2B2 C
“
d2

d t2
D
”

+ AC
`
d
d t C

´ `
d
d t D

´
+ 2B2 ` d

d t C
´ `

d
d t D

´
+ AB

`
d
d r C

´ `
d
d t D

´
− d
d t AC

2 ` d
d t D

´
− ...

”
4 (AC + B2)2
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Ricci Scalar

Rsc = −
4AC2 D

“
d2

d t2
D
”

2 (AC + B2)2 D2
+

4B2 C D
“
d2

d t2
D
”

r2
−

AC2 ` d
d t D

´2
2 (AC + B2)2 D2

−
B2 C

`
d
d t D

´2
2 (AC + B2)2 D2

+
2ABC

`
d
d r D

´ `
d
d t D

´
r2

+
2B3 ` d

d r D
´ `

d
d t D

´
2 (AC + B2)2 D2

+
2AC

`
d
d t C

´
D
`
d
d t D

´
2 (AC + B2)2 D2

+
4B2 ` d

d t C
´
D
`
d
d t D

´
2 (AC + B2)2 D2

+
2AB

`
d
d r C

´
D
`
d
d t D

´
2 (AC + B2)2 D2

−
2
`
d
d t A

´
C2 D

`
d
d t D

´
2 (AC + B2)2 D2

−
4B

`
d
d t B

´
C D

`
d
d t D

´
2 (AC + B2)2 D2

−
4A

`
d
d r B

´
C D

`
d
d t D

´
2 (AC + B2)2 D2

+
2
`
d
d r A

´
BCD

`
d
d t D

´
2 (AC + B2)2 D2

−
4A2 C D

“
d2

d r2
D
”

2 (AC + B2)2 D2
−

4AB2 D
“
d2

d r2
D
”

2 (AC + B2)2 D2

−
8ABCD

“
d2

d r d t D
”

2 (AC + B2)2 D2
−

8B3 D
“

d2
d r d t D

”
2 (AC + B2)2 D2

+
A2 C

`
d
d r D

´2
2 (AC + B2)2 D2

+
AB2 ` d

d r D
´2

2 (AC + B2)2 D2
+

2AB
`
d
d t C

´
D
`
d
d r D

´
r2

+
2A2 ` d

d r C
´
D
`
d
d r D

´
2 (AC + B2)2 D2

−
4A

`
d
d t B

´
C D

`
d
d r D

´
1

2 (AC + B2)2 D2
+

2
`
d
d t A

´
BCD

`
d
d r D

´
2 (AC + B2)2 D2

−
2A

`
d
d r A

´
C D

`
d
d r D

´
2 (AC + B2)2 D2

+
4AB

`
d
d r B

´
D
`
d
d r D

´
2 (AC + B2)2 D2

−
4
`
d
d r A

´
B2 D

`
d
d r D

´
2 (AC + B2)2 D2

+
2AC

“
d2

d t2
C
”
D2

2 (AC + B2)2 D2
+

2B2
“
d2

d t2
C
”
D2

r2
−

A
`
d
d t C

´2
D2

2 (AC + B2)2 D2
−

d
d t AC

`
d
d t C

´
D2

2 (AC + B2)2 D2

−
2B

`
d
d t B

´ `
d
d t C

´
D2

2 (AC + B2)2 D2
+

d
d r AB

`
d
d t C

´
D2

2 (AC + B2)2 D2
+

2A
`
d
d t B

´ `
d
d r C

´
D2

2 (AC + B2)2 D2
−

d
d t AB

`
d
d r C

´
D2

2 (AC + B2)2 D2

+
A
`
d
d r A

´ `
d
d r C

´
D2

2 (AC + B2)2 D2
−

4A
“

d2
d r d t B

”
C D2

2 (AC + B2)2 D2
+

2
`
d
d t A

´ `
d
d r B

´
C D2

2 (AC + B2)2 D2
−

2A
“
d2

d r2
A
”
C D2

2 (AC + B2)2 D2
+

`
d
d r A

´2
C D2

2 (AC + B2)2 D2

+
4B

`
d
d r B

´ `
d
d t B

´
D2

2 (AC + B2)2 D2
−

4B2
“

d2
d r d t B

”
D2

2 (AC + B2)2 D2
+

4A2 C2 D

2 (AC + B2)2 D2
+

8AB2 C D

2 (AC + B2)2 D2
+

4B4 D

2 (AC + B2)2 D2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G01 = −
4ABC2 D

“
d2

d t2
D
”

+ 4B3 C D
“
d2

d t2
D
”
− ABC2 ` d

d t D
´2 − B3 C

`
d
d t D

´2 − 2A2 C2 ` d
d r D

´ `
d
d t D

´
− ...

4 (AC + B2)2 D2

G10 = G01

G11 = −
4AC3 D

“
d2

d t2
D
”

+ 4B2 C2 D
“
d2

d t2
D
”
− AC3 ` d

d t D
´2 − B2 C2 ` d

d t D
´2

+ 2ABC2 ` d
d r D

´ `
d
d t D

´
+ 2B3 C

`
d
d r D

´ `
d
d t D

´
+ ...

4 (AC + B2)2 D2

G22 = −
2AC2 D

“
d2

d t2
D
”

+ 2B2 C D
“
d2

d t2
D
”
− AC2 ` d

d t D
´2 − B2 C

`
d
d t D

´2
+ 2ABC

`
d
d r D

´ `
d
d t D

´
+ 2B3 ` d

d r D
´ `

d
d t D

´
+ ...

4 (AC + B2)2 D

G33 = −
sin2 ϑ

“
2AC2 D

“
d2

d t2
D
”

+ 2B2 C D
“
d2

d t2
D
”
− AC2 ` d

d t D
´2 − B2 C

`
d
d t D

´2
+ 2ABC

`
d
d r D

´ `
d
d t D

´
+ 2B3 ` d

d r D
´ `

d
d t D

´
+ ...

”
4 (AC + B2)2 D
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Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
4AC3 D

“
d2

d t2
D
”

+ 4B2 C2 D
“
d2

d t2
D
”
− 2AC3 ` d

d t D
´2 − 2B2 C2 ` d

d t D
´2

+ 4ABC2 ` d
d r D

´ `
d
d t D

´
+ 4B3 C

`
d
d r D

´ `
d
d t D

´
+ ...

4 (AC + B2)3 D2

Current Density Class 1 (-Ri µjµ )

J1 =
4AB2 C D

“
d2

d t2
D
”

+ 4B4 D
“
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D
”
− 2AB2 C

`
d
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d t D

´2 − 4A2 BC
`
d
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´ `
d
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´
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d
d t D

´
− ...

4 (AC + B2)3 D2

J2 = −
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“
d2

d t2
D
”

+ 2B2 C
“
d2

d t2
D
”

+ AC
`
d
d t C

´ `
d
d t D

´
+ 2B2 ` d

d t C
´ `

d
d t D

´
+ AB

`
d
d r C

´ `
d
d t D

´
− d
d t AC

2 ` d
d t D

´
− ...

4 (AC + B2)2 D2

J3 = −
2AC2

“
d2

d t2
D
”

+ 2B2 C
“
d2

d t2
D
”
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`
d
d t C

´ `
d
d t D

´
+ 2B2 ` d

d t C
´ `

d
d t D

´
+ AB

`
d
d r C

´ `
d
d t D

´
− d
d t AC

2 ` d
d t D

´
− ...

4 sin2 ϑ (AC + B2)2 D2

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.10 Reissner-Nordstrom metric
This is a metric of a charged mass. M is a mass parameter, Q a charge parameter.
Cosmological charge and current densities do exist.

Coordinates

x =


t
r
ϑ
ϕ


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Metric

gµν =


−Q

2

r2 + 2M
r − 1 0 0 0

0 1
Q2

r2
− 2M

r +1
0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− r2

Q2−2 rM+r2 0 0 0

0 Q2−2 rM+r2

r2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 = − Q2 − rM

r (Q2 − 2 rM + r2)

Γ0
10 = Γ0

01

Γ1
00 = −

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r5

Γ1
11 =

Q2 − rM
r (Q2 − 2 rM + r2)

Γ1
22 = −Q

2 − 2 rM + r2

r

Γ1
33 = −

sin2 ϑ
(
Q2 − 2 rM + r2

)
r

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = − 3Q2 − 2 rM

r2 (Q2 − 2 rM + r2)

R0
110 = −R0

101

R0
202 =

Q2 − rM
r2

R0
220 = −R0

202

R0
303 =

sin2 ϑ
(
Q2 − rM

)
r2

R0
330 = −R0

303

R1
001 = −

(
Q2 − 2 rM + r2

) (
3Q2 − 2 rM

)
r6

R1
010 = −R1

001

R1
212 =

Q2 − rM
r2

R1
221 = −R1

212

R1
313 =

sin2 ϑ
(
Q2 − rM

)
r2

R1
331 = −R1

313

R2
002 =

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r6

R2
020 = −R2

002
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R2
112 = − Q2 − rM

r2 (Q2 − 2 rM + r2)

R2
121 = −R2

112

R2
323 = −

sin2 ϑ
(
Q2 − 2 rM

)
r2

R2
332 = −R2

323

R3
003 =

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r6

R3
030 = −R3

003

R3
113 = − Q2 − rM

r2 (Q2 − 2 rM + r2)

R3
131 = −R3

113

R3
223 =

Q2 − 2 rM
r2

R3
232 = −R3

223

Ricci Tensor

Ric00 =
Q2
(
Q2 − 2 rM + r2

)
r6

Ric11 = − Q2

r2 (Q2 − 2 rM + r2)

Ric22 =
Q2

r2

Ric33 =
sin2 ϑQ2

r2

Ricci Scalar

Rsc = 0
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
Q2
(
Q2 − 2 rM + r2

)
r6

G11 = − Q2

r2 (Q2 − 2 rM + r2)

G22 =
Q2

r2

G33 =
sin2 ϑQ2

r2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
Q2

r2 (Q2 − 2 rM + r2)

Current Density Class 1 (-Ri µjµ )

J1 =
Q2
(
Q2 − 2 rM + r2

)
r6

J2 = −Q
2

r6

J3 = − Q2

r6 sin2 ϑ
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Fig. 4.13: Reissner-Nordstrom metric, charge density ρ for M=1, Q=2.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Fig. 4.14: Reissner-Nordstrom metric, current density Jr for M=1, Q=2.
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Fig. 4.15: Reissner-Nordstrom metric, current density Jθ, Jϕ for M=1, Q=2.
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Fig. 4.16: Reissner-Nordstrom metric, charge density ρ for M=2, Q=1.
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Fig. 4.17: Reissner-Nordstrom metric, current density Jr for M=2, Q=1.
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Fig. 4.18: Reissner-Nordstrom metric, current density Jθ, Jϕ for M=2, Q=1.

4.4.11 Extended Reissner-Weyl metric
General solution of Einstein-Maxwell field theory for electromagnetism unified
with gravitation. This metric assumes a vacuum outside of the center, therefore
it should be a vacuum metric, but it isn’t (only the Ricci scalar is zero). A, B,
C, and κ are parameters.

This metric is identical with the Reissner-Nordstrom metric. The parameter
C was introduced experimentally to see differences to the Reissner-Nordstrom
metric.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


− C
r3 − κB2

2 r2 − A
r + 1 0 0 0

0 − 1

− C
r3
−κB2

2 r2
−Ar +1

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


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Contravariant Metric

gµν =


− 2 r3

2C+κ r B2+2 r2 A−2 r3 0 0 0
0 2C+κ r B2+2 r2 A−2 r3

2 r3 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 = − 3C + κ r B2 + r2A

r (2C + κ r B2 + 2 r2A− 2 r3)

Γ0
10 = Γ0
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Γ1
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(
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) (
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)
4 r7
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11 =

3C + κ r B2 + r2A
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Γ1
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33 = −

sin2 ϑ
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r
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1
r

Γ3
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cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = − 12C + 3κ r B2 + 2 r2A

r2 (2C + κ r B2 + 2 r2A− 2 r3)

R0
110 = −R0
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313 =
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)
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4 r8

R2
020 = −R2

002
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R2
112 = − 3C + κ r B2 + r2A

r2 (2C + κ r B2 + 2 r2A− 2 r3)

R2
121 = −R2

112

R2
323 = −

sin2 ϑ
(
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2 r3
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323
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R3
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113
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223 =
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R3
232 = −R3

223
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(
2C + κ r B2 + 2 r2A− 2 r3

) (
6C + κ r B2

)
4 r8

Ric11 = − 6C + κ r B2
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =

(
2C + κ r B2 + 2 r2A− 2 r3

) (
4C + κ r B2 + 4 r3

)
4 r8

G11 = − 4C + κ r B2 + 4 r3

r2 (2C + κ r B2 + 2 r2A− 2 r3)

G22 =
6C + κ r B2

2 r3

G33 =
sin2 ϑ

(
6C + κ r B2

)
2 r3

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
6C + κ r B2

r2 (2C + κ r B2 + 2 r2A− 2 r3)

Current Density Class 1 (-Ri µjµ )

J1 =

(
2C + κ r B2 + 2 r2A− 2 r3

) (
6C + κ r B2

)
4 r8

J2 = −4C + κ r B2 + 4 r3

2 r7

J3 = −4C + κ r B2 + 4 r3

2 r7 sin2 ϑ
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Fig. 4.19: Extended Reissner-Weyl metric, charge density ρ for A=1, B=2, C=1.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.12 Kerr metric
This metric describes a rotating mass without charge. M is the mass parame-
ter, J the parameter of angular momentum. Cosmological charge and current
densities do exist.
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Fig. 4.20: Extended Reissner-Weyl metric, current density Jr for A=1, B=2,
C=1.
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Fig. 4.21: Extended Reissner-Weyl metric, current density Jθ, Jϕ for A=1, B=2,
C=1.
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Fig. 4.22: Extended Reissner-Weyl metric, charge density ρ for A=1, B=2,
C=-1.
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Fig. 4.23: Extended Reissner-Weyl metric, current density Jr for A=1, B=2,
C=-1.
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Fig. 4.24: Extended Reissner-Weyl metric, current density Jθ, Jϕ for A=1, B=2,
C=-1.
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Metric Compatibility
———— o.k.
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r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
002 =

8 cosϑ sinϑJ2 (2M − r)
r2 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
010 = −R1

001

R
1
013 = −

2 sin2 ϑJ
`
8 r3 M2 − 64 sin2 ϑJ2 M − 10 r4 M + 24 r sin2 ϑJ2 + 3 r5´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
020 = −R1

002

R
1
023 =

12 cosϑ sinϑJ (2M − r)
`
2 r3 M − 8 sin2 ϑJ2 − r4´

r3 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
031 = −R1

013

R
1
032 = −R1

023

R
1
203 =

6 cosϑ sinϑJ (2M − r)2

2 r3 M − 16 sin2 ϑJ2 − r4

R
1
212 = −

M

r

R
1
221 = −R1

212

210
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R
1
230 = −R1

203

R
1
301 =

2 sin2 ϑJ
`
8 r3 M2 − 64 sin2 ϑJ2 M − 10 r4 M + 24 r sin2 ϑJ2 + 3 r5´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
302 = −

6 cosϑ sinϑJ (2M − r)
r3

R
1
310 = −R1

301

R
1
313 = −

sin2 ϑ
`
2 r3 M2 + 56 sin2 ϑJ2 M − r4 M − 36 r sin2 ϑJ2´

r (2 r3 M − 16 sin2 ϑJ2 − r4)

R
1
320 = −R1

302

R
1
331 = −R1

313

R
2
001 = −

8 cosϑ sinϑJ2

r3 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
2
002 =

(2M − r)
`
2 r3 M2 − 16 sin2 ϑJ2 M − r4 M + 16 r sin2 ϑJ2 − 16 r J2´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
2
010 = −R2

001

R
2
013 = −

6 cosϑ sinϑJ

r4

R
2
020 = −R2

002

R
2
023 =

2 sin2 ϑJ (2M − 3 r)

r4

R
2
031 = −R2

013

R
2
032 = −R2

023

R
2
103 =

6 cosϑ sinϑJ (2M − r)
r (2 r3 M − 16 sin2 ϑJ2 − r4)

R
2
112 = −

M

r2 (2M − r)

R
2
121 = −R2

112

R
2
130 = −R2

103

211
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R
2
301 =

12 cosϑ sinϑJ
`
2 r3 M − 8 sin2 ϑJ2 − r4´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
2
302 = −

2 sin2 ϑJ (2M − 3 r)

r4

R
2
310 = −R2

301

R
2
320 = −R2

302

R
2
323 =

2 sin2 ϑM

r

R
2
332 = −R2

323

R
3
003 =

(2M − r)
`
2 r3 M2 + 8 sin2 ϑJ2 M − r4 M + 12 r sin2 ϑJ2 − 16 r J2´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
3
012 =

6 r2 cosϑJ (2M − r)2

sinϑ (2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
021 = −R3

012

R
3
030 = −R3

003

R
3
101 = −

2 J
`
12 r3 M2 − 48 sin2 ϑJ2 M − 12 r4 M + 16 r sin2 ϑJ2 + 3 r5´

r (2M − r) (2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
102 = −

2 cosϑJ
`
12 r3 M2 − 96 sin2 ϑJ2 M − 12 r4 M + 32 r sin2 ϑJ2 + 3 r5´

r sinϑ (2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
110 = −R3

101

R
3
113 = −

4 r6 M3 + 176 r3 sin2 ϑJ2 M2 − 4 r7 M2 − 512 sin4 ϑJ4 M − 208 r4 sin2 ϑJ2 M + r8 M + 192 r sin4 ϑJ4 + 60 r5 sin2 ϑJ2

r2 (2M − r) (2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
120 = −R3

102

R
3
123 =

48 cosϑ sinϑJ2 `2 r3 M − 8 sin2 ϑJ2 − r4´
r (2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
131 = −R3

113

R
3
132 = −R3

123

R
3
201 = −

4 cosϑJ
`
12 r3 M2 − 48 sin2 ϑJ2 M − 12 r4 M + 16 r sin2 ϑJ2 + 3 r5´

r sinϑ (2 r3 M − 16 sin2 ϑJ2 − r4)2
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R
3
202 = −

2 J (2M − r)
`
6 r3 M − 16 sin2 ϑJ2 − 32 J2 − 3 r4´

(2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
210 = −R3

201

R
3
213 =

24 cosϑ sinϑJ2

r (2 r3 M − 16 sin2 ϑJ2 − r4)

R
3
220 = −R3

202

R
3
223 = −

2
`
2 r3 M2 + 8 sin2 ϑJ2 M − r4 M − 12 r sin2 ϑJ2´

r (2 r3 M − 16 sin2 ϑJ2 − r4)

R
3
231 = −R3

213

R
3
232 = −R3

223

R
3
303 = −

4 sin2 ϑJ
`
2 r3 M2 + 8 sin2 ϑJ2 M − r4 M + 12 r sin2 ϑJ2 − 16 r J2´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

R
3
312 = −

24 r2 cosϑ sinϑJ2 (2M − r)
(2 r3 M − 16 sin2 ϑJ2 − r4)2

R
3
321 = −R3

312

R
3
330 = −R3

303

Ricci Tensor

Ric00 =
8 J2 `6 cos2 ϑM2 − 6M2 + 4 r cos2 ϑM + 4 rM − 3 r2 cos2 ϑ− r2´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

Ric03 =
32 sin2 ϑJ3 `3 sin2 ϑM + 3 r sin2 ϑ− 2 r

´
r4 (2 r3 M − 16 sin2 ϑJ2 − r4)

Ric11 =
8 sin2 ϑJ2 `30 r3 M2 − 96 sin2 ϑJ2 M − 36 r4 M + 48 r sin2 ϑJ2 + 11 r5´

r2 (2M − r) (2 r3 M − 16 sin2 ϑJ2 − r4)2

Ric12 = −
16 cosϑ sinϑJ2 `9 r3 M − 48 sin2 ϑJ2 − 5 r4´

r (2 r3 M − 16 sin2 ϑJ2 − r4)2

Ric21 = Ric12

Ric22 =
16 J2 `6 r3 sin2 ϑM2 − 48 sin4 ϑJ2 M − 11 r4 sin2 ϑM + 2 r4 M + 48 r sin4 ϑJ2 + 4 r5 sin2 ϑ− r5´

r (2 r3 M − 16 sin2 ϑJ2 − r4)2

Ric30 = Ric03

Ric33 = −
8 sin2 ϑJ2 `12 sin2 ϑM − 3 r sin2 ϑ− 2 r

´
r (2 r3 M − 16 sin2 ϑJ2 − r4)
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Ricci Scalar

Rsc = −
8 J2 `48 r3 sin2 ϑM2 − 96 sin4 ϑJ2 M − 28 r4 sin2 ϑM − 16 r4 M − 144 r sin4 ϑJ2 + 64 r sin2 ϑJ2 + 3 r5 sin2 ϑ+ 8 r5´

r3 (2 r3 M − 16 sin2 ϑJ2 − r4)2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G00 =
4 sin2 ϑJ2 `72 r2 M3 − 108 r3 M2 − 64 sin2 ϑJ2 M − 128 J2 M + 54 r4 M + 48 r sin2 ϑJ2 + 64 r J2 − 9 r5´

r3 (2 r3 M − 16 sin2 ϑJ2 − r4)2

G03 = −
16 sin2 ϑJ3 `36 r2 sin2 ϑM2 − 34 r3 sin2 ϑM − 8 r3 M − 48 sin4 ϑJ2 + 9 r4 sin2 ϑ+ 4 r4´

r3 (2 r3 M − 16 sin2 ϑJ2 − r4)2

G11 =
4 J2 `12 r3 sin2 ϑM2 − 96 sin4 ϑJ2 M − 44 r4 sin2 ϑM + 16 r4 M + 240 r sin4 ϑJ2 − 64 r sin2 ϑJ2 + 19 r5 sin2 ϑ− 8 r5´

r2 (2M − r) (2 r3 M − 16 sin2 ϑJ2 − r4)2

G12 = −
16 cosϑ sinϑJ2 `9 r3 M − 48 sin2 ϑJ2 − 5 r4´

r (2 r3 M − 16 sin2 ϑJ2 − r4)2

G21 = G12

G22 =
4 J2 `72 r3 sin2 ϑM2 − 288 sin4 ϑJ2 M − 72 r4 sin2 ϑM − 8 r4 M + 48 r sin4 ϑJ2 + 64 r sin2 ϑJ2 + 19 r5 sin2 ϑ+ 4 r5´

r (2 r3 M − 16 sin2 ϑJ2 − r4)2

G30 = G03

G33 =
4 sin2 ϑJ2 `288 sin4 ϑJ2 M + 8 r4 sin2 ϑM − 8 r4 M − 240 r sin4 ϑJ2 − 3 r5 sin2 ϑ+ 4 r5´

r (2 r3 M − 16 sin2 ϑJ2 − r4)2

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
8 r J2 `6 r3 cos2 ϑM2 − 6 r3 M2 − 96 cos4 ϑJ2 M + 192 cos2 ϑJ2 M − 96 J2 M + 4 r4 cos2 ϑM + 4 r4 M + 144 r cos4 ϑJ2 − ...

´
(2 r3 M − 16 sin2 ϑJ2 − r4)3

Current Density Class 1 (-Ri µjµ )

J1 = −
8 sin2 ϑJ2 (2M − r)

`
30 r3 M2 − 96 sin2 ϑJ2 M − 36 r4 M + 48 r sin2 ϑJ2 + 11 r5´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)2

J2 = −
16 J2 `6 r3 sin2 ϑM2 − 48 sin4 ϑJ2 M − 11 r4 sin2 ϑM + 2 r4 M + 48 r sin4 ϑJ2 + 4 r5 sin2 ϑ− r5´

r5 (2 r3 M − 16 sin2 ϑJ2 − r4)2

J3 =
8 J2 `48 r3 sin2 ϑM3 − 96 sin4 ϑJ2 M2 − 60 r4 sin2 ϑM2 − 8 r4 M2 − 32 r sin4 ϑJ2 M + 24 r5 sin2 ϑM + 8 r5 M + 48 r2 sin4 ϑJ2 − ...

´
r2 sin2 ϑ (2 r3 M − 16 sin2 ϑJ2 − r4)3
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Fig. 4.25: Kerr metric, cosmological charge density ρ for M=1, J=2.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = −
16 cosϑ sinϑJ2 (2M − r)

`
9 r3 M − 48 sin2 ϑJ2 − 5 r4´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)2

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = −
16 cosϑ sinϑJ2 (2M − r)

`
9 r3 M − 48 sin2 ϑJ2 − 5 r4´

r4 (2 r3 M − 16 sin2 ϑJ2 − r4)2

J2 = 0

J3 = 0
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Fig. 4.26: Kerr metric, cosmological current density Jr for M=1, J=2.
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Fig. 4.27: Kerr metric, cosmological current density Jθ for M=1, J=2.
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Fig. 4.28: Kerr metric, cosmological current density Jϕ for M=1, J=2.
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Fig. 4.29: Kerr metric, cosmological charge density ρ for M=2, J=1.
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Fig. 4.30: Kerr metric, cosmological current density Jr for M=2, J=1.
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Fig. 4.31: Kerr metric, cosmological current density Jθ for M=2, J=1.
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Fig. 4.32: Kerr metric, cosmological current density Jϕ for M=2, J=1.

4.4.13 Kerr-Newman (Charged Kerr metric) with M =
0, ρ = const.

Metric of a charged mass with rotation. The quantities of this metric could only
be calculated by assuming the following functions to be constant in the Maxima
code:

ρ =
√
r2 + a2 cos2 θ ≈ const.

∆ = r2 − 2Mr + a2 +Q2

and further assuming

M ≈ 0.

These expressions have to be inserted into the metric. a, M, and Q are param-
eters:

−(1− (2Mr −Q2)/ρ2) 0 0 −((4Mr − 2Q2)a sin(θ)2/ρ2)
0 ρ2/∆ 0 0
0 0 rho2 0

−((4Mr − 2Q2)a sin(θ)2/ρ2) 0 0 (r2 + a2 + (2Mr −Q2)a2 sin(θ)2/ρ2) sin(θ)2


Results are extremely complicated. Even charge densities of class 2 and 3 exist.
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Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
Metric

gµν =

0BBBB@
−Q

2

ρ2
− 1 0 0 2 a sin2 ϑQ2

ρ2

0 ρ2

∆ 0 0
0 0 ρ2 0

2 a sin2 ϑQ2

ρ2
0 0 sin2 ϑ

“
− a

2 sin2 ϑQ2

ρ2
+ r2 + a2

”
1CCCCA

Contravariant Metric

g
µν

=

0BBBBBB@

ρ2
“
a2 sin2 ϑQ2−r2 ρ2−a2 ρ2

”
3 a2 sin2 ϑQ4−a2 ρ2 sin2 ϑQ2+r2 ρ2 Q2+a2 ρ2 Q2+r2 ρ4+a2 ρ4

0 0 2 a ρ2 Q2

3 a2 sin2 ϑQ4−a2 ρ2 sin2 ϑQ2+r2 ρ2 Q2+a2 ρ2 Q2+r2 ρ4+a2 ρ4

0 ∆
ρ2

0 0

0 0 1
ρ2

0

2 a ρ2 Q2

3 a2 sin2 ϑQ4−a2 ρ2 sin2 ϑQ2+r2 ρ2 Q2+a2 ρ2 Q2+r2 ρ4+a2 ρ4
0 0

ρ2
“
Q2+ρ2

”
sin2 ϑ (3 a2 sin2 ϑQ4−a2 ρ2 sin2 ϑQ2+r2 ρ2 Q2+a2 ρ2 Q2+r2 ρ4+a2 ρ4)

1CCCCCCA
Christoffel Connection

Γ
0
02 =

4 a2 cosϑ sinϑQ4

3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4

Γ
0
13 =

2 a r ρ2 sin2 ϑQ2

3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4

Γ
0
20 = Γ

0
02

Γ
0
23 = −

2 a3 cosϑ sin3 ϑQ4

3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4

Γ
0
31 = Γ

0
13

Γ
0
32 = Γ

0
23

Γ
1
33 = −

∆ r sin2 ϑ

ρ2

Γ
2
03 = −

2 a cosϑ sinϑQ2

ρ4

Γ
2
30 = Γ

2
03

Γ
2
33 =

cosϑ sinϑ
`
2 a2 sin2 ϑQ2 − r2 ρ2 − a2 ρ2´

ρ4
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Γ
3
02 = −

2 a cosϑQ2 `Q2 + ρ2´
sinϑ (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

Γ
3
13 = −

r ρ2 `Q2 + ρ2´
3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4

Γ
3
20 = Γ

3
02

Γ
3
23 =

cosϑ
`
2 a2 sin2 ϑQ4 − 2 a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4´

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.

Riemann Tensor

R
0
003 =

8 a3 cos2 ϑ sin2 ϑQ6

ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

R
0
012 = −

4 a2 r ρ2 cosϑ sinϑQ4 `Q2 + ρ2´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
0
021 = −R0

012

R
0
030 = −R0

003

R
0
113 =

2 a3 ρ2 sin2 ϑQ2 `3 sin2 ϑQ4 − ρ2 sin2 ϑQ2 + ρ2 Q2 + ρ4´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
0
123 =

2 a r ρ2 cosϑ sinϑQ2 `3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + 2 r2 ρ2 Q2 + 2 a2 ρ2 Q2 + 2 r2 ρ4 + 2 a2 ρ4´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
0
131 = −R0

113

R
0
132 = −R0

123

R
0
201 =

4 a2 r ρ2 cosϑ sinϑQ4 `Q2 + ρ2´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
0
202 =

4 a2 Q4 `3 a2 sin4 ϑQ4 − a2 ρ2 sin4 ϑQ2 + 2 r2 ρ2 sin2 ϑQ2 + 2 a2 ρ2 sin2 ϑQ2 − r2 ρ2 Q2 − a2 ρ2 Q2 + 2 r2 ρ4 sin2 ϑ+ 2 a2 ρ4 sin2 ϑ− ...
´

(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2
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R
0
210 = −R0

201

R
0
213 =

2 a r ρ2 cosϑ sinϑQ2 `4 a2 sin2 ϑQ4 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4´
(3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

R
0
220 = −R0

202

R
0
223 =

2 a3 sin2 ϑQ4 `12 a2 sin4 ϑQ4 − 9 a2 sin2 ϑQ4 − 4 a2 ρ2 sin4 ϑQ2 + 5 r2 ρ2 sin2 ϑQ2 + 8 a2 ρ2 sin2 ϑQ2 − 4 r2 ρ2 Q2 − 4 a2 ρ2 Q2 + ...
´

(3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

R
0
231 = −R0

213

R
0
232 = −R0

223

R
0
303 = −

4 a2 cos2 ϑ sin2 ϑQ4 `a2 sin2 ϑQ2 − r2 ρ2 − a2 ρ2´
ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

R
0
312 =

2 a r ρ2 cosϑ sinϑQ2 `Q2 + ρ2´ `a2 sin2 ϑQ2 − r2 ρ2 − a2 ρ2´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
0
321 = −R0

312

R
0
330 = −R0

303

R
1
023 =

2 a∆ r cosϑ sinϑQ2 `Q2 + ρ2´
ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
1
032 = −R1

023

R
1
203 =

2 a∆ r cosϑ sinϑQ2 `Q2 + ρ2´
ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
1
230 = −R1

203

R
1
313 = −

a2 ∆ sin2 ϑ
`
3 sin2 ϑQ4 − ρ2 sin2 ϑQ2 + ρ2 Q2 + ρ4´

ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
1
323 =

∆ r cosϑ sinϑ
`
4 a2 sin2 ϑQ4 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4´

ρ2 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)
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R
1
331 = −R1

313

R
1
332 = −R1

323

R
2
002 = −

4 a2 cos2 ϑQ4 `Q2 + ρ2´
ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
2
020 = −R2

002

R
2
023 =

2 a sin2 ϑQ2 `4 a2 sin2 ϑQ4 − a2 Q4 + r2 ρ2 Q2 + r2 ρ4 + a2 ρ4´
ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
2
032 = −R2

023

R
2
103 = −

2 a r cosϑ sinϑQ2 `Q2 + ρ2´
ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
2
130 = −R2

103

R
2
301 = −

2 a r cosϑ sinϑQ2 `Q2 + ρ2´
ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
2
302 =

2 a sin2 ϑQ2 `4 a2 sin2 ϑQ4 − a2 Q4 + r2 ρ2 Q2 + r2 ρ4 + a2 ρ4´
ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

R
2
310 = −R2

301

R
2
313 = −

r cosϑ sinϑ
`
4 a2 sin2 ϑQ4 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4´

ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
2
320 = −R2

302

R
2
323 =

sin2 ϑ
`
16 a4 sin4 ϑQ6 − 10 a4 sin2 ϑQ6 − 4 a4 ρ2 sin4 ϑQ4 + 2 a2 r2 ρ2 sin2 ϑQ4 + 4 a4 ρ2 sin2 ϑQ4 − 3 a2 r2 ρ2 Q4 − 3 a4 ρ2 Q4 + ...

´
ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

R
2
331 = −R2

313

R
2
332 = −R2

323

R
3
003 = −

4 a2 cos2 ϑQ4 `Q2 + ρ2´
ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
3
012 = −

2 a r ρ2 cosϑQ2 `Q2 + ρ2´2
sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2
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R
3
021 = −R3

012

R
3
030 = −R3

003

R
3
113 =

a2 ρ2 `Q2 + ρ2´ `3 sin2 ϑQ4 − ρ2 sin2 ϑQ2 + ρ2 Q2 + ρ4´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
123 =

r
`
r2 + a2´ ρ4 cosϑ

`
Q2 + ρ2´2

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
131 = −R3

113

R
3
132 = −R3

123

R
3
201 =

2 a r ρ2 cosϑQ2 `Q2 + ρ2´2
sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
202 = −

2 aQ2 `Q2 + ρ2´ `3 a2 Q4 + r2 ρ2 Q2 + r2 ρ4 + a2 ρ4´ `3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)3

R
3
210 = −R3

201

R
3
213 =

r ρ2 cosϑ
`
Q2 + ρ2´ `4 a2 sin2 ϑQ4 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4´

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
220 = −R3

202

R
3
223 = −

6 a4 sin2 ϑQ8 − 12 a4 ρ2 sin4 ϑQ6 + 2 a2 r2 ρ2 sin2 ϑQ6 + 6 a4 ρ2 sin2 ϑQ6 + 3 a2 r2 ρ2 Q6 + 3 a4 ρ2 Q6 + 4 a4 ρ4 sin4 ϑQ4 − ...
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
231 = −R3

213

R
3
232 = −R3

223

R
3
303 = −

8 a3 (sinϑ− 1) sin2 ϑ (sinϑ+ 1) Q6

ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

R
3
312 =

4 a2 r ρ2 cosϑ sinϑQ4 `Q2 + ρ2´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

R
3
321 = −R3

312

R
3
330 = −R3

303
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Ricci Tensor

Ric00 = −
8 a2 cos2 ϑQ4 `Q2 + ρ2´

ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)

Ric03 =
2 a sin2 ϑQ2 `8 a2 sin2 ϑQ4 − 5 a2 Q4 + r2 ρ2 Q2 + r2 ρ4 + a2 ρ4´

ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

Ric11 =
a2 ρ2 `Q2 + ρ2´ `3 cos2 ϑQ4 − 3Q4 − ρ2 cos2 ϑQ2 − ρ4´

(3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

Ric12 = −
r
`
r2 + a2´ ρ4 cosϑ

`
Q2 + ρ2´2

sinϑ (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

Ric21 = Ric12

Ric22 =
12 a4 cos4 ϑQ8 − 30 a4 cos2 ϑQ8 + 18 a4 Q8 − 16 a4 ρ2 cos4 ϑQ6 − 10 a2 r2 ρ2 cos2 ϑQ6 + 18 a4 ρ2 cos2 ϑQ6 + 9 a2 r2 ρ2 Q6 − ...

(3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

Ric30 = Ric03

Ric33 = −
sin2 ϑ

`
20 a4 sin4 ϑQ6 − 14 a4 sin2 ϑQ6 − 4 a4 ρ2 sin4 ϑQ4 − 2 a2 r2 ρ2 sin2 ϑQ4 + 3 a2 ∆ ρ2 sin2 ϑQ4 + a2 r2 ρ2 Q4 + a4 ρ2 Q4 + ...

´
ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)

Ricci Scalar

Rsc =
2
`
24 a4 sin4 ϑQ8 − 6 a4 sin2 ϑQ8 − 20 a4 ρ2 sin4 ϑQ6 + 14 a2 r2 ρ2 sin2 ϑQ6 − 3 a2 ∆ ρ2 sin2 ϑQ6 + 22 a4 ρ2 sin2 ϑQ6 − 5 a2 r2 ρ2 Q6 − ...

´
ρ2 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G00 =

`
Q2 + ρ2´ `18 a4 sin2 ϑQ8 − 12 a4 ρ2 sin4 ϑQ6 + 6 a2 r2 ρ2 sin2 ϑQ6 − 3 a2 ∆ ρ2 sin2 ϑQ6 + 6 a4 ρ2 sin2 ϑQ6 + 3 a2 r2 ρ2 Q6 + 3 a4 ρ2 Q6 + ...

´
ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

G03 = −
2 a3 sin2 ϑQ2 `9 a2 sin2 ϑQ8 − 12 a2 ρ2 sin4 ϑQ6 + 3 r2 ρ2 sin2 ϑQ6 − 3 ∆ ρ2 sin2 ϑQ6 + 9 a2 ρ2 sin2 ϑQ6 + 4 a2 ρ4 sin4 ϑQ4 − ...

´
ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

G11 = −
24 a4 sin4 ϑQ8 − 6 a4 sin2 ϑQ8 − 20 a4 ρ2 sin4 ϑQ6 + 14 a2 r2 ρ2 sin2 ϑQ6 + 22 a4 ρ2 sin2 ϑQ6 − 5 a2 r2 ρ2 Q6 − 5 a4 ρ2 Q6 + ...

∆ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

G12 = −
r
`
r2 + a2´ ρ4 cosϑ

`
Q2 + ρ2´2

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2
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G21 = G12

G22 = −
a2 `12 a2 sin4 ϑQ8 − 12 a2 sin2 ϑQ8 − 4 a2 ρ2 sin4 ϑQ6 + 4 r2 ρ2 sin2 ϑQ6 − 3 ∆ ρ2 sin2 ϑQ6 + 8 a2 ρ2 sin2 ϑQ6 − 4 r2 ρ2 Q6 − ...

´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

G30 = G03

G33 = −
4 a2 sin2 ϑQ4 `9 a4 sin6 ϑQ6 − 9 a4 sin4 ϑQ6 − 3 a4 ρ2 sin6 ϑQ4 + 6 a2 r2 ρ2 sin4 ϑQ4 + 3 a2 ∆ ρ2 sin4 ϑQ4 + 9 a4 ρ2 sin4 ϑQ4 − ...

´
ρ4 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
4 a2 Q4 `6 a4 sin6 ϑQ6 − 6 a4 sin4 ϑQ6 − 2 a4 ρ2 sin6 ϑQ4 + 8 a2 r2 ρ2 sin4 ϑQ4 + 3 a2 ∆ ρ2 sin4 ϑQ4 + 10 a4 ρ2 sin4 ϑQ4 − ...

´
(3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)3

Current Density Class 1 (-Ri µjµ )

J1 = −
a2 ∆2 `Q2 + ρ2´ `3 cos2 ϑQ4 − 3Q4 − ρ2 cos2 ϑQ2 − ρ4´

ρ2 (3 a2 cos2 ϑQ4 − 3 a2 Q4 − a2 ρ2 cos2 ϑQ2 − r2 ρ2 Q2 − r2 ρ4 − a2 ρ4)2

J2 = −
12 a4 sin4 ϑQ8 + 6 a4 sin2 ϑQ8 − 16 a4 ρ2 sin4 ϑQ6 + 10 a2 r2 ρ2 sin2 ϑQ6 + 14 a4 ρ2 sin2 ϑQ6 − a2 r2 ρ2 Q6 − a4 ρ2 Q6 + ...

ρ4 (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

J3 = −
`
Q2 + ρ2´ `12 a4 sin4 ϑQ8 + 6 a4 sin2 ϑQ8 − 16 a4 ρ2 sin4 ϑQ6 + 10 a2 r2 ρ2 sin2 ϑQ6 − 3 a2 ∆ ρ2 sin2 ϑQ6 + 14 a4 ρ2 sin2 ϑQ6 − ...

´
sin2 ϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)3

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 =
∆ r

`
r2 + a2´ cosϑ

`
Q2 + ρ2´2

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 =
∆ r

`
r2 + a2´ cosϑ

`
Q2 + ρ2´2

sinϑ (3 a2 sin2 ϑQ4 − a2 ρ2 sin2 ϑQ2 + r2 ρ2 Q2 + a2 ρ2 Q2 + r2 ρ4 + a2 ρ4)2

J2 = 0

J3 = 0
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4.4.14 Kerr-Newman (Charged Kerr metric) with a = 0

In this approximation the non-diagonal terms vanish due to a = 0.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


2 rM−Q2

r2 − 1 0 0 0
0 r2

Q2−2 rM+r2 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− r2

Q2−2 rM+r2 0 0 0

0 Q2−2 rM+r2

r2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 = − Q2 − rM

r (Q2 − 2 rM + r2)

Γ0
10 = Γ0

01

Γ1
00 = −

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r5

Γ1
11 =

Q2 − rM
r (Q2 − 2 rM + r2)

Γ1
22 = −Q

2 − 2 rM + r2

r

Γ1
33 = −

sin2 ϑ
(
Q2 − 2 rM + r2

)
r
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Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = − 3Q2 − 2 rM

r2 (Q2 − 2 rM + r2)

R0
110 = −R0

101

R0
202 =

Q2 − rM
r2

R0
220 = −R0

202

R0
303 =

sin2 ϑ
(
Q2 − rM

)
r2

R0
330 = −R0

303

R1
001 = −

(
Q2 − 2 rM + r2

) (
3Q2 − 2 rM

)
r6

R1
010 = −R1

001
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R1
212 =

Q2 − rM
r2

R1
221 = −R1

212

R1
313 =

sin2 ϑ
(
Q2 − rM

)
r2

R1
331 = −R1

313

R2
002 =

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r6

R2
020 = −R2

002

R2
112 = − Q2 − rM

r2 (Q2 − 2 rM + r2)

R2
121 = −R2

112

R2
323 = −

sin2 ϑ
(
Q2 − 2 rM

)
r2

R2
332 = −R2

323

R3
003 =

(
Q2 − 2 rM + r2

) (
Q2 − rM

)
r6

R3
030 = −R3

003

R3
113 = − Q2 − rM

r2 (Q2 − 2 rM + r2)

R3
131 = −R3

113

R3
223 =

Q2 − 2 rM
r2

R3
232 = −R3

223
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Ricci Tensor

Ric00 =
Q2
(
Q2 − 2 rM + r2

)
r6

Ric11 = − Q2

r2 (Q2 − 2 rM + r2)

Ric22 =
Q2

r2

Ric33 =
sin2 ϑQ2

r2

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
Q2
(
Q2 − 2 rM + r2

)
r6

G11 = − Q2

r2 (Q2 − 2 rM + r2)

G22 =
Q2

r2

G33 =
sin2 ϑQ2

r2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ =
Q2

r2 (Q2 − 2 rM + r2)

Current Density Class 1 (-Ri µjµ )

J1 =
Q2
(
Q2 − 2 rM + r2

)
r6

J2 = −Q
2

r6

J3 = − Q2

r6 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.15 Goedel metric
This is the Goedel metric. ω is a parameter.

Coordinates

x =


t
x1

x2

x3


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Metric

gµν =


− 1

2ω2 0 0 2 ex1

0 1
2ω2 0 0

0 0 1
2ω2 0

2 ex1 0 0 − e
2 x1

4ω2


Contravariant Metric

gµν =


2ω2

32ω4−1 0 0 16ω4 e−x1

32ω4−1

0 2ω2 0 0
0 0 2ω2 0

16ω4 e−x1

32ω4−1 0 0 4ω2 e−2 x1

32ω4−1


Christoffel Connection

Γ0
01 =

16ω4

32ω4 − 1

Γ0
10 = Γ0

01

Γ0
13 = − 2ω2 ex1

32ω4 − 1

Γ0
31 = Γ0

13

Γ1
03 = −2ω2 ex1

Γ1
30 = Γ1

03

Γ1
33 =

e2 x1

2

Γ3
01 =

4ω2 e−x1

32ω4 − 1

Γ3
10 = Γ3

01

Γ3
13 =

(2ω − 1) (2ω + 1)
(
4ω2 + 1

)
32ω4 − 1

Γ3
31 = Γ3

13
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
003 = − 32ω6 ex1

32ω4 − 1

R0
030 = −R0

003

R0
101 = − 8ω4

32ω4 − 1

R0
110 = −R0

101

R0
113 = − 4ω2 ex1

32ω4 − 1

R0
131 = −R0

113

R0
303 =

4ω4 e2 x1

32ω4 − 1

R0
330 = −R0

303

R1
001 = − 8ω4

32ω4 − 1

R1
010 = −R1

001

R1
013 = − 32ω6 ex1

32ω4 − 1

R1
031 = −R1

013

R1
301 =

32ω6 ex1

32ω4 − 1

R1
310 = −R1

301
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R1
313 =

(
40ω4 − 1

)
e2 x1

2 (32ω4 − 1)

R1
331 = −R1

313

R3
003 = − 8ω4

32ω4 − 1

R3
030 = −R3

003

R3
113 =

8ω4 − 1
32ω4 − 1

R3
131 = −R3

113

R3
303 =

32ω6 ex1

32ω4 − 1

R3
330 = −R3

303

Ricci Tensor

Ric00 =
16ω4

32ω4 − 1

Ric03 = − 64ω6 ex1

32ω4 − 1

Ric11 = −
(2ω − 1) (2ω + 1)

(
4ω2 + 1

)
32ω4 − 1

Ric30 = Ric03

Ric33 =

(
48ω4 − 1

)
e2 x1

2 (32ω4 − 1)

Ricci Scalar

Rsc = −
4ω2

(
24ω4 − 1

)
32ω4 − 1
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = − 8ω4 − 1
32ω4 − 1

G03 =
4ω2

(
8ω4 − 1

)
ex1

32ω4 − 1

G11 =
8ω4

32ω4 − 1

G22 =
24ω4 − 1
32ω4 − 1

G30 = G03

G33 =
12ω4 e2 x1

32ω4 − 1

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Fig. 4.33: Goedel Metric, charge density ρ for ω=1.
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4.4.16 Static De Sitter metric
This metric describes a universe with a constant scalar curvature. α is a pa-
rameter. There is a horizon at r = α. This is also visible in the cosmological
charge and current densities.
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Fig. 4.34: Goedel Metric, current density J1 for ω=1.
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Fig. 4.35: Goedel Metric, current density J3 for ω=1.
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Coordinates
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ϑ
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Ricci Scalar

Rsc =
12
α2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −3 (r − α) (r + α)
α4

G11 =
3

(r − α) (r + α)

G22 = −3 r2

α2

G33 = −3 r2 sin2 ϑ

α2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
3

(r − α) (r + α)

Current Density Class 1 (-Ri µjµ )

J1 =
3 (r − α) (r + α)
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Fig. 4.36: Static De Sitter metric, charge density ρ for α = 1.
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Fig. 4.37: Static De Sitter metric, current density Jr for α = 1.
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Fig. 4.38: Static De Sitter metric, current density Jϑ, Jϕ for α = 1.
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4.4.17 FLRW metric

The Friedmann-Lemaitre-Robertson-Walker metric is a cosmological metric of
a homogeneous and isotropic space. It contains a (normally increasing) time-
dependent function a(t) and a constant k which restricts the describable size of
the universe by the condition

r <
1√
k
.

Although the time function a grows, the charge and current densities go to zero
over time. The reverse is true if a decreases in time.

Coordinates

x =


t
r
ϑ
ϕ


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gµν =
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
Contravariant Metric

gµν =


1 0 0 0
0 k r2−1

a2 0 0
0 0 − 1

a2 r2 0
0 0 0 − 1

a2 r2 sin2 ϑ


Christoffel Connection

Γ0
11 = −

a
(
d
d t a

)
k r2 − 1

Γ0
22 = a

(
d

d t
a

)
r2

Γ0
33 = a

(
d

d t
a

)
r2 sin2 ϑ
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Metric Compatibility

———— o.k.

245



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Fig. 4.39: FLRW metric, charge density ρ for a = t2, k = .5, r = 1.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.18 Closed FLRW metric
The closed Friedmann-Lemaitre-Robertson-Walker metric describes a closed
universe. a is a time dependent function.
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Fig. 4.40: FLRW metric, current density Jr for a = t2, k = .5, r = 1.
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Fig. 4.41: FLRW metric, current density Jϑ, Jϕ for a = t2, k = .5, r = 1.
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Fig. 4.42: FLRW metric, charge density ρ for a = t−2, k = .5, r = 1.
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Fig. 4.43: FLRW metric, current density Jr for a = t−2, k = .5, r = 1.
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Fig. 4.44: FLRW metric, current density Jϑ, Jϕ for a = t−2, k = .5, r = 1.
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Fig. 4.45: FLRW metric, current density, r dependence of Jr for a = t2, t =
1, k = .5.
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Fig. 4.46: FLRW metric, current density, r dependence of Jϑ, Jϕ for a = t2, t =
1, k = .5.
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Metric Compatibility

———— o.k.
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Fig. 4.47: Closed FLRW metric, charge density ρ for a = t2.
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Fig. 4.48: Closed FLRW metric, current density Jχ for a = t2.
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Fig. 4.49: Closed FLRW metric, current density Jϑ, Jϕ for a = t2, χ = π/2.
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Fig. 4.50: Closed FLRW metric, current density Jϑ, Jϕ, χ dependence for a =
t2, t = 1.
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Fig. 4.51: Closed FLRW metric, charge density ρ for a = t−2.
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Fig. 4.52: Closed FLRW metric, current density Jχ for a = t−2.
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Fig. 4.53: Closed FLRW metric, current density Jϑ, Jϕ for a = t−2, χ = π/2.
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Fig. 4.54: Closed FLRW metric, current density Jϑ, Jϕ, χ dependence for a =
t−2, t = 1.

4.4.19 Friedmann Dust metric

Metric of the Friedmann Dust universe. a is a parameter.

Coordinates

x =


t
x1

x2

x3



Metric

gµν =


−1 0 0 0

0
(
cosh

(
3 t
a − 1

)) 2
3 0 0

0 0
(
cosh

(
3 t
a − 1

)) 2
3 0

0 0 0
(
cosh

(
3 t
a − 1

)) 2
3


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Contravariant Metric

gµν =


−1 0 0 0
0 1

(cosh( 3 t−a
a ))

2
3

0 0

0 0 1

(cosh( 3 t−a
a ))

2
3

0

0 0 0 1

(cosh( 3 t−a
a ))

2
3


Christoffel Connection

Γ0
11 =

sinh
(

3 t−a
a

)
a
(
cosh

(
3 t−a
a

)) 1
3

Γ0
22 =

sinh
(

3 t−a
a

)
a
(
cosh

(
3 t−a
a

)) 1
3

Γ0
33 =

sinh
(

3 t−a
a

)
a
(
cosh

(
3 t−a
a

)) 1
3

Γ1
01 =

sinh
(

3 t−a
a

)
a cosh

(
3 t−a
a

)
Γ1

10 = Γ1
01

Γ2
02 =

sinh
(

3 t−a
a

)
a cosh

(
3 t−a
a

)
Γ2

20 = Γ2
02

Γ3
03 =

sinh
(

3 t−a
a

)
a cosh

(
3 t−a
a

)
Γ3

30 = Γ3
03

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 =

cosh2
(

3 t−a
a

)
+ 2

a2
(
cosh

(
3 t−a
a

)) 4
3

R0
110 = −R0

101

R0
202 =

cosh2
(

3 t−a
a

)
+ 2

a2
(
cosh

(
3 t−a
a

)) 4
3

R0
220 = −R0

202

R0
303 =

cosh2
(

3 t−a
a

)
+ 2

a2
(
cosh

(
3 t−a
a

)) 4
3

R0
330 = −R0

303

R1
001 =

cosh2
(

3 t−a
a

)
+ 2

a2 cosh2
(

3 t−a
a

)
R1

010 = −R1
001

R1
212 =

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R1
221 = −R1

212

R1
313 =

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R1
331 = −R1

313

R2
002 =

cosh2
(

3 t−a
a

)
+ 2

a2 cosh2
(

3 t−a
a

)
R2

020 = −R2
002
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R2
112 = −

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R2
121 = −R2

112

R2
323 =

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R2
332 = −R2

323

R3
003 =

cosh2
(

3 t−a
a

)
+ 2

a2 cosh2
(

3 t−a
a

)
R3

030 = −R3
003

R3
113 = −

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R3
131 = −R3

113

R3
223 = −

sinh2
(

3 t−a
a

)
a2
(
cosh

(
3 t−a
a

)) 4
3

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
3
(
cosh2

(
3 t−a
a

)
+ 2
)

a2 cosh2
(

3 t−a
a

)

Ric11 =
3
(
cosh

(
3 t−a
a

)) 2
3

a2

Ric22 =
3
(
cosh

(
3 t−a
a

)) 2
3

a2

Ric33 =
3
(
cosh

(
3 t−a
a

)) 2
3

a2
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Ricci Scalar

Rsc =
6
(
2 cosh2

(
3 t−a
a

)
+ 1
)

a2 cosh2
(

3 t−a
a

)
Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
3 sinh2

(
3 t−a
a

)
a2 cosh2

(
3 t−a
a

)
G11 = −

3
(
cosh2

(
3 t−a
a

)
+ 1
)

a2
(
cosh

(
3 t−a
a

)) 4
3

G22 = −
3
(
cosh2

(
3 t−a
a

)
+ 1
)

a2
(
cosh

(
3 t−a
a

)) 4
3

G33 = −
3
(
cosh2

(
3 t−a
a

)
+ 1
)

a2
(
cosh

(
3 t−a
a

)) 4
3

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
3
(
cosh2

(
3 t−a
a

)
+ 2
)

a2 cosh2
(

3 t−a
a

)
Current Density Class 1 (-Ri µjµ )

J1 = − 3

a2
(
cosh

(
3 t−a
a

)) 2
3

J2 = − 3

a2
(
cosh

(
3 t−a
a

)) 2
3

J3 = − 3

a2
(
cosh

(
3 t−a
a

)) 2
3
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Fig. 4.55: Friedmann Dust metric, charge density ρ for a = 1.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Fig. 4.56: Friedmann Dust metric, current density J1, J2, J3 for a = 1.

4.4.20 Kasner metric
The Kasner metric. p1, p2 and p3 are parameters. There must hold two sum
rules:

3∑
j=1

pj = 1,
3∑
j=1

p2
j = 1.

These probably can only be fulfilled for trivial cases like

p1 = 1, p2 = 0, p3 = 0

and permutations. In these cases the charge and current densities are indeed
zero. However, the Kasner metric does not contain dependencies on space coor-
dinates and is nothing else than a change of one coordinate axis in time. This
is not a realistic 3D model.

The plots show a case which does not obey the sum rules. Then there is a
cosmological density.

Coordinates

x =


t
x1

x2

x3


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Metric

gµν =


−1 0 0 0
0 t2 p1 0 0
0 0 t2 p2 0
0 0 0 t2 p3


Contravariant Metric

gµν =


−1 0 0 0
0 1

t2 p1
0 0

0 0 1
t2 p2

0
0 0 0 1

t2 p3


Christoffel Connection

Γ0
11 = p1 t

2 p1−1

Γ0
22 = p2 t

2 p2−1

Γ0
33 = p3 t

2 p3−1

Γ1
01 =

p1

t

Γ1
10 = Γ1

01

Γ2
02 =

p2

t

Γ2
20 = Γ2

02

Γ3
03 =

p3

t

Γ3
30 = Γ3

03

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 = (p1 − 1) p1 t

2 p1−2

R0
110 = −R0

101

R0
202 = (p2 − 1) p2 t

2 p2−2

R0
220 = −R0

202

R0
303 = (p3 − 1) p3 t

2 p3−2

R0
330 = −R0

303

R1
001 =

(p1 − 1) p1

t2

R1
010 = −R1

001

R1
212 = p1 p2 t

2 p2−2

R1
221 = −R1

212

R1
313 = p1 p3 t

2 p3−2

R1
331 = −R1

313

R2
002 =

(p2 − 1) p2

t2

R2
020 = −R2

002

R2
112 = −p1 p2 t

2 p1−2

R2
121 = −R2

112

R2
323 = p2 p3 t

2 p3−2

R2
332 = −R2

323

R3
003 =

(p3 − 1) p3

t2

R3
030 = −R3

003

R3
113 = −p1 p3 t

2 p1−2

R3
131 = −R3

113

R3
223 = −p2 p3 t

2 p2−2

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −p3
2 − p3 + p2

2 − p2 + p1
2 − p1

t2

Ric11 = p1 (p3 + p2 + p1 − 1) t2 p1−2

Ric22 = p2 (p3 + p2 + p1 − 1) t2 p2−2

Ric33 = p3 (p3 + p2 + p1 − 1) t2 p3−2

Ricci Scalar

Rsc =
2
(
p3

2 + p2 p3 + p1 p3 − p3 + p2
2 + p1 p2 − p2 + p1

2 − p1

)
t2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
p2 p3 + p1 p3 + p1 p2

t2

G11 = −
(
p3

2 + p2 p3 − p3 + p2
2 − p2

)
t2 p1−2

G22 = −
(
p3

2 + p1 p3 − p3 + p1
2 − p1

)
t2 p2−2

G33 = −
(
p2

2 + p1 p2 − p2 + p1
2 − p1

)
t2 p3−2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −p3
2 − p3 + p2

2 − p2 + p1
2 − p1

t2
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Current Density Class 1 (-Ri µjµ )

J1 = −p1 (p3 + p2 + p1 − 1) t−2 p1−2

J2 = −p2 (p3 + p2 + p1 − 1) t−2 p2−2

J3 = −p3 (p3 + p2 + p1 − 1) t−2 p3−2

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.21 Generalized FLRW metric
The generalized form of the FLRW metric by Portugese authors. m and n are
parameters.

Coordinates

x =


t
x
y
z


Metric

gµν =


1 0 0 0
0 − t2

(m−n)2 0 0

0 0 − e−2 x

t2 (n+m) 0
0 0 0 − e2 x

t2 (n+m)


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Fig. 4.57: Kasner metric, charge density ρ for p1 = 1, p2 = −1, p3 = 0.
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Fig. 4.58: Kasner metric, current density J1 for p1 = 1, p2 = −1, p3 = 0.
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Fig. 4.59: Kasner metric, current density J2, J3 for p1 = 1, p2 = −1, p3 = 0.

Contravariant Metric

gµν =


1 0 0 0
0 − (n−m)2

t2 0 0
0 0 −t2n+2m e2 x 0
0 0 0 −t2n+2m e−2 x


Christoffel Connection

Γ0
11 =

t

(n−m)2

Γ0
22 = − (n+m) t−2n−2m−1 e−2 x

Γ0
33 = − (n+m) t−2n−2m−1 e2 x

Γ1
01 =

1
t

Γ1
10 = Γ1

01

Γ1
22 = (n−m)2

t−2n−2m−2 e−2 x
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Γ1
33 = − (n−m)2

t−2n−2m−2 e2 x

Γ2
02 = −n+m

t

Γ2
12 = −1

Γ2
20 = Γ2

02

Γ2
21 = Γ2

12

Γ3
03 = −n+m

t

Γ3
13 = 1

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Metric Compatibility

———— o.k.

Riemann Tensor

R0
202 = (n+m) (n+m+ 1) t−2n−2m−2 e−2 x

R0
212 = (n+m+ 1) t−2n−2m−1 e−2 x

R0
220 = −R0

202

R0
221 = −R0

212

R0
303 = (n+m) (n+m+ 1) t−2n−2m−2 e2 x

R0
313 = − (n+m+ 1) t−2n−2m−1 e2 x

R0
330 = −R0

303

R0
331 = −R0

313
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R1
202 = − (n−m)2 (n+m+ 1) t−2n−2m−3 e−2 x

R1
212 = −

(
n2 − 2mn+ n+m2 +m

)
t−2n−2m−2 e−2 x

R1
220 = −R1

202

R1
221 = −R1

212

R1
303 = (n−m)2 (n+m+ 1) t−2n−2m−3 e2 x

R1
313 = −

(
n2 − 2mn+ n+m2 +m

)
t−2n−2m−2 e2 x

R1
330 = −R1

303

R1
331 = −R1

313

R2
002 =

(n+m) (n+m+ 1)
t2

R2
012 =

n+m+ 1
t

R2
020 = −R2

002

R2
021 = −R2

012

R2
102 =

n+m+ 1
t

R2
112 =

n2 − 2mn+ n+m2 +m

(n−m)2

R2
120 = −R2

102

R2
121 = −R2

112

R2
323 = 2

(
n2 +m2

)
t−2n−2m−2 e2 x

R2
332 = −R2

323

R3
003 =

(n+m) (n+m+ 1)
t2
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R3
013 = −n+m+ 1

t

R3
030 = −R3

003

R3
031 = −R3

013

R3
103 = −n+m+ 1

t

R3
113 =

n2 − 2mn+ n+m2 +m

(n−m)2

R3
130 = −R3

103

R3
131 = −R3

113

R3
223 = −2

(
n2 +m2

)
t−2n−2m−2 e−2 x

R3
232 = −R3

223

Ricci Tensor

Ric00 = −2 (n+m) (n+m+ 1)
t2

Ric11 = −
2
(
n2 − 2mn+ n+m2 +m

)
(n−m)2

Ric22 = 2 (n+m)2
t−2n−2m−2 e−2 x

Ric33 = 2 (n+m)2
t−2n−2m−2 e2 x

Ricci Scalar

Rsc = −
4
(
n2 + 4mn+m2

)
t2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 =
2 (2mn− n−m)

t2

G11 = −
2
(
2n2 + 2mn+ n+ 2m2 +m

)
(n−m)2

G22 = −4mn t−2n−2m−2 e−2 x

G33 = −4mn t−2n−2m−2 e2 x

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −2 (n+m) (n+m+ 1)
t2

Current Density Class 1 (-Ri µjµ )

J1 =
2 (n−m)2 (

n2 − 2mn+ n+m2 +m
)

t4

J2 = −2 (n+m)2
t2n+2m−2 e2 x

J3 = −2 (n+m)2
t2n+2m−2 e−2 x

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.22 Eddington-Finkelstein metric for black holes
Metric of Eddington-Finkelstein for black holes. This metric has non-diagonal
terms and a zero on the main diagonal. G and M are the usual parameters of
the spherical metric.

Coordinates

x =


u
r
ϑ
ϕ


Metric

gµν =


2GM
r − 1 1 0 0

1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


0 1 0 0
1 − 2GM−r

r 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
00 =

GM

r2

Γ0
22 = −r

Γ0
33 = −r sin2 ϑ
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Γ1
00 = −GM (2GM − r)

r3

Γ1
01 = −GM

r2

Γ1
10 = Γ1

01

Γ1
22 = 2GM − r

Γ1
33 = sin2 ϑ (2GM − r)

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
001 =

2GM
r3

R0
010 = −R0

001

R0
202 = −GM

r
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R0
220 = −R0

202

R0
303 = − sin2 ϑGM

r

R0
330 = −R0

303

R1
001 = −2GM (2GM − r)

r4

R1
010 = −R1

001

R1
101 = −2GM

r3

R1
110 = −R1

101

R1
212 = −GM

r

R1
221 = −R1

212

R1
313 = − sin2 ϑGM

r

R1
331 = −R1

313

R2
002 =

GM (2GM − r)
r4

R2
012 =

GM

r3

R2
020 = −R2

002

R2
021 = −R2

012

R2
102 =

GM

r3

R2
120 = −R2

102
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R2
323 =

2 sin2 ϑGM

r

R2
332 = −R2

323

R3
003 =

GM (2GM − r)
r4

R3
013 =

GM

r3

R3
030 = −R3

003

R3
031 = −R3

013

R3
103 =

GM

r3

R3
130 = −R3

103

R3
223 = −2GM

r

R3
232 = −R3

223

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.23 Kruskal coordinates metric of black hole
Metric of Kruskal coordinates for the black hole. r is a function of the coordi-
nates u and v.

Coordinates

x =

0BB@
v
u
ϑ
ϕ

1CCA

283



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Metric

gµν =

0BBB@
− 32G3 M3 e

− r
2GM

r
0 0 0

0 32G3 M3 e
− r

2GM
r

0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ

1CCCA
Contravariant Metric

gµν =

0BBBB@
− r e

r
2GM

32G3 M3 0 0 0

0 r e
r

2GM
32G3 M3 0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 ϑ

1CCCCA
Christoffel Connection

Γ0
00 = −

d
d v

r (2GM + r)

4 r GM

Γ0
01 = −

d
d u

r (2GM + r)

4 r GM

Γ0
10 = Γ0

01

Γ0
11 = −

d
d v

r (2GM + r)

4 r GM

Γ0
22 =

r2
“
d
d v

r
”
e

r
2GM

32G3 M3

Γ0
33 =

r2
“
d
d v

r
”

sin2 ϑ e
r

2GM

32G3M3

Γ1
00 = −

d
d u

r (2GM + r)

4 r GM

Γ1
01 = −

d
d v

r (2GM + r)

4 r GM

Γ1
10 = Γ1

01

Γ1
11 = −

d
d u

r (2GM + r)

4 r GM

Γ1
22 = −

r2
“
d
d u

r
”
e

r
2GM

32G3 M3
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Γ1
33 = −

r2
“
d
d u

r
”

sin2 ϑ e
r

2GM

32G3M3

Γ2
02 =

d
d v

r

r

Γ2
12 =

d
d u

r

r

Γ2
20 = Γ2

02

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
03 =

d
d v

r

r

Γ3
13 =

d
d u

r

r

Γ3
23 =

cosϑ

sinϑ

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility
———— o.k.

Riemann Tensor

R0
101 = −

2 r
“
d2

d v2 r
”
GM − 2

“
d
d v

r
”2

GM − 2 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r2
“
d2

d v2 r
”
− r2

“
d2

d u2 r
”

4 r2 GM

R0
110 = −R0

101

R0
202 =

r

„
4 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 2
“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2
«
e

r
2GM

128G4M4
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R0
212 =

r
“

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
””

e
r

2GM

64G4M4

R0
220 = −R0

202

R0
221 = −R0

212

R0
303 =

r sin2 ϑ

„
4 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 2
“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2
«
e

r
2GM

128G4 M4

R0
313 =

r sin2 ϑ
“

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
””

e
r

2GM

64G4M4

R0
330 = −R0

303

R0
331 = −R0

313

R1
001 = −

2 r
“
d2

d v2 r
”
GM − 2

“
d
d v

r
”2

GM − 2 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r2
“
d2

d v2 r
”
− r2

“
d2

d u2 r
”

4 r2GM

R1
010 = −R1

001

R1
202 = −

r
“

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
””

e
r

2GM

64G4 M4

R1
212 = −

r

„
2
“
d
d v

r
”2

GM + 4 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2
«
e

r
2GM

128G4 M4

R1
220 = −R1

202

R1
221 = −R1

212

R1
303 = −

r sin2 ϑ
“

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
””

e
r

2GM

64G4 M4

R1
313 = −

r sin2 ϑ

„
2
“
d
d v

r
”2

GM + 4 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2
«
e

r
2GM

128G4 M4

R1
330 = −R1

303

R1
331 = −R1

313
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R2
002 =

4 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 2
“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2

4 r2 GM

R2
012 =

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

2 r2GM

R2
020 = −R2

002

R2
021 = −R2

012

R2
102 =

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

2 r2GM

R2
112 =

2
“
d
d v

r
”2

GM + 4 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2

4 r2GM

R2
120 = −R2

102

R2
121 = −R2

112

R2
323 =

sin2 ϑ

„
r
“
d
d v

r
”2

e
r

2GM − r
“
d
d u

r
”2

e
r

2GM + 32G3M3

«
32G3 M3

R2
332 = −R2

323

R3
003 =

4 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 2
“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2

4 r2 GM

R3
013 =

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

2 r2GM

R3
030 = −R3

003

R3
031 = −R3

013

R3
103 =

2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

2 r2GM

R3
113 =

2
“
d
d v

r
”2

GM + 4 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM + r
“
d
d v

r
”2

+ r
“
d
d u

r
”2

4 r2GM

R3
130 = −R3

103

R3
131 = −R3

113

R3
223 = −

r
“
d
d v

r
”2

e
r

2GM − r
“
d
d u

r
”2

e
r

2GM + 32G3 M3

32G3M3

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
6 r
“
d2

d v2 r
”
GM + 6

“
d
d v

r
”2

GM + 2 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM − r2
“
d2

d v2 r
”

+ 2 r
“
d
d v

r
”2

+ r2
“
d2

d u2 r
”

+ ...

4 r2GM

Ric01 = −
2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

r2 GM

Ric10 = Ric01

Ric11 = −
2 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 6 r
“
d2

d u2 r
”
GM + 6

“
d
d u

r
”2

GM + r2
“
d2

d v2 r
”

+ 2 r
“
d
d v

r
”2
− r2

“
d2

d u2 r
”

+ ...

4 r2GM

Ric22 =
r2
“
d2

d v2 r
”
e

r
2GM + r

“
d
d v

r
”2

e
r

2GM − r2
“
d2

d u2 r
”
e

r
2GM − r

“
d
d u

r
”2

e
r

2GM + 32G3 M3

32G3 M3

Ric33 =

sin2 ϑ

„
r2
“
d2

d v2 r
”
e

r
2GM + r

“
d
d v

r
”2

e
r

2GM − r2
“
d2

d u2 r
”
e

r
2GM − r

“
d
d u

r
”2

e
r

2GM + 32G3 M3

«
32G3M3

Ricci Scalar

Rsc =
6 r2

“
d2

d v2 r
”
GM e

r
2GM + 6 r

“
d
d v

r
”2

GM e
r

2GM − 6 r2
“
d2

d u2 r
”
GM e

r
2GM − 6 r

“
d
d u

r
”2

GM e
r

2GM − r3
“
d2

d v2 r
”
e

r
2GM + ...

64 r2 G4 M4

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
e−

r
2GM

„
4 r2

“
d2

d u2 r
”
GM e

r
2GM + 4 r

“
d
d u

r
”2

GM e
r

2GM + r2
“
d
d v

r
”2

e
r

2GM + r2
“
d
d u

r
”2

e
r

2GM − 64G4 M4

«
2 r3 GM

G01 = −
2
“
d
d u

r
” “

d
d v

r
”
GM + 2 r

“
d2

d u d v
r
”
GM + r

“
d
d u

r
” “

d
d v

r
”

r2 GM

G10 = G01

G11 = −
e−

r
2GM

„
4 r2

“
d2

d v2 r
”
GM e

r
2GM + 4 r

“
d
d v

r
”2

GM e
r

2GM + r2
“
d
d v

r
”2

e
r

2GM + r2
“
d
d u

r
”2

e
r

2GM + 64G4 M4

«
2 r3GM
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G22 = −
r

„
2 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM − 2 r
“
d2

d u2 r
”
GM − 2

“
d
d u

r
”2

GM − r2
“
d2

d v2 r
”

+ r2
“
d2

d u2 r
”«

e
r

2GM

128G4 M4

G33 = −
r sin2 ϑ

„
2 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM − 2 r
“
d2

d u2 r
”
GM − 2

“
d
d u

r
”2

GM − r2
“
d2

d v2 r
”

+ r2
“
d2

d u2 r
”«

e
r

2GM

128G4 M4

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −

„
6 r
“
d2

d v2 r
”
GM + 6

“
d
d v

r
”2

GM + 2 r
“
d2

d u2 r
”
GM + 2

“
d
d u

r
”2

GM − r2
“
d2

d v2 r
”

+ 2 r
“
d
d v

r
”2

+ ...

«
e

r
GM

4096G7 M7

Current Density Class 1 (-Ri µjµ )

J1 =

„
2 r
“
d2

d v2 r
”
GM + 2

“
d
d v

r
”2

GM + 6 r
“
d2

d u2 r
”
GM + 6

“
d
d u

r
”2

GM + r2
“
d2

d v2 r
”

+ 2 r
“
d
d v

r
”2
− r2

“
d2

d u2 r
”

+ ...

«
e

r
GM

4096G7M7

J2 = −
r2
“
d2

d v2 r
”
e

r
2GM + r

“
d
d v

r
”2

e
r

2GM − r2
“
d2

d u2 r
”
e

r
2GM − r

“
d
d u

r
”2

e
r

2GM + 32G3M3

32 r4G3 M3

J3 = −
r2
“
d2

d v2 r
”
e

r
2GM + r

“
d
d v

r
”2

e
r

2GM − r2
“
d2

d u2 r
”
e

r
2GM − r

“
d
d u

r
”2

e
r

2GM + 32G3M3

32 r4 sin2 ϑG3 M3

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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4.4.24 Einstein-Rosen bridge metric, u cordinates
Metric of the Einstein-Rosen bridge with u coordinates.

Coordinates

x =


t
u
ϑ
ϕ


Metric

gµν =


u2

u2+2m 0 0 0
0 −4

(
u2 + 2m

)
0 0

0 0 −
(
u2 + 2m

)2 0
0 0 0 − sin2 ϑ

(
u2 + 2m

)2


Contravariant Metric

gµν =


u2+2m
u2 0 0 0
0 − 1

4 (u2+2m) 0 0
0 0 − 1

(u2+2m)2 0
0 0 0 − 1

sin2 ϑ (u2+2m)2


Christoffel Connection

Γ0
01 =

2m
u (u2 + 2m)

Γ0
10 = Γ0

01

Γ1
00 =

mu

2 (u2 + 2m)3

Γ1
11 =

u

u2 + 2m

Γ1
22 = −u

2

Γ1
33 = − sin2 ϑu

2
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Γ2
12 =

2u
u2 + 2m

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

2u
u2 + 2m

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

8m
(u2 + 2m)2

R0
110 = −R0

101

R0
202 = − m

u2 + 2m

R0
220 = −R0

202

R0
303 = −m sin2 ϑ

u2 + 2m

R0
330 = −R0

303

R1
001 =

2mu2

(u2 + 2m)4

R1
010 = −R1

001
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R1
212 = − m

u2 + 2m

R1
221 = −R1

212

R1
313 = −m sin2 ϑ

u2 + 2m

R1
331 = −R1

313

R2
002 = − mu2

(u2 + 2m)4

R2
020 = −R2

002

R2
112 =

4m
(u2 + 2m)2

R2
121 = −R2

112

R2
323 =

2m sin2 ϑ

u2 + 2m

R2
332 = −R2

323

R3
003 = − mu2

(u2 + 2m)4

R3
030 = −R3

003

R3
113 =

4m
(u2 + 2m)2

R3
131 = −R3

113

R3
223 = − 2m

u2 + 2m

R3
232 = −R3

223
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Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.25 Einstein-Rosen bridge metric, r coordinates
Metric of the Einstein-Rosen bridge with radial coordinates. ε is a parameter
equivalent to charge in the Reissner-Nordstrom metric.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


− 2m

r −
ε2

2 r2 + 1 0 0 0
0 − 1

− 2m
r −

ε2

2 r2
+1

0 0

0 0 −r2 0
0 0 0 −r2 sin2 ϑ


Contravariant Metric

gµν =


2 r2

2 r2−4mr−ε2 0 0 0
0 − 2 r2−4mr−ε2

2 r2 0 0
0 0 − 1

r2 0
0 0 0 − 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 =

2mr + ε2

r (2 r2 − 4mr − ε2)

Γ0
10 = Γ0

01

Γ1
00 =

(
2mr + ε2

) (
2 r2 − 4mr − ε2

)
4 r5
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Γ1
11 = − 2mr + ε2

r (2 r2 − 4mr − ε2)

Γ1
22 = −2 r2 − 4mr − ε2

2 r

Γ1
33 = −

(
2 r2 − 4mr − ε2

)
sin2 ϑ

2 r

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

4mr + 3 ε2

r2 (2 r2 − 4mr − ε2)

R0
110 = −R0

101

R0
202 = −2mr + ε2

2 r2

R0
220 = −R0

202
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R0
303 = −

(
2mr + ε2

)
sin2 ϑ

2 r2

R0
330 = −R0

303

R1
001 =

(
4mr + 3 ε2

) (
2 r2 − 4mr − ε2

)
4 r6

R1
010 = −R1

001

R1
212 = −2mr + ε2

2 r2

R1
221 = −R1

212

R1
313 = −

(
2mr + ε2

)
sin2 ϑ

2 r2

R1
331 = −R1

313

R2
002 = −

(
2mr + ε2

) (
2 r2 − 4mr − ε2

)
4 r6

R2
020 = −R2

002

R2
112 =

2mr + ε2

r2 (2 r2 − 4mr − ε2)

R2
121 = −R2

112

R2
323 =

(
4mr + ε2

)
sin2 ϑ

2 r2

R2
332 = −R2

323

R3
003 = −

(
2mr + ε2

) (
2 r2 − 4mr − ε2

)
4 r6

R3
030 = −R3

003

R3
113 =

2mr + ε2

r2 (2 r2 − 4mr − ε2)

R3
131 = −R3

113

R3
223 = −4mr + ε2

2 r2

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
ε2
(
2 r2 − 4mr − ε2

)
4 r6

Ric11 =
ε2

r2 (2 r2 − 4mr − ε2)

Ric22 = − ε2

2 r2

Ric33 = −ε
2 sin2 ϑ

2 r2

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
ε2
(
2 r2 − 4mr − ε2

)
4 r6

G11 =
ε2

r2 (2 r2 − 4mr − ε2)

G22 = − ε2

2 r2

G33 = −ε
2 sin2 ϑ

2 r2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ = − ε2

r2 (2 r2 − 4mr − ε2)

Current Density Class 1 (-Ri µjµ )

J1 = −
ε2
(
2 r2 − 4mr − ε2

)
4 r6

J2 =
ε2

2 r6

J3 =
ε2

2 r6 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.26 Massless Einstein-Rosen bridge metric, r coordi-
nates

Metric of the massless Einstein-Rosen bridge (Nandi and Xu) with radial coor-
dinates. β is a parameter.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
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Fig. 4.60: Einstein-Rosen bridge, charge density ρ for m = 1, ε = 1.
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Fig. 4.61: Einstein-Rosen bridge, current density Jr for m = 1, ε = 1.
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Fig. 4.62: Einstein-Rosen bridge, current density Jθ, Jϕ for m = 1, ε = 1.

Metric

gµν =

0BBBBBBBBBB@

„
1−m

2+β2

4 r2

«2

„
m
r

+m2+β2

4 r2
+1
«2 0 0 0

0 −
“

2m
r + m2+β2

4 r2
+ 1
”2

0 0

0 0 −
“

2m
r + m2+β2

4 r2
+ 1
”2

r2 0

0 0 0 −
“

2m
r + m2+β2

4 r2
+ 1
”2

r2 sin2 ϑ

1CCCCCCCCCCA
Contravariant Metric

g
µν

=

0BBBBBBBB@

“
4 r2+4mr+m2+β2

”2
(4 r2−m2−β2)2 0 0 0

0 − 16 r4

(4 r2+8mr+m2+β2)2 0 0

0 0 − 16 r2

(4 r2+8mr+m2+β2)2 0

0 0 0 − 16 r2

(4 r2+8mr+m2+β2)2 sin2 ϑ

1CCCCCCCCA

Christoffel Connection

Γ
0
01 =

4
`
4mr2 + 4m2 r + 4 β2 r +m3 + β2 m

´
(4 r2 −m2 − β2) (4 r2 + 4mr +m2 + β2)

Γ
0
10 = Γ

0
01
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Γ
1
00 =

64 r4 `4 r2 −m2 − β2´ `4mr2 + 4m2 r + 4 β2 r +m3 + β2 m
´

(4 r2 + 4mr +m2 + β2)3 (4 r2 + 8mr +m2 + β2)2

Γ
1
11 = −

2
`
4mr +m2 + β2´

r (4 r2 + 8mr +m2 + β2)

Γ
1
22 = −

r
`
4 r2 −m2 − β2´

4 r2 + 8mr +m2 + β2

Γ
1
33 = −

r
`
4 r2 −m2 − β2´ sin2 ϑ

4 r2 + 8mr +m2 + β2

Γ
2
12 =

4 r2 −m2 − β2

r (4 r2 + 8mr +m2 + β2)

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
13 =

4 r2 −m2 − β2

r (4 r2 + 8mr +m2 + β2)

Γ
3
23 =

cosϑ

sinϑ

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.

Riemann Tensor

R
0
101 =

8
`
16mr4 + 40m2 r3 + 24 β2 r3 + 32m3 r2 + 48 β2 mr2 + 10m4 r + 16 β2 m2 r + 6 β4 r +m5 + 2 β2 m3 + β4 m

´
r (4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)

R
0
110 = −R0

101

R
0
202 = −

4 r
`
4mr2 + 4m2 r + 4 β2 r +m3 + β2 m

´
(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)

R
0
220 = −R0

202

R
0
303 = −

4 r
`
4mr2 + 4m2 r + 4 β2 r +m3 + β2 m

´
sin2 ϑ

(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)
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R
0
330 = −R0

303

R
1
001 =

128 r3 `4 r2 −m2 − β2´2 `16mr4 + 40m2 r3 + 24 β2 r3 + 32m3 r2 + 48 β2 mr2 + 10m4 r + 16 β2 m2 r + 6 β4 r +m5 + 2 β2 m3 + ...
´

(4 r2 + 4mr +m2 + β2)4 (4 r2 + 8mr +m2 + β2)3

R
1
010 = −R1

001

R
1
212 = −

8 r
`
4mr2 + 2m2 r + 2 β2 r +m3 + β2 m

´
(4 r2 + 8mr +m2 + β2)2

R
1
221 = −R1

212

R
1
313 = −

8 r
`
4mr2 + 2m2 r + 2 β2 r +m3 + β2 m

´
sin2 ϑ

(4 r2 + 8mr +m2 + β2)2

R
1
331 = −R1

313

R
2
002 = −

64 r3 `4 r2 −m2 − β2´2 `4mr2 + 4m2 r + 4 β2 r +m3 + β2 m
´

(4 r2 + 4mr +m2 + β2)3 (4 r2 + 8mr +m2 + β2)3

R
2
020 = −R2

002

R
2
112 =

8
`
4mr2 + 2m2 r + 2 β2 r +m3 + β2 m

´
r (4 r2 + 8mr +m2 + β2)2

R
2
121 = −R2

112

R
2
323 =

16 r (r +m)
`
4mr +m2 + β2´ sin2 ϑ

(4 r2 + 8mr +m2 + β2)2

R
2
332 = −R2

323

R
3
003 = −

64 r3 `4 r2 −m2 − β2´2 `4mr2 + 4m2 r + 4 β2 r +m3 + β2 m
´

(4 r2 + 4mr +m2 + β2)3 (4 r2 + 8mr +m2 + β2)3

R
3
030 = −R3

003

R
3
113 =

8
`
4mr2 + 2m2 r + 2 β2 r +m3 + β2 m

´
r (4 r2 + 8mr +m2 + β2)2

R
3
131 = −R3

113

R
3
223 = −

16 r (r +m)
`
4mr +m2 + β2´

(4 r2 + 8mr +m2 + β2)2

R
3
232 = −R3

223

302



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

Ricci Tensor

Ric00 = −
256 r4 `4 r2 −m2 − β2´2 `4m2 r2 + 4 β2 r2 + 4m3 r + 12 β2 mr +m4 + 2 β2 m2 + β4´

(4 r2 + 4mr +m2 + β2)4 (4 r2 + 8mr +m2 + β2)3

Ric11 = −
8
`
64mr6 + 32m2 r5 − 32 β2 r5 − 112m3 r4 − 176 β2 mr4 − 112m4 r3 − 256 β2 m2 r3 − 16 β4 r3 − 28m5 r2 − 72 β2 m3 r2 − ...

´
r (4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)2

Ric22 =
4 r
`
4mr2 + 4m2 r − 4 β2 r +m3 + β2 m

´
(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)

Ric33 =
4 r
`
4mr2 + 4m2 r − 4 β2 r +m3 + β2 m

´
sin2 ϑ

(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)

Ricci Scalar

Rsc = −
2048mr4 `16mr4 + 36m2 r3 + 12 β2 r3 + 28m3 r2 + 28 β2 mr2 + 9m4 r + 12 β2 m2 r + 3 β4 r +m5 + 2 β2 m3 + β4 m

´
(4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)4

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G00 =
256

`
3m2 − β2´ r4 `4 r2 −m2 − β2´2

(4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)4

G11 = −
8
`
16mr4 + 24m2 r3 − 8 β2 r3 + 16m3 r2 − 16 β2 mr2 + 6m4 r + 4 β2 m2 r − 2 β4 r +m5 + 2 β2 m3 + β4 m

´
r (4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)2

G22 =
4 r
`
64mr6 − 64 β2 r5 − 208m3 r4 − 336 β2 mr4 − 192m4 r3 − 480 β2 m2 r3 − 32 β4 r3 − 52m5 r2 − 136 β2 m3 r2 − ...

´
(4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)2

G33 =
4 r
`
64mr6 − 64 β2 r5 − 208m3 r4 − 336 β2 mr4 − 192m4 r3 − 480 β2 m2 r3 − 32 β4 r3 − 52m5 r2 − 136 β2 m3 r2 − ...

´
sin2 ϑ

(4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)2

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
256 r4 `4m2 r2 + 4 β2 r2 + 4m3 r + 12 β2 mr +m4 + 2 β2 m2 + β4´

(4 r2 −m2 − β2)2 (4 r2 + 8mr +m2 + β2)3
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Current Density Class 1 (-Ri µjµ )

J1 =
2048 r7 `64mr6 + 32m2 r5 − 32 β2 r5 − 112m3 r4 − 176 β2 mr4 − 112m4 r3 − 256 β2 m2 r3 − 16 β4 r3 − 28m5 r2 − 72 β2 m3 r2 − ...

´
(4 r2 + 4mr +m2 + β2)2 (4 r2 + 8mr +m2 + β2)6

J2 = −
1024 r5 `4mr2 + 4m2 r − 4 β2 r +m3 + β2 m

´
(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)5

J3 = −
1024 r5 `4mr2 + 4m2 r − 4 β2 r +m3 + β2 m

´
(4 r2 + 4mr +m2 + β2) (4 r2 + 8mr +m2 + β2)5 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.27 General Morris-Thorne wormhole metric

Metric of the General Morris-Thorne wormhole. Φ and b are functions of the
radial coordinate parameter R.

Coordinates

x =

0B@ t
R
ϑ
ϕ

1CA

Metric

gµν =

0BBB@
e2 Φ 0 0 0

0 − 1
1− b

R

0 0

0 0 −R2 0
0 0 0 − sin2 ϑR2

1CCCA
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Contravariant Metric

g
µν

=

0BB@
e−2 Φ 0 0 0

0 −R−bR 0 0
0 0 − 1

R2 0

0 0 0 − 1
sin2 ϑR2

1CCA

Christoffel Connection

Γ
0
01 =

d

dR
Φ

Γ
0
10 = Γ

0
01

Γ
1
00 =

e2 Φ ` d
dR Φ

´
(R− b)

R

Γ
1
11 =

d
dR bR− b
2R (R− b)

Γ
1
22 = − (R− b)

Γ
1
33 = − sin

2
ϑ (R− b)

Γ
2
12 =

1

R

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
13 =

1

R

Γ
3
23 =

cosϑ

sinϑ

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23

Metric Compatibility
———— o.k.
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Riemann Tensor

R
0
101 = −

2
“
d2

dR2 Φ
”
R2 + 2

`
d
dR Φ

´2
R2 − 2 b

“
d2

dR2 Φ
”
R− 2 b

`
d
dR Φ

´2
R− d

dR b
`
d
dR Φ

´
R + b

`
d
dR Φ

´
2R (R− b)

R
0
110 = −R0

101

R
0
202 = −

d

dR
Φ (R− b)

R
0
220 = −R0

202

R
0
303 = −

d

dR
Φ sin

2
ϑ (R− b)

R
0
330 = −R0

303

R
1
001 = −

e2 Φ
“

2
“
d2

dR2 Φ
”
R2 + 2

`
d
dR Φ

´2
R2 − 2 b

“
d2

dR2 Φ
”
R− 2 b

`
d
dR Φ

´2
R− d

dR b
`
d
dR Φ

´
R + b

`
d
dR Φ

´”
2R2

R
1
010 = −R1

001

R
1
212 =

d
dR bR− b

2R

R
1
221 = −R1

212

R
1
313 =

sin2 ϑ
`
d
dR bR− b

´
2R

R
1
331 = −R1

313

R
2
002 = −

e2 Φ ` d
dR Φ

´
(R− b)

R2

R
2
020 = −R2

002

R
2
112 = −

d
dR bR− b

2R2 (R− b)

R
2
121 = −R2

112

R
2
323 =

b sin2 ϑ

R

R
2
332 = −R2

323

R
3
003 = −

e2 Φ ` d
dR Φ

´
(R− b)

R2

R
3
030 = −R3

003

R
3
113 = −

d
dR bR− b

2R2 (R− b)

R
3
131 = −R3

113

R
3
223 = −

b

R

R
3
232 = −R3

223
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Ricci Tensor

Ric00 =
e2 Φ

“
2
“
d2

dR2 Φ
”
R2 + 2

`
d
dR Φ

´2
R2 − 2 b

“
d2

dR2 Φ
”
R− 2 b

`
d
dR Φ

´2
R− d

dR b
`
d
dR Φ

´
R + 4

`
d
dR Φ

´
R− 3 b

`
d
dR Φ

´”
2R2

Ric11 = −
2
“
d2

dR2 Φ
”
R3 + 2

`
d
dR Φ

´2
R3 − 2 b

“
d2

dR2 Φ
”
R2 − 2 b

`
d
dR Φ

´2
R2 − d

dR b
`
d
dR Φ

´
R2 + b

`
d
dR Φ

´
R− 2

`
d
dR b

´
R + 2 b

2R2 (R− b)

Ric22 = −
2
`
d
dR Φ

´
R2 − 2 b

`
d
dR Φ

´
R− d

dR bR− b
2R

Ric33 = −
sin2 ϑ

`
2
`
d
dR Φ

´
R2 − 2 b

`
d
dR Φ

´
R− d

dR bR− b
´

2R

Ricci Scalar

Rsc =
2
“
d2

dR2 Φ
”
R2 + 2

`
d
dR Φ

´2
R2 − 2 b

“
d2

dR2 Φ
”
R− 2 b

`
d
dR Φ

´2
R− d

dR b
`
d
dR Φ

´
R + 4

`
d
dR Φ

´
R− 3 b

`
d
dR Φ

´
− 2

`
d
dR b

´
R2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor

G00 =
d
dR b e

2 Φ

R2

G11 =
2
`
d
dR Φ

´
R2 − 2 b

`
d
dR Φ

´
R− b

R2 (R− b)

G22 =
2
“
d2

dR2 Φ
”
R3 + 2

`
d
dR Φ

´2
R3 − 2 b

“
d2

dR2 Φ
”
R2 − 2 b

`
d
dR Φ

´2
R2 − d

dR b
`
d
dR Φ

´
R2 + 2

`
d
dR Φ

´
R2 − b

`
d
dR Φ

´
R− d

dR bR + b

2R

G33 =
sin2 ϑ

“
2
“
d2

dR2 Φ
”
R3 + 2

`
d
dR Φ

´2
R3 − 2 b

“
d2

dR2 Φ
”
R2 − 2 b

`
d
dR Φ

´2
R2 − d

dR b
`
d
dR Φ

´
R2 + 2

`
d
dR Φ

´
R2 − b

`
d
dR Φ

´
R− ...

”
2R

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
e−2 Φ

“
2
“
d2

dR2 Φ
”
R2 + 2

`
d
dR Φ

´2
R2 − 2 b

“
d2

dR2 Φ
”
R− 2 b

`
d
dR Φ

´2
R− d

dR b
`
d
dR Φ

´
R + 4

`
d
dR Φ

´
R− 3 b

`
d
dR Φ

´”
2R2
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Current Density Class 1 (-Ri µjµ )

J1 =
(R− b)

“
2
“
d2

dR2 Φ
”
R3 + 2

`
d
dR Φ

´2
R3 − 2 b

“
d2

dR2 Φ
”
R2 − 2 b

`
d
dR Φ

´2
R2 − d

dR b
`
d
dR Φ

´
R2 + b

`
d
dR Φ

´
R− 2

`
d
dR b

´
R + 2 b

”
2R4

J2 =
2
`
d
dR Φ

´
R2 − 2 b

`
d
dR Φ

´
R− d

dR bR− b
2R5

J3 =
2
`
d
dR Φ

´
R2 − 2 b

`
d
dR Φ

´
R− d

dR bR− b
2 sin2 ϑR5

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.28 Bekenstein-Hawking radiation metric

It is assumed that the angular term dX2 is

dX2 = r2dθ2 + r2 sin2 θdφ2

with

r = 2M +
u2

2M
.

Coordinates

x =


t
u
ϑ
ϕ


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Metric

gµν =


− u2

4M2 0 0 0
0 4 0 0

0 0
(

2M + u2

2M

)2

0

0 0 0 sin2 ϑ
(

2M + u2

2M

)2


Contravariant Metric

gµν =


− 4M2

u2 0 0 0
0 1

22 0 0
0 0 4M2

(4M2+u2)2 0

0 0 0 4M2

sin2 ϑ (4M2+u2)2


Christoffel Connection

Γ0
01 =

1
u

Γ0
10 = Γ0

01

Γ1
00 =

u

16M2

Γ1
22 = −

u
(
4M2 + u2

)
8M2

Γ1
33 = −

sin2 ϑu
(
4M2 + u2

)
8M2

Γ2
12 =

2u
4M2 + u2

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

2u
4M2 + u2

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
202 = −4M2 + u2

8M2

R0
220 = −R0

202

R0
303 = −

sin2 ϑ
(
4M2 + u2

)
8M2

R0
330 = −R0

303

R1
212 = −4M2 + u2

8M2

R1
221 = −R1

212

R1
313 = −

sin2 ϑ
(
4M2 + u2

)
8M2

R1
331 = −R1

313

R2
002 = − u2

8M2 (4M2 + u2)

R2
020 = −R2

002

R2
112 =

2
4M2 + u2

R2
121 = −R2

112

R2
323 =

sin2 ϑ (2M − u) (2M + u)
4M2

R2
332 = −R2

323
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R3
003 = − u2

8M2 (4M2 + u2)

R3
030 = −R3

003

R3
113 =

2
4M2 + u2

R3
131 = −R3

113

R3
223 = − (2M − u) (2M + u)

4M2

R3
232 = −R3

223

Ricci Tensor

Ric00 =
u2

4M2 (4M2 + u2)

Ric11 = − 4
4M2 + u2

Ric22 = − u2

2M2

Ric33 = − sin2 ϑu2

2M2

Ricci Scalar

Rsc = −
2
(
4M2 + 3u2

)
(4M2 + u2)2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 = − u4

2M2 (4M2 + u2)2

G11 =
8u2

(4M2 + u2)2

G22 =
4M2 + u2

4M2

G33 =
sin2 ϑ

(
4M2 + u2

)
4M2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
4M2

u2 (4M2 + u2)

Current Density Class 1 (-Ri µjµ )

J1 =
1

4 (4M2 + u2)

J2 =
8u2M2

(4M2 + u2)4

J3 =
8u2M2

sin2 ϑ (4M2 + u2)4

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Fig. 4.63: Bekenstein-Hawking radiation, charge density ρ for M = 1.

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.29 Multi-cosmic string metric

Multi-cosmic string metric. Parameter a = a1 + ib1 is complex.

Coordinates

x =


t
x
y
z


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Fig. 4.64: Bekenstein-Hawking radiation, current density Jr for M = 1.
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Fig. 4.65: Bekenstein-Hawking radiation, current density Jθ, Jϕ for M = 1.
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Metric

gµν =


1 0 0 0
0 − 1

((y−b1)2+(x−a1)2)4m1 G 0 0

0 0 − 1

((y−b1)2+(x−a1)2)4m1 G 0

0 0 0 −1


Contravariant Metric

gµν =


1 0 0 0
0 −

(
y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2

1

)4m1 G 0 0
0 0 −

(
y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2

1

)4m1 G 0
0 0 0 −1


Christoffel Connection

Γ1
11 = − 4m1 (x− a1) G

y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2
1

Γ1
12 = − 4m1 (y − b1) G

y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2
1

Γ1
21 = Γ1

12

Γ1
22 =

4m1 (x− a1) G
y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2

1

Γ2
11 =

4m1 (y − b1) G
y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2

1

Γ2
12 = − 4m1 (x− a1) G

y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2
1

Γ2
21 = Γ2

12

Γ2
22 = − 4m1 (y − b1) G

y2 − 2 b1 y + x2 − 2 a1 x+ b21 + a2
1

Metric Compatibility

———— o.k.
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Riemann Tensor

———— all elements zero

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.30 Multi-cosmic string metric, bicone

Multi-cosmic string metric, describing a form of a bicone. Parameter b = b1+ib2
is complex.

Coordinates

x =


t
x
y
z


Metric

gµν =


1 0 0 0
0 − 1q

(−y2+x2+b22−b21)
2
+(2 x y−2 b1 b2)2

0 0

0 0 − 1q
(−y2+x2+b22−b21)

2
+(2 x y−2 b1 b2)2

0

0 0 0 −1


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Contravariant Metric

A = y4 +
(
2x2 − 2 b22 + 2 b21

)
y2 − 8 b1 b2 x y + x4 +

(
2 b22 − 2 b21

)
x2 + b42 + 2 b21 b

2
2 + b41

f11 = f22 =
√
A

gµν =


1 0 0 0
0 −f11 0 0
0 0 −f22 0
0 0 0 −1


Christoffel Connection

Γ1
11 = − x y2 − 2 b1 b2 y + x3 + b22 x− b21 x

(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Γ1
12 = − y3 + x2 y − b22 y + b21 y − 2 b1 b2 x

(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Γ1
21 = Γ1

12

Γ1
22 =

x y2 − 2 b1 b2 y + x3 + b22 x− b21 x
(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Γ2
11 =

y3 + x2 y − b22 y + b21 y − 2 b1 b2 x
(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Γ2
12 = − x y2 − 2 b1 b2 y + x3 + b22 x− b21 x

(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Γ2
21 = Γ2

12

Γ2
22 = − y3 + x2 y − b22 y + b21 y − 2 b1 b2 x

(y2 − 2 b2 y + x2 − 2 b1 x+ b22 + b21) (y2 + 2 b2 y + x2 + 2 b1 x+ b22 + b21)

Metric Compatibility

———— o.k.
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Riemann Tensor

———— all elements zero

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.31 Einstein-Rosen type cosmic string metric

Einstein-Rosen type cosmic string metric. a, b, and c are complex parameters.

Coordinates

x =

0B@ t
x
y
z

1CA

Metric

A =
“

(y − c2)
2

+ (x− c1)
2
”4m1 G

q`
−y2 + 2 a2 y + x2 − 2 a1 x+ b22 − a2

2 − b21 + a2
1

´2 + (2 x y − 2 a1 y − 2 a2 x− 2 b1 b2 + 2 a1 a2)2

f11 = −
1

A

f22 = −
1

A

gµν =

0B@1 0 0 0
0 f11 0 0
0 0 f22 0
0 0 0 −1

1CA
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Contravariant Metric
A = y

4 − 4 a2 y
3

+
“

2 x
2 − 4 a1 x− 2 b

2
2 + 6 a

2
2 + 2 b

2
1 + 2 a

2
1

”
y

2
+
“
−4 a2 x

2
+ (8 a1 a2 − 8 b1 b2) x+ 4 a2 b

2
2 + 8 a1 b1 b2 − 4 a

3
2 +

“
−4 b

2
1 − 4 a

2
1

”
a2

”
y

+ x
4 − 4 a1 x

3
+
“

2 b
2
2 + 2 a

2
2 − 2 b

2
1 + 6 a

2
1

”
x

2
+
“
−4 a1 b

2
2 + 8 b1 a2 b2 − 4 a1 a

2
2 + 4 a1 b

2
1 − 4 a

3
1

”
x+ b

4
2 +

“
−2 a

2
2 + 2 b

2
1 + 2 a

2
1

”
b
2
2 − 8 a1 b1 a2 b2

+ a
4
2 +

“
2 b

2
1 + 2 a

2
1

”
a

2
2 + b

4
1 − 2 a

2
1 b

2
1 + a

4
1

B = y
4 − 4 a2 y

3
+
“

2 x
2 − 4 a1 x− 2 b

2
2 + 6 a

2
2 + 2 b

2
1 + 2 a

2
1

”
y

2
+
“
−4 a2 x

2
+ (8 a1 a2 − 8 b1 b2) x+ 4 a2 b

2
2 + 8 a1 b1 b2 − 4 a

3
2 +

“
−4 b

2
1 − 4 a

2
1

”
a2

”
y + x

4 − 4 a1 x
3

+
“

2 b
2
2 + 2 a

2
2 − 2 b

2
1 + 6 a

2
1

”
x

2
+
“
−4 a1 b

2
2 + 8 b1 a2 b2 − 4 a1 a

2
2 + 4 a1 b

2
1 − 4 a

3
1

”
x+ b

4
2 +

“
−2 a

2
2 + 2 b

2
1 + 2 a

2
1

”
b
2
2 − 8 a1 b1 a2 b2

+ a
4
2 +

“
2 b

2
1 + 2 a

2
1

”
a

2
2 + b

4
1 − 2 a

2
1 b

2
1 + a

4
1

f11 = −
“
y

2 − 2 c2 y + x
2 − 2 c1 x+ c

2
2 + c

2
1

”4m1 G √
A

f22 = −
“
y

2 − 2 c2 y + x
2 − 2 c1 x+ c

2
2 + c

2
1

”4m1 G √
B

g
µν

=

0B@1 0 0 0
0 f11 0 0
0 0 f22 0
0 0 0 −1

1CA
Christoffel Connection

Γ
1
11 = −

4m1 x y
4 G− 4 c1 m1 y

4 G− 16m1 a2 x y
3 G+ 16 c1 m1 a2 y

3 G+ 8m1 x
3 y2 G− 8 c1 m1 x

2 y2 G− 16 a1 m1 x
2 y2 G− 8m1 b

2
2 x y

2 G+ ...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + x2 + ...) (y2 − 2 c2 y + x2 − 2 c1 x+ ...)

Γ
1
12 = −

4m1 y
5 G− 4m1 c2 y

4 G− 16m1 a2 y
4 G+ 8m1 x

2 y3 G− 16 a1 m1 x y
3 G+ 16m1 a2 c2 y

3 G− 8m1 b
2
2 y

3 G+ 24m1 a
2
2 y

3 G+ ...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + ...) (y2 − 2 c2 y + x2 − ...)

Γ
1
21 = Γ

1
12

Γ
1
22 =

4m1 x y
4 G− 4 c1 m1 y

4 G− 16m1 a2 x y
3 G+ 16 c1 m1 a2 y

3 G+ 8m1 x
3 y2 G− 8 c1 m1 x

2 y2 G− 16 a1 m1 x
2 y2 G− 8m1 b

2
2 x y

2 G+ ...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + ...) (y2 − 2 c2 y + x2 − ...)

Γ
2
11 =

4m1 y
5 G− 4m1 c2 y

4 G− 16m1 a2 y
4 G+ 8m1 x

2 y3 G− 16 a1 m1 x y
3 G+ 16m1 a2 c2 y

3 G− 8m1 b
2
2 y

3 G+ 24m1 a
2
2 y

3 G+ 8 b21 m1 y
3 G...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + ...) (y2 − 2 c2 y + x2...)

Γ
2
12 = −

4m1 x y
4 G− 4 c1 m1 y

4 G− 16m1 a2 x y
3 G+ 16 c1 m1 a2 y

3 G+ 8m1 x
3 y2 G− 8 c1 m1 x

2 y2 G− 16 a1 m1 x
2 y2 G− 8m1 b

2
2 x y

2 G+ ...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + ...) (y2 − 2 c2 y + x2...)

Γ
2
21 = Γ

2
12

Γ
2
22 = −

4m1 y
5 G− 4m1 c2 y

4 G− 16m1 a2 y
4 G+ 8m1 x

2 y3 G− 16 a1 m1 x y
3 G+ 16m1 a2 c2 y

3 G− 8m1 b
2
2 y

3 G+ 24m1 a
2
2 y

3 G+ ...

(y2 − 2 b2 y − 2 a2 y + ...) (y2 + 2 b2 y − 2 a2 y + ...) (y2 − 2 c2 y + x2 − ...)
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Metric Compatibility
———— o.k.

Riemann Tensor
———— all elements zero

Ricci Tensor
———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor
———— all elements zero

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.32 Wheeler-Misner wormhole by 2 cosmic strings
Wheeler-Misner wormhole by 2 cosmic strings. For simplicity, a, b, and c are
assumed to be real (non-complex) parameters.

Coordinates

x =

0B@ t
x
y
z

1CA
Metric

A =

`
−y2 + x2 − c2

´2
+ 4 x2 y2q

(y4 − 6 x2 y2 + 2 a2 y2 + x4 − 2 a2 x2 − b4 + a4)2 + (−4 x y3 + 4 x3 y − 4 a2 x y)2

f11 = f22 = A

gµν =

0B@1 0 0 0
0 −f11 0 0
0 0 −f22 0
0 0 0 −1

1CA
Contravariant Metric

A = y
8

+
“

4 x
2

+ 4 a
2
”
y

6
+
“

6 x
4

+ 4 a
2
x

2 − 2 b
4

+ 6 a
4
”
y

4
+

+
“

4 x
6 − 4 a

2
x

4
+
“

12 b
4 − 4 a

4
”
x

2 − 4 a
2
b
4

+ 4 a
6
”
y

2
+

+x
8 − 4 a

2
x

6
+
“

6 a
4 − 2 b

4
”
x

4
+
“

4 a
2
b
4 − 4 a

6
”
x

2
+ b

8 − 2 a
4
b
4

+ a
8

f11 =

√
A

(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2)

B = y
8

+
“

4 x
2

+ 4 a
2
”
y

6
+
“

6 x
4

+ 4 a
2
x

2 − 2 b
4

+ 6 a
4
”
y

4
+
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+
“

4 x
6 − 4 a

2
x

4
+
“

12 b
4 − 4 a

4
”
x

2 − 4 a
2
b
4

+ 4 a
6
”
y

2
+ x

8 − 4 a
2
x

6
+

+
“

6 a
4 − 2 b

4
”
x

4
+
“

4 a
2
b
4 − 4 a

6
”
x

2
+ b

8 − 2 a
4
b
4

+ a
8

f22 =

√
B

(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2)

g
µν

=

0B@1 0 0 0
0 −f11 0 0
0 0 −f22 0
0 0 0 −1

1CA
Christoffel Connection

Γ
1
11 = −

2 x
`
3 c2 y8 − 3 a2 y8 + 8 c2 x2 y6 − 8 a2 x2 y6 + c4 y6 + 6 a2 c2 y6 + 5 b4 y6 − 7 a4 y6 + 6 c2 x4 y4 − 6 a2 x4 y4 + 3 c4 x2 y4 − 2 a2 c2 x2 y4 − ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Γ
1
12 = −

2 y
`
c2 y8 − a2 y8 + c4 y6 + 2 a2 c2 y6 + b4 y6 − 3 a4 y6 − 6 c2 x4 y4 + 6 a2 x4 y4 + 3 c4 x2 y4 − 6 a2 c2 x2 y4 − 9 b4 x2 y4 + 3 a4 x2 y4 + ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Γ
1
21 = Γ

1
12

Γ
1
22 =

2 x
`
3 c2 y8 − 3 a2 y8 + 8 c2 x2 y6 − 8 a2 x2 y6 + c4 y6 + 6 a2 c2 y6 + 5 b4 y6 − 7 a4 y6 + 6 c2 x4 y4 − 6 a2 x4 y4 + 3 c4 x2 y4 − 2 a2 c2 x2 y4 − ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Γ
2
11 =

2 y
`
c2 y8 − a2 y8 + c4 y6 + 2 a2 c2 y6 + b4 y6 − 3 a4 y6 − 6 c2 x4 y4 + 6 a2 x4 y4 + 3 c4 x2 y4 − 6 a2 c2 x2 y4 − 9 b4 x2 y4 + ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Γ
2
12 = −

2 x
`
3 c2 y8 − 3 a2 y8 + 8 c2 x2 y6 − 8 a2 x2 y6 + c4 y6 + 6 a2 c2 y6 + 5 b4 y6 − 7 a4 y6 + 6 c2 x4 y4 − 6 a2 x4 y4 + 3 c4 x2 y4 − 2 a2 c2 x2 y4 − ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Γ
2
21 = Γ

2
12

Γ
2
22 = −

2 y
`
c2 y8 − a2 y8 + c4 y6 + 2 a2 c2 y6 + b4 y6 − 3 a4 y6 − 6 c2 x4 y4 + 6 a2 x4 y4 + 3 c4 x2 y4 − 6 a2 c2 x2 y4 − 9 b4 x2 y4 + 3 a4 x2 y4 + ...

´
(y2 + x2 − 2 c x+ c2) (y2 + x2 + 2 c x+ c2) ...

Metric Compatibility
———— o.k.

324



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

Riemann Tensor
———— all elements zero

Ricci Tensor
———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

Einstein Tensor
———— all elements zero

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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4.4.33 Hayward-Kim-Lee wormhole type 1
Angular parts have been assumed as identical to the spherically symmetric line
element. λ is a parameter. Charge and current density contain diverging terms
for large r.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


2m
r − 1 0 0 0

0 1

4 (1− 2m
r ) r2 λ2 0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− r
r−2m 0 0 0
0 4 r (r − 2m) λ2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 =

m

r (r − 2m)

Γ0
10 = Γ0

01

Γ1
00 =

4m (r − 2m) λ2

r

Γ1
11 = − r −m

r (r − 2m)

Γ1
22 = −4 r2 (r − 2m) λ2

Γ1
33 = −4 r2 (r − 2m) sin2 ϑλ2
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Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

m

r2 (r − 2m)

R0
110 = −R0

101

R0
202 = −4mr λ2

R0
220 = −R0

202

R0
303 = −4mr sin2 ϑλ2

R0
330 = −R0

303
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R1
001 =

4m (r − 2m) λ2

r2

R1
010 = −R1

001

R1
212 = −4 r (r −m) λ2

R1
221 = −R1

212

R1
313 = −4 r (r −m) sin2 ϑλ2

R1
331 = −R1

313

R2
002 = −4m (r − 2m) λ2

r2

R2
020 = −R2

002

R2
112 =

r −m
r2 (r − 2m)

R2
121 = −R2

112

R2
323 = − sin2 ϑ

(
4 r2 λ2 − 8mr λ2 − 1

)
R2

332 = −R2
323

R3
003 = −4m (r − 2m) λ2

r2

R3
030 = −R3

003

R3
113 =

r −m
r2 (r − 2m)

R3
131 = −R3

113

R3
223 = 4 r2 λ2 − 8mr λ2 − 1

R3
232 = −R3

223
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Ricci Tensor

Ric00 =
4m (r − 2m) λ2

r2

Ric11 = − 2 r − 3m
r2 (r − 2m)

Ric22 = −
(
8 r2 λ2 − 8mr λ2 − 1

)
Ric33 = − sin2 ϑ

(
8 r2 λ2 − 8mr λ2 − 1

)
Ricci Scalar

Rsc = −
2
(
12 r2 λ2 − 12mr λ2 − 1

)
r2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
(r − 2m)

(
12 r2 λ2 − 16mr λ2 − 1

)
r3

G11 =
(2 r λ− 1) (2 r λ+ 1)

4 r3 (r − 2m) λ2

G22 = 4 r (r −m) λ2

G33 = 4 r (r −m) sin2 ϑλ2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
4mλ2

r − 2m
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Current Density Class 1 (-Ri µjµ )

J1 = 16 (r − 2m) (2 r − 3m) λ4

J2 =
8 r2 λ2 − 8mr λ2 − 1

r4

J3 =
8 r2 λ2 − 8mr λ2 − 1

r4 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.34 Hayward-Kim-Lee wormhole type 2

Angular parts have been assumed as identical to the spherically symmetric line
element. λ and a are parameters. Charge and current density contain diverging
terms for large r. Results are similar to the type 1 wormhole.

Coordinates

x =


t
r
ϑ
ϕ


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Metric

gµν =


− 2
r 0 0 0

0 1

8 (1− ar ) r2 λ2 0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− r2 0 0 0
0 8 r (r − a) λ2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 = − 1

2 r

Γ0
10 = Γ0

01

Γ1
00 = −8 (r − a) λ2

r

Γ1
11 = − 2 r − a

2 r (r − a)

Γ1
22 = −8 r2 (r − a) λ2

Γ1
33 = −8 r2 (r − a) sin2 ϑλ2

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = − r − 2 a

4 r2 (r − a)

R0
110 = −R0

101

R0
202 = 4 r (r − a) λ2

R0
220 = −R0

202

R0
303 = 4 r (r − a) sin2 ϑλ2

R0
330 = −R0

303

R1
001 = −4 (r − 2 a) λ2

r2

R1
010 = −R1

001

R1
212 = −4 r (2 r − a) λ2

R1
221 = −R1

212

R1
313 = −4 r (2 r − a) sin2 ϑλ2

R1
331 = −R1

313

R2
002 =

8 (r − a) λ2

r2

R2
020 = −R2

002

R2
112 =

2 r − a
2 r2 (r − a)

R2
121 = −R2

112
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R2
323 = − sin2 ϑ

(
8 r2 λ2 − 8 a r λ2 − 1

)
R2

332 = −R2
323

R3
003 =

8 (r − a) λ2

r2

R3
030 = −R3

003

R3
113 =

2 r − a
2 r2 (r − a)

R3
131 = −R3

113

R3
223 = 8 r2 λ2 − 8 a r λ2 − 1

R3
232 = −R3

223

Ricci Tensor

Ric00 = −4 (3 r − 2 a) λ2

r2

Ric11 = −3 (3 r − 2 a)
4 r2 (r − a)

Ric22 = −
(
12 r2 λ2 − 8 a r λ2 − 1

)
Ric33 = − sin2 ϑ

(
12 r2 λ2 − 8 a r λ2 − 1

)
Ricci Scalar

Rsc = −
2
(
18 r2 λ2 − 12 a r λ2 − 1

)
r2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 = −
2
(
24 r2 λ2 − 16 a r λ2 − 1

)
r3

G11 = − 1
8 r3 (r − a) λ2

G22 = 2 r (3 r − 2 a) λ2

G33 = 2 r (3 r − 2 a) sin2 ϑλ2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = − (3 r − 2 a) λ2

Current Density Class 1 (-Ri µjµ )

J1 = 48 (r − a) (3 r − 2 a) λ4

J2 =
12 r2 λ2 − 8 a r λ2 − 1

r4

J3 =
12 r2 λ2 − 8 a r λ2 − 1

r4 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.35 Simple Wormhole metric
Metric of a simple form of a wormhole. k is a paremeter.

Coordinates

x =


t
l
ϑ
ϕ


Metric

gµν =


−c2 0 0 0

0 1 0 0
0 0 l2 + k2 0
0 0 0

(
l2 + k2

)
sin2 ϑ


Contravariant Metric

gµν =


− 1
c2 0 0 0
0 1 0 0
0 0 1

l2+k2 0
0 0 0 1

(l2+k2) sin2 ϑ


Christoffel Connection

Γ1
22 = −l

Γ1
33 = −l sin2 ϑ

Γ2
12 =

l

l2 + k2

Γ2
21 = Γ2

12
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Γ2
33 = − cosϑ sinϑ

Γ3
13 =

l

l2 + k2

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R1
212 = − k2

l2 + k2

R1
221 = −R1

212

R1
313 = −k

2 sin2 ϑ

l2 + k2

R1
331 = −R1

313

R2
112 =

k2

(l2 + k2)2

R2
121 = −R2

112

R2
323 =

k2 sin2 ϑ

l2 + k2

R2
332 = −R2

323

R3
113 =

k2

(l2 + k2)2

R3
131 = −R3

113

R3
223 = − k2

l2 + k2

R3
232 = −R3

223
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Ricci Tensor

Ric11 = − 2 k2

(l2 + k2)2

Ricci Scalar

Rsc = − 2 k2

(l2 + k2)2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = − c2 k2

(l2 + k2)2

G11 = − k2

(l2 + k2)2

G22 =
k2

l2 + k2

G33 =
k2 sin2 ϑ

l2 + k2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 =
2 k2

(l2 + k2)2

J2 = 0

J3 = 0
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Fig. 4.66: Simple Wormhole metric, current density Jl for k = 1.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.36 Simple wormhole metric with varying cosmological
constant

Metric of a simple form of a wormhole with a varying cosmological constant.
Here Γ(r)/2 is the redshift function and b(r) is the shape function determining
the shape of the wormhole. The cosmological constant is contained in the form
of b(r).
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Coordinates

x =

0BB@
t
r
ϑ
ϕ

1CCA
Metric

gµν =

0BBB@
−eΓ(r) 0 0 0

0 1

1− b(r)
r

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ

1CCCA
Contravariant Metric

gµν =

0BBB@
−e−Γ(r) 0 0 0

0 − b(r)−r
r

0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 ϑ

1CCCA
Christoffel Connection

Γ0
01 =

d
d r

Γ (r)

2

Γ0
10 = Γ0

01

Γ1
00 = −

(b (r)− r) eΓ(r)
“
d
d r

Γ (r)
”

2 r

Γ1
11 = −

r
“
d
d r

b (r)
”
− b (r)

2 r (b (r)− r)

Γ1
22 = b (r)− r

Γ1
33 = (b (r)− r) sin2 ϑ

Γ2
12 =

1

r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

339



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Metric Compatibility
———— o.k.

Riemann Tensor

R0
101 = −

2 r b (r)
“
d2

d r2
Γ (r)

”
− 2 r2

“
d2

d r2
Γ (r)

”
+ r b (r)

“
d
d r

Γ (r)
”2
− r2

“
d
d r

Γ (r)
”2

+ r
“
d
d r

b (r)
” “

d
d r

Γ (r)
”
− b (r)

“
d
d r

Γ (r)
”

4 r (b (r)− r)

R0
110 = −R0

101

R0
202 =

(b (r)− r)
“
d
d r

Γ (r)
”

2

R0
220 = −R0

202

R0
303 =

(b (r)− r)
“
d
d r

Γ (r)
”

sin2 ϑ

2

R0
330 = −R0

303

R1
001 =

eΓ(r)

„
2 r b (r)

“
d2

d r2
Γ (r)

”
− 2 r2

“
d2

d r2
Γ (r)

”
+ r b (r)

“
d
d r

Γ (r)
”2
− r2

“
d
d r

Γ (r)
”2

+ r
“
d
d r

b (r)
” “

d
d r

Γ (r)
”
− b (r)

“
d
d r

Γ (r)
”«

4 r2

R1
010 = −R1

001

R1
212 =

r
“
d
d r

b (r)
”
− b (r)

2 r

R1
221 = −R1

212

R1
313 =

“
r
“
d
d r

b (r)
”
− b (r)

”
sin2 ϑ

2 r

R1
331 = −R1

313
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R2
002 =

(b (r)− r) eΓ(r)
“
d
d r

Γ (r)
”

2 r2

R2
020 = −R2

002

R2
112 =

r
“
d
d r

b (r)
”
− b (r)

2 r2 (b (r)− r)

R2
121 = −R2

112

R2
323 =

b (r) sin2 ϑ

r

R2
332 = −R2

323

R3
003 =

(b (r)− r) eΓ(r)
“
d
d r

Γ (r)
”

2 r2

R3
030 = −R3

003

R3
113 =

r
“
d
d r

b (r)
”
− b (r)

2 r2 (b (r)− r)

R3
131 = −R3

113

R3
223 = −

b (r)

r

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
eΓ(r)

„
2 r b (r)

“
d2

d r2
Γ (r)

”
− 2 r2

“
d2

d r2
Γ (r)

”
+ r b (r)

“
d
d r

Γ (r)
”2
− r2

“
d
d r

Γ (r)
”2

+ r
“
d
d r

b (r)
” “

d
d r

Γ (r)
”

+ ...

«
4 r2

Ric11 = −
2 r2 b (r)

“
d2

d r2
Γ (r)

”
− 2 r3

“
d2

d r2
Γ (r)

”
+ r2 b (r)

“
d
d r

Γ (r)
”2
− r3

“
d
d r

Γ (r)
”2

+ r2
“
d
d r

b (r)
” “

d
d r

Γ (r)
”
− r b (r) (...) + ...

4 r2 (b (r)− r)

Ric22 =
r b (r)

“
d
d r

Γ (r)
”
− r2

“
d
d r

Γ (r)
”

+ r
“
d
d r

b (r)
”

+ b (r)

2 r

Ric33 =

“
r b (r)

“
d
d r

Γ (r)
”
− r2

“
d
d r

Γ (r)
”

+ r
“
d
d r

b (r)
”

+ b (r)
”

sin2 ϑ

2 r
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Ricci Scalar

Rsc =
2 r b (r)

“
d2

d r2
Γ (r)

”
− 2 r2

“
d2

d r2
Γ (r)

”
+ r b (r)

“
d
d r

Γ (r)
”2
− r2

“
d
d r

Γ (r)
”2

+ r
“
d
d r

b (r)
” “

d
d r

Γ (r)
”

+ 3 b (r)
“
d
d r

Γ (r)
”
− ...

2 r2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
eΓ(r)

“
d
d r

b (r)
”

r2

G11 =
r b (r)

“
d
d r

Γ (r)
”
− r2

“
d
d r

Γ (r)
”

+ b (r)

r2 (b (r)− r)

G22 = −
2 r2 b (r)

“
d2

d r2
Γ (r)

”
− 2 r3

“
d2

d r2
Γ (r)

”
+ r2 b (r)

“
d
d r

Γ (r)
”2
− r3

“
d
d r

Γ (r)
”2

+ r2
“
d
d r

b (r)
” “

d
d r

Γ (r)
”

+ r b (r) (...)− ...

4 r

G33 = −

„
2 r2 b (r)

“
d2

d r2
Γ (r)

”
− 2 r3

“
d2

d r2
Γ (r)

”
+ r2 b (r)

“
d
d r

Γ (r)
”2
− r3

“
d
d r

Γ (r)
”2

+ r2
“
d
d r

b (r)
” “

d
d r

Γ (r)
”

+ ...

«
sin2 ϑ

4 r

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
e−Γ(r)

„
2 r b (r)

“
d2

d r2
Γ (r)

”
− 2 r2

“
d2

d r2
Γ (r)

”
+ r b (r)

“
d
d r

Γ (r)
”2
− r2

“
d
d r

Γ (r)
”2

+ r
“
d
d r

b (r)
” “

d
d r

Γ (r)
”

+ ...

«
4 r2

Current Density Class 1 (-Ri µjµ )

J1 =

(b (r)− r)
„

2 r2 b (r)
“
d2

d r2
Γ (r)

”
− 2 r3

“
d2

d r2
Γ (r)

”
+ r2 b (r)

“
d
d r

Γ (r)
”2
− r3

“
d
d r

Γ (r)
”2

+ r2
“
d
d r

b (r)
” “

d
d r

Γ (r)
”
− ...

«
4 r4

J2 = −
r b (r)

“
d
d r

Γ (r)
”
− r2

“
d
d r

Γ (r)
”

+ r
“
d
d r

b (r)
”

+ b (r)

2 r5

J3 = −
r b (r)

“
d
d r

Γ (r)
”
− r2

“
d
d r

Γ (r)
”

+ r
“
d
d r

b (r)
”

+ b (r)

2 r5 sin2 ϑ
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.37 Evans metric

The general spherical metric contains four functions A(t, r), B(r), C(r), D(r)
by which all so-called vacuum metrics can be described. The terms for the
cosmological charge and current densities can be used to determine the functions
in a way so that these densities disappear, leading to the most general condition
to describe a true vacuum in the EH theory:

ρ(A,B,C,D) = 0
J1(A,B,C,D) = 0
J2(A,B,C,D) = 0
J3(A,B,C,D) = 0

However, the Einstein tensor, which describes the energy momentum density,
has also to vanish in order to describe a true vacuum.

Coordinates

x =

0BB@
t
r
ϑ
ϕ

1CCA
Metric

gµν =

0BB@
A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 sin2 ϑD

1CCA
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Contravariant Metric

gµν =

0BB@
1
A

0 0 0

0 1
B

0 0

0 0 1
C

0

0 0 0 1
sin2 ϑD

1CCA
Christoffel Connection

Γ0
00 =

d
d t
A

2A

Γ0
01 =

d
d r

A

2A

Γ0
10 = Γ0

01

Γ1
00 = −

d
d r

A

2B

Γ1
11 =

d
d r

B

2B

Γ1
22 = −

d
d r

C

2B

Γ1
33 = −

sin2 ϑ
“
d
d r

D
”

2B

Γ2
12 =

d
d r

C

2C

Γ2
21 = Γ2

12

Γ2
33 = −

cosϑ sinϑD

C

Γ3
13 =

d
d r

D

2D

Γ3
23 =

cosϑ

sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

344



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

Metric Compatibility
———— o.k.

Riemann Tensor

R0
101 =

A
“
d
d r

A
” “

d
d r

B
”
− 2A

“
d2

d r2
A
”
B +

“
d
d r

A
”2

B

4A2 B

R0
110 = −R0

101

R0
202 = −

d
d r

A
“
d
d r

C
”

4AB

R0
220 = −R0

202

R0
303 = −

sin2 ϑ
“
d
d r

A
” “

d
d r

D
”

4AB

R0
330 = −R0

303

R1
001 = −

A
“
d
d r

A
” “

d
d r

B
”
− 2A

“
d2

d r2
A
”
B +

“
d
d r

A
”2

B

4AB2

R1
010 = −R1

001

R1
212 = −

2BC
“
d2

d r2
C
”
−B

“
d
d r

C
”2
− d
d r

BC
“
d
d r

C
”

4B2 C

R1
221 = −R1

212

R1
313 = −

sin2 ϑ

„
2BD

“
d2

d r2
D
”
−B

“
d
d r

D
”2
− d
d r

BD
“
d
d r

D
”«

4B2D

R1
323 = −

cosϑ sinϑ
“
C
“
d
d r

D
”
− d
d r

C D
”

2BC

R1
331 = −R1

313

R1
332 = −R1

323

R2
002 =

d
d r

A
“
d
d r

C
”

4BC
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R2
020 = −R2

002

R2
112 =

2BC
“
d2

d r2
C
”
−B

“
d
d r

C
”2
− d
d r

BC
“
d
d r

C
”

4BC2

R2
121 = −R2

112

R2
313 = −

cosϑ sinϑ
“
C
“
d
d r

D
”
− d
d r

C D
”

2C2

R2
323 = −

sin2 ϑ
“
d
d r

C
“
d
d r

D
”
− 4BD

”
4BC

R2
331 = −R2

313

R2
332 = −R2

323

R3
003 =

d
d r

A
“
d
d r

D
”

4BD

R3
030 = −R3

003

R3
113 =

2BD
“
d2

d r2
D
”
−B

“
d
d r

D
”2
− d
d r

BD
“
d
d r

D
”

4BD2

R3
123 =

cosϑ
“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑC D

R3
131 = −R3

113

R3
132 = −R3

123

R3
213 =

cosϑ
“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑC D

R3
223 =

d
d r

C
“
d
d r

D
”
− 4BD

4BD

R3
231 = −R3

213

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
A
“
d
d r

A
”
BC

“
d
d r

D
”

+A
“
d
d r

A
”
B
“
d
d r

C
”
D −A

“
d
d r

A
” “

d
d r

B
”
C D + 2A

“
d2

d r2
A
”
BC D −

“
d
d r

A
”2

BC D

4AB2 C D

Ric11 = −
2A2 BC2D

“
d2

d r2
D
”
−A2BC2

“
d
d r

D
”2
−A2

“
d
d r

B
”
C2D

“
d
d r

D
”

+ 2A2BC
“
d2

d r2
C
”
D2 −A2 B

“
d
d r

C
”2

D2 − ...

4A2BC2 D2

Ric12 = −
cosϑ

“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑC D

Ric21 = Ric12

Ric22 = −
ABC

“
d
d r

C
” “

d
d r

D
”

+ 2ABC
“
d2

d r2
C
”
D −AB

“
d
d r

C
”2

D −A
“
d
d r

B
”
C
“
d
d r

C
”
D + d

d r
ABC

“
d
d r

C
”
D − ...

4AB2 C D

Ric33 = −
sin2 ϑ

„
2ABCD

“
d2

d r2
D
”
−ABC

“
d
d r

D
”2

+AB
“
d
d r

C
”
D
“
d
d r

D
”
−A

“
d
d r

B
”
C D

“
d
d r

D
”

+ ...

«
4AB2 C D

Ricci Scalar

Rsc = −
2A2 BC2D

“
d2

d r2
D
”

2A2 B2 C2 D2
−
A2BC2

“
d
d r

D
”2

2A2B2 C2D2
+
A2BC

“
d
d r

C
”
D
“
d
d r

D
”

2A2B2 C2D2

−
A2
“
d
d r

B
”
C2D

“
d
d r

D
”

2A2B2 C2D2
+
A
“
d
d r

A
”
BC2 D

“
d
d r

D
”

2A2B2 C2D2
+

2A2 BC
“
d2

d r2
C
”
D2

2A2 B2 C2D2

−
A2 B

“
d
d r

C
”2

D2 −A2
“
d
d r

B
”
C
“
d
d r

C
”
D2

2A2 B2 C2 D2
+
A
“
d
d r

A
”
BC

“
d
d r

C
”
D2

2A2B2 C2 D2

−
A
“
d
d r

A
” “

d
d r

B
”
C2D2

2A2B2 C2D2
+

2A
“
d2

d r2
A
”
BC2D2

2A2B2 C2D2
−

“
d
d r

A
”2

BC2D2 − 4A2B2 C D2

2A2B2 C2D2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 =

A

„
2BC2D

“
d2

d r2
D
”
−BC2

“
d
d r

D
”2

+BC
“
d
d r

C
”
D
“
d
d r

D
”
− d
d r

BC2 D
“
d
d r

D
”

+ 2BC
“
d2

d r2
C
”
D2 − ...

«
4B2 C2 D2

G11 =
A
“
d
d r

C
” “

d
d r

D
”

+ d
d r

AC
“
d
d r

D
”

+ d
d r

A
“
d
d r

C
”
D − 4ABD

4AC D

G12 = −
cosϑ

“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑC D

G21 = G12

G22 =

C

„
2A2 BD

“
d2

d r2
D
”
−A2B

“
d
d r

D
”2
−A2

“
d
d r

B
”
D
“
d
d r

D
”

+A
“
d
d r

A
”
BD

“
d
d r

D
”
−A

“
d
d r

A
” “

d
d r

B
”
D2 + ...

«
4A2B2D2

G33 =

sin2 ϑ

„
2A2 BC

“
d2

d r2
C
”
−A2 B

“
d
d r

C
”2
−A2

“
d
d r

B
”
C
“
d
d r

C
”

+A
“
d
d r

A
”
BC

“
d
d r

C
”
−A

“
d
d r

A
” “

d
d r

B
”
C2 + ...

«
D

4A2 B2 C2

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
A
“
d
d r

A
”
BC

“
d
d r

D
”

+A
“
d
d r

A
”
B
“
d
d r

C
”
D −A

“
d
d r

A
” “

d
d r

B
”
C D + 2A

“
d2

d r2
A
”
BC D −

“
d
d r

A
”2

BC D

4A3B2 C D

Current Density Class 1 (-Ri µjµ )

J1 =
2A2BC2 D

“
d2

d r2
D
”
−A2BC2

“
d
d r

D
”2
−A2

“
d
d r

B
”
C2D

“
d
d r

D
”

+ 2A2BC
“
d2

d r2
C
”
D2 −A2B

“
d
d r

C
”2

D2 − ...

4A2 B3 C2 D2

J2 =
ABC

“
d
d r

C
” “

d
d r

D
”

+ 2ABC
“
d2

d r2
C
”
D −AB

“
d
d r

C
”2

D −A
“
d
d r

B
”
C
“
d
d r

C
”
D + d

d r
ABC

“
d
d r

C
”
D − 4AB2 C D

4AB2 C3D

J3 =
2ABC D

“
d2

d r2
D
”
−ABC

“
d
d r

D
”2

+AB
“
d
d r

C
”
D
“
d
d r

D
”
−A

“
d
d r

B
”
C D

“
d
d r

D
”

+ d
d r

ABCD
“
d
d r

D
”
− 4AB2 D2

4 sin2 ϑAB2 C D3
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 =
cosϑ

“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑB C2 D

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 =
cosϑ

“
C
“
d
d r

D
”
− d
d r

C D
”

2 sinϑB C2 D

J2 = 0

J3 = 0

4.4.38 Perfect spherical fluid metric

Metric of a perfect fluid sphere. There are similar versions called homogeneous
perfect fluid. a and b are parameters.

Coordinates

x =

0BB@
t
r
ϑ
ϕ

1CCA
Metric

gµν =

0BBBB@
−a r2 − 1 0 0 0

0
(1−3 a r2)

2
3

(3 a r2+1)
2
3−b r2

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ

1CCCCA
Contravariant Metric

gµν =

0BBBBB@
− 1
a r2+1

0 0 0

0
(3 a r2+1)

2
3−b r2

(1−3 a r2)
2
3

0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 ϑ

1CCCCCA
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Christoffel Connection

Γ0
01 =

a r

a r2 + 1

Γ0
10 = Γ0

01

Γ1
00 =

a r
“`

3 a r2 + 1
´ 2

3 − b r2
”

(1− 3 a r2)
2
3

Γ1
11 = −

r
“

3 a2 b r4
`
3 a r2 + 1

´ 2
3 − 10 a b r2

`
3 a r2 + 1

´ 2
3 − b

`
3 a r2 + 1

´ 2
3 + a b3 r6

`
3 a r2 + 1

´ 1
3 − b3 r4

`
3 a r2 + 1

´ 1
3 + ...

”
(3 a r2 − 1)

“
9 a b r4 (3 a r2 + 1)

2
3 + 3 b r2 (3 a r2 + 1)

2
3 + b3 r6 (3 a r2 + 1)

1
3 − 9 a2 r4 (3 a r2 + 1)

1
3 − ...

”

Γ1
22 = −

r
“`

3 a r2 + 1
´ 2

3 − b r2
”

(1− 3 a r2)
2
3

Γ1
33 = −

r
“`

3 a r2 + 1
´ 2

3 − b r2
”

sin2 ϑ

(1− 3 a r2)
2
3

Γ2
12 =

1

r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1

r

Γ3
23 =

cosϑ

sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility
———— o.k.
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Riemann Tensor

R0
101 = −

a
“

3 a3 b r8
`
3 a r2 + 1

´ 2
3 + 20 a2 b r6

`
3 a r2 + 1

´ 2
3 − 11 a b r4

`
3 a r2 + 1

´ 2
3 − 4 b r2

`
3 a r2 + 1

´ 2
3 + a2 b3 r10

`
3 a r2 + 1

´ 1
3 + ...

”
(a r2 + 1)2 (3 a r2 − 1)

“
9 a b r4 (3 a r2 + 1)

2
3 + 3 b r2 (3 a r2 + 1)

2
3 + b3 r6 (3 a r2 + 1)

1
3 − 9 a2 r4 (3 a r2 + 1)

1
3 − ...

”

R0
110 = −R0

101

R0
202 = −

a r2
“`

3 a r2 + 1
´ 2

3 − b r2
”

(1− 3 a r2)
2
3 (a r2 + 1)

R0
220 = −R0

202

R0
303 = −

a r2
“`

3 a r2 + 1
´ 2

3 − b r2
”

sin2 ϑ

(1− 3 a r2)
2
3 (a r2 + 1)

R0
330 = −R0

303

R1
001 =

a
“
a2 b4 r12

`
3 a r2 + 1

´ 2
3 + 3 a b4 r10

`
3 a r2 + 1

´ 2
3 − 9 a4 b r10

`
3 a r2 + 1

´ 2
3 − 2 b4 r8

`
3 a r2 + 1

´ 2
3 − 78 a3 b r8

`
3 a r2 + 1

´ 2
3 + ...

”
(1− 3 a r2)

2
3 (a r2 + 1) (3 a r2 − 1)

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − ...

”

R1
010 = −R1

001

R1
212 =

r2
“
a b4 r8

`
3 a r2 + 1

´ 2
3 − b4 r6

`
3 a r2 + 1

´ 2
3 − 9 a3 b r6

`
3 a r2 + 1

´ 2
3 + 39 a2 b r4

`
3 a r2 + 1

´ 2
3 + 17 a b r2

`
3 a r2 + 1

´ 2
3 + ...

”
(1− 3 a r2)

2
3 (3 a r2 − 1)

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − ...

”

R1
221 = −R1

212

R1
313 =

r2
“
a b4 r8

`
3 a r2 + 1

´ 2
3 − b4 r6

`
3 a r2 + 1

´ 2
3 − 9 a3 b r6

`
3 a r2 + 1

´ 2
3 + 39 a2 b r4

`
3 a r2 + 1

´ 2
3 + ...

”
sin2 ϑ

(1− 3 a r2)
2
3 (3 a r2 − 1)

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − ...

”

R1
331 = −R1

313
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R2
002 = −

a
“`

3 a r2 + 1
´ 2

3 − b r2
”

(1− 3 a r2)
2
3

R2
020 = −R2

002

R2
112 =

3 a2 b r4
`
3 a r2 + 1

´ 2
3 − 10 a b r2

`
3 a r2 + 1

´ 2
3 − b

`
3 a r2 + 1

´ 2
3 + a b3 r6

`
3 a r2 + 1

´ 1
3 − b3 r4

`
3 a r2 + 1

´ 1
3 + ...

(3 a r2 − 1)
“

9 a b r4 (3 a r2 + 1)
2
3 + 3 b r2 (3 a r2 + 1)

2
3 + b3 r6 (3 a r2 + 1)

1
3 − 9 a2 r4 (3 a r2 + 1)

1
3 − ...

”

R2
121 = −R2

112

R2
323 = −

“`
3 a r2 + 1

´ 2
3 −

`
1− 3 a r2

´ 2
3 − b r2

”
sin2 ϑ

(1− 3 a r2)
2
3

R2
332 = −R2

323

R3
003 = −

a
“`

3 a r2 + 1
´ 2

3 − b r2
”

(1− 3 a r2)
2
3

R3
030 = −R3

003

R3
113 =

3 a2 b r4
`
3 a r2 + 1

´ 2
3 − 10 a b r2

`
3 a r2 + 1

´ 2
3 − b

`
3 a r2 + 1

´ 2
3 + a b3 r6

`
3 a r2 + 1

´ 1
3 − b3 r4

`
3 a r2 + 1

´ 1
3 + ...

(3 a r2 − 1)
“

9 a b r4 (3 a r2 + 1)
2
3 + 3 b r2 (3 a r2 + 1)

2
3 + b3 r6 (3 a r2 + 1)

1
3 − 9 a2 r4 (3 a r2 + 1)

1
3 − ...

”

R3
131 = −R3

113

R3
223 =

`
3 a r2 + 1

´ 2
3 −

`
1− 3 a r2

´ 2
3 − b r2

(1− 3 a r2)
2
3

R3
232 = −R3

223
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Ricci Tensor

Ric00 =
a
`
1− 3 a r2

´ 1
3
“

7 a2 b4 r12
`
3 a r2 + 1

´ 2
3 + 7 a b4 r10

`
3 a r2 + 1

´ 2
3 − 225 a4 b r10

`
3 a r2 + 1

´ 2
3 − 4 b4 r8

`
3 a r2 + 1

´ 2
3 − ...

”
(a r2 + 1) (3 a r2 − 1)2

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − ...

”

Ric11 = −
3 a3 b6 r16

`
3 a r2 + 1

´ 2
3 + 5 a2 b6 r14

`
3 a r2 + 1

´ 2
3 − 270 a5 b3 r14

`
3 a r2 + 1

´ 2
3 − 4 a b6 r12

`
3 a r2 + 1

´ 2
3 − ...

(a r2 + 1)2 (3 a r2 − 1)
“
b6 r12 (3 a r2 + 1)

2
3 − 180 a2 b3 r10 (3 a r2 + 1)

2
3 − 120 a b3 r8 (3 a r2 + 1)

2
3 + 81 a4 r8 (3 a r2 + 1)

2
3 − ...

”

Ric22 =
3 a2 b3 r10

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 + 2 a b3 r8

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − 27 a4 r8

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − ...

(1− 3 a r2)
2
3 (a r2 + 1) (3 a r2 − 1)

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − ...

”

Ric33 =

“
3 a2 b3 r10

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 + 2 a b3 r8

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − 27 a4 r8

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − ...

”
sin2 ϑ

(1− 3 a r2)
2
3 (a r2 + 1) (3 a r2 − 1)

“
b3 r6 (3 a r2 + 1)

2
3 − 9 a2 r4 (3 a r2 + 1)

2
3 − 6 a r2 (3 a r2 + 1)

2
3 − (3 a r2 + 1)

2
3 − ...

”
Ricci Scalar

Rsc = −
2
“

459 a4 b12 r32
`
1− 3 a r2

´ 1
3
`
3 a r2 + 1

´ 2
3 + 681 a3 b12 r30

`
1− 3 a r2

´ 1
3
`
3 a r2 + 1

´ 2
3 − ...

”
r2 (a r2 + 1)2 (3 a r2 − 1)2 (3 a r2 + 1)

“
12 b11 r22 (3 a r2 + 1)

2
3 − 4455 a2 b8 r20 (3 a r2 + 1)

2
3 − 2970 a b8 r18 (3 a r2 + 1)

2
3 + ...

”
Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −

`
a r2 + 1

´ “
5 a b16 r34

`
1− 3 a r2

´ 1
3
`
3 a r2 + 1

´ 2
3 − 3 b16 r32

`
1− 3 a r2

´ 1
3
`
3 a r2 + 1

´ 2
3 − ...

”
r2 (3 a r2 − 1)2

“
b15 r30 (3 a r2 + 1)

2
3 − 4095 a2 b12 r28 (3 a r2 + 1)

2
3 − 2730 a b12 r26 (3 a r2 + 1)

2
3 + ...

”

G11 =
a b18 r38

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 + b18 r36

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − 7344 a3 b15 r36

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 − ...

r2 (a r2 + 1)
“
b19 r38 (3 a r2 + 1)

2
3 − 8721 a2 b16 r36 (3 a r2 + 1)

2
3 − 5814 a b16 r34 (3 a r2 + 1)

2
3 + ...

”

G22 = −
r2
“

5 a3 b16 r36
`
3 a r2 + 1

´ 2
3 + 6 a2 b16 r34

`
3 a r2 + 1

´ 2
3 − 23310 a5 b13 r34

`
3 a r2 + 1

´ 2
3 − 4 a b16 r32

`
3 a r2 + 1

´ 2
3 − ...

”
(1− 3 a r2)

2
3 (a r2 + 1)2 (3 a r2 − 1)

“
b15 r30 (3 a r2 + 1)

2
3 − 4095 a2 b12 r28 (3 a r2 + 1)

2
3 − 2730 a b12 r26 (3 a r2 + 1)

2
3 + ...

”

G33 = −
r2
“

5 a3 b16 r36
`
3 a r2 + 1

´ 2
3 + 6 a2 b16 r34

`
3 a r2 + 1

´ 2
3 − 23310 a5 b13 r34

`
3 a r2 + 1

´ 2
3 − 4 a b16 r32

`
3 a r2 + 1

´ 2
3 − ...

”
sin2 ϑ

(1− 3 a r2)
2
3 (a r2 + 1)2 (3 a r2 − 1)

“
b15 r30 (3 a r2 + 1)

2
3 − 4095 a2 b12 r28 (3 a r2 + 1)

2
3 − 2730 a b12 r26 (3 a r2 + 1)

2
3 + ...

”
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Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
a
`
1− 3 a r2

´ 1
3
“

117 a3 b2 r10
`
3 a r2 + 1

´ 2
3 + 153 a2 b2 r8

`
3 a r2 + 1

´ 2
3 − 33 a b2 r6

`
3 a r2 + 1

´ 2
3 − 21 b2 r4

`
3 a r2 + 1

´ 2
3 + ...

”
(a r2 + 1)3 (3 a r2 − 1)2

“
9 a b r4 (3 a r2 + 1)

2
3 + 3 b r2 (3 a r2 + 1)

2
3 + b3 r6 (3 a r2 + 1)

1
3 − ...

”
Current Density Class 1 (-Ri µjµ )

J1 = −
189 a4 b6 r18

`
3 a r2 + 1

´ 2
3 + 357 a3 b6 r16

`
3 a r2 + 1

´ 2
3 − 1701 a6 b3 r16

`
3 a r2 + 1

´ 2
3 − 287 a2 b6 r14

`
3 a r2 + 1

´ 2
3 − ...

(1− 3 a r2)
1
3 (a r2 + 1)2 (3 a r2 − 1)2

“
45 a b4 r10 (3 a r2 + 1)

2
3 + 15 b4 r8 (3 a r2 + 1)

2
3 − 162 a3 b r8 (3 a r2 + 1)

2
3 − ...

”

J2 = −
27 a3 b r8

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1

´ 2
3 + 27 a2 b r6

`
1− 3 a r2

´ 2
3
`
3 a r2 + 1
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4.4.39 Carmeli metric for spiral galaxies

Carmeli metric for spiral galaxies. R1 and τ are parameters.
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Fig. 4.67: Perfect spherical fluid, charge density ρ for a = b = 1.
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Fig. 4.68: Perfect spherical fluid, current density Jr for a = b = 1.
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Fig. 4.69: Perfect spherical fluid, current density Jθ, Jϕ for a = b = 1.
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = − 2
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J2 = − 2
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Current Density Class 3 (-Ri µjµ )

J1 = 0
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J3 = 0

4.4.40 Dirac metric

This metric is reported by J. Dunning-Davies and assumed to go back to Dirac.
m, µ and τ are parameters. m and µ have been set to unity in the plots.
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Fig. 4.70: Carmeli metric, current density Jχ, τ -dependence.
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Fig. 4.71: Carmeli metric, current density Jϑ, Jϕ, χ-dependence with τ = 1.
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Fig. 4.72: Dirac metric, current density Jθ, Jϕ, τ -dependence for ρ = 10.
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Fig. 4.73: Dirac metric, current density Jθ, Jϕ, ρ-dependence for τ = 0.2.

366



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY . . .

4.4.41 Alcubierre metric

This metric has been synthesized to model a "spaceship drive" by spacetime.
The parameters are
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2 − x2

3.

For the figures we used

f(rs) =
tanh(σ(rs +R))− tanh(σ(rs −R))

2 tanh(σR)
.

Interestingly, the charge and current densities are a counterpart of the intended
spacetime curvature.
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Current Density Class 1 (-Ri µjµ )

J1 =
2 f2

“
d
d x1

f
” `

d
d t xs

´2 “ d2

d t2
xs
”
− 2

“
d
d x1

f
” “

d2

d t2
xs
”

+ 6 f4
“

d
d x3

f
”2 `

d
d t xs

´6
+ 6 f4

“
d
d x2

f
”2 `

d
d t xs

´6
+ 3 f5

“
d2

d x1
2 f
” `

d
d t xs

´6 − ...“
3 f2

`
d
d t xs

´2
+ 1
”3

J2 =

`
d
d t xs

´2 „
9 f3

“
d2

d x2
2 f
” `

d
d t xs

´2 − 6 f2
“

d
d x2

f
”2 `

d
d t xs

´2
+ 3 f

“
d2

d x2
2 f
”

+
“

d
d x2

f
”2
«

“
3 f2

`
d
d t xs

´2
+ 1
”2

J3 =

`
d
d t xs

´2 „
9 f3

“
d2

d x3
2 f
” `

d
d t xs

´2 − 6 f2
“

d
d x3

f
”2 `

d
d t xs

´2
+ 3 f

“
d2

d x3
2 f
”

+
“

d
d x3

f
”2
«

“
3 f2

`
d
d t xs

´2
+ 1
”2

Current Density Class 2 (-Ri µjµ )

J1 = −
d
d x3

f
“
d2

d t2
xs
”

+ 3 f3
“

d2
d x1 d x3

f
” `

d
d t xs

´4 − 3 f
`
d
d t f

´ “
d
d x3

f
” `

d
d t xs

´3
+ 3 f2

“
d2

d t d x3
f
” `

d
d t xs

´3
+ d
d x1

f
“

d
d x3

f
” `

d
d t xs

´2
+ ...“

3 f2
`
d
d t xs

´2
+ 1
”2

J2 = −
d
d x2

f
“
d2

d t2
xs
”

+ 3 f3
“

d2
d x1 d x2

f
” `

d
d t xs

´4 − 3 f
`
d
d t f

´ “
d
d x2

f
” `

d
d t xs

´3
+ 3 f2

“
d2

d t d x2
f
” `

d
d t xs

´3
+ d
d x1

f
“

d
d x2

f
” `

d
d t xs

´2
+ ...“

3 f2
`
d
d t xs

´2
+ 1
”2

J3 = −

`
d
d t xs

´2 “
6 f2

“
d
d x2

f
” “

d
d x3

f
” `

d
d t xs

´2 − 9 f3
“

d2
d x2 d x3

f
” `

d
d t xs

´2 − d
d x2

f
“

d
d x3

f
”
− 3 f

“
d2

d x2 d x3
f
””

“
3 f2

`
d
d t xs

´2
+ 1
”2

Current Density Class 3 (-Ri µjµ )
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4.4.42 Homogeneous Space-Time
This metric is a generalization of the Robertson-Walker metric. In addition to
the coordinates, it contains functions Σ(x, k) =: Σ and Σ(z, k′) =: Θ.
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Fig. 4.74: Alcubierre metric, charge density ρ, time dependence for x1 = 1, x2 =
0, x3 = 0.
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Fig. 4.75: Alcubierre metric, charge density, x1 dependence for t = 1, x2 =
0, x3 = 0.
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Fig. 4.76: Alcubierre metric, current density J1, x1 dependence for t = 1, x2 =
0, x3 = 0.
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Fig. 4.77: Alcubierre metric, current density J2, J3, x1 dependence for t =
1, x2 = 0, x3 = 0.
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Coordinates

x =


t
x
y
z


Metric

gµν =


−Θ2B2 0 0 0

0 A2 0 0
0 0 Σ2A2 0
0 0 0 B2


Contravariant Metric

gµν =


− 1

Θ2 B2 0 0 0
0 1

A2 0 0
0 0 1

Σ2 A2 0
0 0 0 1

B2


Christoffel Connection

Γ0
03 =

d
d z Θ

Θ

Γ0
30 = Γ0

03

Γ1
22 = −Σ

(
d

d x
Σ
)

Γ2
12 =

d
d x Σ

Σ

Γ2
21 = Γ2

12

Γ3
00 = Θ

(
d

d z
Θ
)

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
303 = −

d2

d z2 Θ
Θ

R0
330 = −R0

303

R1
212 = −Σ

(
d2

d x2
Σ
)

R1
221 = −R1

212

R2
112 =

d2

d x2 Σ
Σ

R2
121 = −R2

112

R3
003 = −Θ

(
d2

d z2
Θ
)

R3
030 = −R3

003

Ricci Tensor

Ric00 = Θ
(
d2

d z2
Θ
)

Ric11 = −
d2

d x2 Σ
Σ

Ric22 = −Σ
(
d2

d x2
Σ
)

Ric33 = −
d2

d z2 Θ
Θ

Ricci Scalar

Rsc = −
2
(
d2

d x2 Σ ΘB2 + Σ
(
d2

d z2 Θ
)
A2
)

Σ ΘA2B2
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
d2

d x2 Σ Θ2B2

ΣA2

G11 =
d2

d z2 ΘA2

ΘB2

G22 =
Σ2
(
d2

d z2 Θ
)
A2

ΘB2

G33 =
d2

d x2 ΣB2

ΣA2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
d2

d z2 Θ
Θ3B4

Current Density Class 1 (-Ri µjµ )

J1 =
d2

d x2 Σ
ΣA4

J2 =
d2

d x2 Σ
Σ3A4

J3 =
d2

d z2 Θ
ΘB4
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.43 Robertson-Walker metric

Robertson-Walker metric. a(t) is a time-dependent scaing factor, Σ(r, k) =: Σ
depends on k which determines if the universe is expanding, static or contracting.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−1 0 0 0
0 a2 0 0
0 0 a2 Σ2 0
0 0 0 a2 Σ2 sin2 ϑ


Contravariant Metric

gµν =


−1 0 0 0
0 1

a2 0 0
0 0 1

a2 Σ2 0
0 0 0 1

a2 Σ2 sin2 ϑ


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Christoffel Connection
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(
d

d t
a

)

Γ0
22 = a

(
d

d t
a

)
Σ2

Γ0
33 = a

(
d

d t
a

)
Σ2 sin2 ϑ

Γ1
01 =

d
d t a

a

Γ1
10 = Γ1

01

Γ1
22 = −Σ

(
d

d r
Σ
)

Γ1
33 = −Σ

(
d

d r
Σ
)

sin2 ϑ

Γ2
02 =

d
d t a

a

Γ2
12 =

d
d r Σ

Σ

Γ2
20 = Γ2

02

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
03 =

d
d t a

a

Γ3
13 =

d
d r Σ

Σ

Γ3
23 =

cosϑ
sinϑ

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = a

(
d2

d t2
a

)

R0
110 = −R0

101

R0
202 = a

(
d2

d t2
a

)
Σ2

R0
220 = −R0

202

R0
303 = a

(
d2

d t2
a

)
Σ2 sin2 ϑ

R0
330 = −R0

303

R1
001 =

d2

d t2 a

a

R1
010 = −R1

001

R1
212 = −Σ

(
d2

d r2
Σ−

(
d

d t
a

)2

Σ

)

R1
221 = −R1

212

R1
313 = −Σ

(
d2

d r2
Σ−

(
d

d t
a

)2

Σ

)
sin2 ϑ

R1
331 = −R1

313

R2
002 =

d2

d t2 a

a

R2
020 = −R2

002
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R2
112 =

d2

d r2 Σ−
(
d
d t a

)2
Σ

Σ

R2
121 = −R2

112

R2
323 = −

((
d

d r
Σ
)2

−
(
d

d t
a

)2

Σ2 − 1

)
sin2 ϑ

R2
332 = −R2

323

R3
003 =

d2

d t2 a

a

R3
030 = −R3

003

R3
113 =

d2

d r2 Σ−
(
d
d t a

)2
Σ

Σ

R3
131 = −R3

113

R3
223 =

(
d

d r
Σ
)2

−
(
d

d t
a

)2

Σ2 − 1

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
3
(
d2

d t2 a
)

a

Ric11 = −
2
(
d2

d r2 Σ
)
− a

(
d2

d t2 a
)

Σ− 2
(
d
d t a

)2
Σ

Σ

Ric22 = −

(
Σ
(
d2

d r2
Σ
)

+
(
d

d r
Σ
)2

− a
(
d2

d t2
a

)
Σ2 − 2

(
d

d t
a

)2

Σ2 − 1

)

Ric33 = −

(
Σ
(
d2

d r2
Σ
)

+
(
d

d r
Σ
)2

− a
(
d2

d t2
a

)
Σ2 − 2

(
d

d t
a

)2

Σ2 − 1

)
sin2 ϑ
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Ricci Scalar

Rsc = −
2
(

2 Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − 3 a
(
d2

d t2 a
)

Σ2 − 3
(
d
d t a

)2
Σ2 − 1

)
a2 Σ2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
2 Σ

(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − 3
(
d
d t a

)2
Σ2 − 1

a2 Σ2

G11 =

(
d
d r Σ

)2 − 2 a
(
d2

d t2 a
)

Σ2 −
(
d
d t a

)2
Σ2 − 1

Σ2

G22 = Σ

(
d2

d r2
Σ− 2 a

(
d2

d t2
a

)
Σ−

(
d

d t
a

)2

Σ

)

G33 = Σ

(
d2

d r2
Σ− 2 a

(
d2

d t2
a

)
Σ−

(
d

d t
a

)2

Σ

)
sin2 ϑ

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
3
(
d2

d t2 a
)

a

Current Density Class 1 (-Ri µjµ )

J1 =
2
(
d2

d r2 Σ
)
− a

(
d2

d t2 a
)

Σ− 2
(
d
d t a

)2
Σ

a4 Σ

J2 =
Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − a ( d2

d t2 a
)

Σ2 − 2
(
d
d t a

)2
Σ2 − 1

a4 Σ4
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J3 =
Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − a ( d2

d t2 a
)

Σ2 − 2
(
d
d t a

)2
Σ2 − 1

a4 Σ4 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.44 Anti-Mach metric
Anti-Mach metric of plane waves of homogeneous vacuum. This is a vacuum
metric.

Coordinates

x =


u
v
x
y


Metric

gµν =


−2

(
cos (2u)

(
x2 − y2

)
− 2 sin (2u) x y

)
−2 0 0

−2 0 0 0
0 0 1 0
0 0 0 1


Contravariant Metric

gµν =


0 − 1

2 0 0
− 1

2 − cos(2u) y2+2 sin(2u) x y−cos(2u) x2

2 0 0
0 0 1 0
0 0 0 1


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Christoffel Connection

Γ1
00 = sin (2u) y2 − 2 cos (2u) x y − sin (2u) x2

Γ1
02 = − (sin (2u) y − cos (2u) x)

Γ1
03 = − (cos (2u) y + sin (2u) x)

Γ1
20 = Γ1

02

Γ1
30 = Γ1

03

Γ2
00 = −2 (sin (2u) y − cos (2u) x)

Γ3
00 = −2 (cos (2u) y + sin (2u) x)

Metric Compatibility

———— o.k.

Riemann Tensor

R1
202 = − cos (2u)

R1
203 = sin (2u)

R1
220 = −R1

202

R1
230 = −R1

203

R1
302 = sin (2u)

R1
303 = cos (2u)

R1
320 = −R1

302

R1
330 = −R1

303

R2
002 = −2 cos (2u)
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R2
003 = 2 sin (2u)

R2
020 = −R2

002

R2
030 = −R2

003

R3
002 = 2 sin (2u)

R3
003 = 2 cos (2u)

R3
020 = −R3

002

R3
030 = −R3

003

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0
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Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.45 Petrov metric

This metric is a special case of the Anti-Mach metric of plane waves.

Coordinates

x =

0B@ t
x
y
z

1CA

Metric

gµν =

0BBB@
−ex cos

“√
3 x
”

0 0 −2 sin
“√

3 x
”

0 1 0 0

0 0 e−2 x 0

−2 sin
“√

3 x
”

0 0 ex cos
“√

3 x
”
1CCCA
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Contravariant Metric

g
µν

=

0BBBBB@
− ex cos(

√
3 x)

4 sin2(
√

3 x)+e2 x cos2(
√

3 x)
0 0 − 2 sin(

√
3 x)

4 sin2(
√

3 x)+e2 x cos2(
√

3 x)
0 1 0 0
0 0 e2 x 0

− 2 sin(
√

3 x)
4 sin2(

√
3 x)+e2 x cos2(

√
3 x)

0 0
ex cos(

√
3 x)

4 sin2(
√

3 x)+e2 x cos2(
√

3 x)

1CCCCCA
Christoffel Connection

Γ
0
01 = −

cos
“√

3 x
” “√

3 e2 x sin
“√

3 x
”
− 4
√

3 sin
“√

3 x
”
− e2 x cos

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

Γ
0
10 = Γ

0
01

Γ
0
13 = −

ex
“

cos
“√

3 x
”

sin
“√

3 x
”
−
√

3
”

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

Γ
0
31 = Γ

0
13

Γ
1
00 = −

ex
“√

3 sin
“√

3 x
”
− cos

“√
3 x
””

2

Γ
1
03 =

√
3 cos

“√
3 x
”

Γ
1
22 = e

−2 x

Γ
1
30 = Γ

1
03

Γ
1
33 =

ex
“√

3 sin
“√

3 x
”
− cos

“√
3 x
””

2

Γ
2
12 = −1

Γ
2
21 = Γ

2
12

Γ
3
01 =

ex
“

cos
“√

3 x
”

sin
“√

3 x
”
−
√

3
”

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

Γ
3
10 = Γ

3
01

Γ
3
13 = −

cos
“√

3 x
” “√

3 e2 x sin
“√

3 x
”
− 4
√

3 sin
“√

3 x
”
− e2 x cos

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

Γ
3
31 = Γ

3
13
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Metric Compatibility
———— o.k.

Riemann Tensor

R
0
003 =

sin
“√

3 x
” “

2 e2 x sin2
“√

3 x
”
− 12 sin2

“√
3 x
”
− 2
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ e2 x + 12
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
0
030 = −R0

003

R
0
101 =

2
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 e2 x cos3
“√

3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 2 e4 x cos4
“√

3 x
”
− ...

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

R
0
110 = −R0

101

R
0
113 =

ex
“

4 cos3
“√

3 x
”

sin
“√

3 x
”

+ 3 e2 x cos
“√

3 x
”

sin
“√

3 x
”
− 16 cos

“√
3 x
”

sin
“√

3 x
”
−
√

3 e2 x cos4
“√

3 x
”

+ 4
√

3 cos4
“√

3 x
”
− ...

”
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

R
0
131 = −R0

113

R
0
202 = −

e−2 x cos
“√

3 x
” “√

3 e2 x sin
“√

3 x
”
− 4
√

3 sin
“√

3 x
”
− e2 x cos

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
0
220 = −R0

202

R
0
223 =

e−x
“

cos
“√

3 x
”

sin
“√

3 x
”
−
√

3
”

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

R
0
232 = −R0

223

R
0
303 =

ex cos
“√

3 x
” “

2
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 2 e2 x cos2
“√

3 x
”
− 12 cos2

“√
3 x
”
− 3 e2 x

”
4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
0
330 = −R0

303
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R
1
001 =

ex
“

2
√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 cos2
“√

3 x
”

sin
“√

3 x
”

+ 16
√

3 sin
“√

3 x
”

+ 2 e2 x cos3
“√

3 x
”
− 4 cos3

“√
3 x
”

+ ...
”

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
1
010 = −R1

001

R
1
013 =

2 e2 x sin3
“√

3 x
”
− 12 sin3

“√
3 x
”

+ e2 x sin
“√

3 x
”
− 12 sin

“√
3 x
”
− 2
√

3 e2 x cos
“√

3 x
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
1
031 = −R1

013

R
1
212 = −e−2 x

R
1
221 = −R1

212

R
1
301 =

2 e2 x cos2
“√

3 x
”

sin
“√

3 x
”
− 12 cos2

“√
3 x
”

sin
“√

3 x
”
− 3 e2 x sin

“√
3 x
”

+ 24 sin
“√

3 x
”

+ 2
√

3 e2 x cos
“√

3 x
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
1
310 = −R1

301

R
1
313 =

ex
“

2
√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 cos2
“√

3 x
”

sin
“√

3 x
”

+ 16
√

3 sin
“√

3 x
”

+ 2 e2 x cos3
“√

3 x
”
− 4 cos3

“√
3 x
”

+ ...
”

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
1
331 = −R1

313

R
2
002 = −

ex
“√

3 sin
“√

3 x
”
− cos

“√
3 x
””

2

R
2
020 = −R2

002

R
2
023 = −

√
3 cos

“√
3 x
”

R
2
032 = −R2

023
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R
2
112 = 1

R
2
121 = −R2

112

R
2
302 =

√
3 cos

“√
3 x
”

R
2
320 = −R2

302

R
2
323 = −

ex
“√

3 sin
“√

3 x
”
− cos

“√
3 x
””

2

R
2
332 = −R2

323

R
3
003 =

ex cos
“√

3 x
” “

2
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 2 e2 x cos2
“√

3 x
”
− 12 cos2

“√
3 x
”
− 3 e2 x

”
4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
3
030 = −R3

003

R
3
101 =

ex
“

4 cos3
“√

3 x
”

sin
“√

3 x
”

+ 3 e2 x cos
“√

3 x
”

sin
“√

3 x
”
− 16 cos

“√
3 x
”

sin
“√

3 x
”
−
√

3 e2 x cos4
“√

3 x
”

+ 4
√

3 cos4
“√

3 x
”
− ...

”
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

R
3
110 = −R3

101

R
3
113 = −

2
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 e2 x cos3
“√

3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 2 e4 x cos4
“√

3 x
”
− ...

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

R
3
131 = −R3

113

R
3
202 =

e−x
“

cos
“√

3 x
”

sin
“√

3 x
”
−
√

3
”

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

R
3
220 = −R3

202
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R
3
223 =

e−2 x cos
“√

3 x
” “√

3 e2 x sin
“√

3 x
”
− 4
√

3 sin
“√

3 x
”
− e2 x cos

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
3
232 = −R3

223

R
3
303 = −

sin
“√

3 x
” “

2 e2 x sin2
“√

3 x
”
− 12 sin2

“√
3 x
”
− 2
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ e2 x + 12
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

R
3
330 = −R3

303

Ricci Tensor

Ric00 = −
ex
“√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”

+ 4
√

3 sin
“√

3 x
”

+ 3 e2 x cos3
“√

3 x
”
− 12 cos3

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

Ric03 =
2 e2 x sin3

“√
3 x
”
− 12 sin3

“√
3 x
”
− 4
√

3 cos
“√

3 x
”

sin2
“√

3 x
”

+ e2 x sin
“√

3 x
”
− 2
√

3 e2 x cos
“√

3 x
”

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

Ric11 =
2
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 e2 x cos3
“√

3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 4 e2 x cos4
“√

3 x
”

+ ...

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

Ric22 = −
e−2 x sin

“√
3 x
” “

4 sin
“√

3 x
”

+
√

3 e2 x cos
“√

3 x
”
− 4
√

3 cos
“√

3 x
””

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

Ric30 = Ric03

Ric33 =
ex
“√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”

+ 4
√

3 sin
“√

3 x
”

+ 3 e2 x cos3
“√

3 x
”
− 12 cos3

“√
3 x
””

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

Ricci Scalar

Rsc =
2
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”

+ 8
√

3 e2 x cos3
“√

3 x
”

sin
“√

3 x
”
− 64

√
3 cos3

“√
3 x
”

sin
“√

3 x
”

+ 40
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ ...

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)
———— o.k.

401



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Einstein Tensor

G00 =
ex
“

16
√

3 e2 x cos4
“√

3 x
”

sin
“√

3 x
”
− 64

√
3 cos4

“√
3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”

+ ...
”

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

G03 =
2 e4 x cos4

“√
3 x
”

sin
“√

3 x
”

+ 12 e2 x cos4
“√

3 x
”

sin
“√

3 x
”
− 16 cos4

“√
3 x
”

sin
“√

3 x
”

+ 9 e4 x cos2
“√

3 x
”

sin
“√

3 x
”
− ...

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

G11 =
2
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”
− 16

√
3 cos

“√
3 x
”

sin
“√

3 x
”
− 6 e2 x cos2

“√
3 x
”

+ 12 cos2
“√

3 x
”

+ 3 e2 x

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”

G22 = −
e−2 x

“
6
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”
− 24

√
3 e2 x cos3

“√
3 x
”

sin
“√

3 x
”

+ 56
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 6 e4 x cos4
“√

3 x
”
− ...

”
4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

G30 = G03

G33 = −
ex
“

16
√

3 e2 x cos4
“√

3 x
”

sin
“√

3 x
”
− 64

√
3 cos4

“√
3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos2
“√

3 x
”

sin
“√

3 x
”

+ ...
”

4
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

Hodge Dual of Bianchi Identity
———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
ex
“√

3 e4 x cos4
“√

3 x
”

sin
“√

3 x
”

+ 4
√

3 e2 x cos4
“√

3 x
”

sin
“√

3 x
”
− 32

√
3 cos4

“√
3 x
”

sin
“√

3 x
”

+ ...
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”3

Current Density Class 1 (-Ri µjµ )

J1 = −
2
√

3 e4 x cos3
“√

3 x
”

sin
“√

3 x
”
− 8
√

3 e2 x cos3
“√

3 x
”

sin
“√

3 x
”

+ 24
√

3 e2 x cos
“√

3 x
”

sin
“√

3 x
”

+ 4 e2 x cos4
“√

3 x
”

+ ...

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”2

J2 =
e2 x sin

“√
3 x
” “

4 sin
“√

3 x
”

+
√

3 e2 x cos
“√

3 x
”
− 4
√

3 cos
“√

3 x
””

e2 x cos2
“√

3 x
”
− 4 cos2

“√
3 x
”

+ 4

J3 = −
ex
“√

3 e4 x cos4
“√

3 x
”

sin
“√

3 x
”

+ 4
√

3 e2 x cos4
“√

3 x
”

sin
“√

3 x
”
− 32

√
3 cos4

“√
3 x
”

sin
“√

3 x
”

+ ...
”

2
“
e2 x cos2

“√
3 x
”
− 4 cos2

“√
3 x
”

+ 4
”3
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Fig. 4.78: Petrov metric, charge density ρ.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.46 Homogeneous non-null electromagnetic fields, type
1

This metric describes Homogeneous non-null electromagnetic Fields. k is a
parameter.

403



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

-20

-15

-10

-5

 0

 5

 10

 15

 20

-4 -2  0  2  4

C
u

rr
e
n

t 
D

e
n
s
it
y
 J

1

x

Fig. 4.79: Petrov metric, current density J1.
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Fig. 4.80: Petrov metric, current density J2.
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Fig. 4.81: Petrov metric, current density J3.

Coordinates

x =


t
x
ϑ
ϕ


Metric

gµν =


−k2 sinh2 x 0 0 0

0 k2 0 0
0 0 k2 0
0 0 0 k2 sin2 ϑ


Contravariant Metric

gµν =


− 1
k2 sinh2 x

0 0 0
0 1

k2 0 0
0 0 1

k2 0
0 0 0 1

k2 sin2 ϑ


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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Christoffel Connection

Γ0
01 =

coshx
sinhx

Γ0
10 = Γ0

01

Γ1
00 = coshx sinhx

Γ2
33 = − cosϑ sinϑ

Γ3
23 =

cosϑ
sinϑ

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = −1

R0
110 = −R0

101

R1
001 = − sinh2 x

R1
010 = −R1

001

R2
323 = sin2 ϑ

R2
332 = −R2

323

R3
223 = −1

R3
232 = −R3

223
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Ricci Tensor

Ric00 = sinh2 x

Ric11 = −1

Ric22 = 1

Ric33 = sin2 ϑ

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = sinh2 x

G11 = −1

G22 = 1

G33 = sin2 ϑ

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
1

k4 sinh2 x
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 1 (-Ri µjµ )

J1 =
1
k4

J2 = − 1
k4

J3 = − 1
k4 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.47 Homogeneous non-null electromagnetic fields, type
2

This metric describes Homogeneous non-null electromagnetic Fields. a is a
parameter.

Coordinates

x =


t
x
y
ϕ


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Fig. 4.82: Homogeneous non-null electromagnetic Fields, type 1, charge density
ρ for k = 1.

Metric

gµν =


−1 0 0 4 y
0 a2

x2 0 0
0 0 a2

x2 0
4 y 0 0 x2 − 4 y2


Contravariant Metric

gµν =


(2 y−x) (2 y+x)

12 y2+x2 0 0 4 y
12 y2+x2

0 x2

a2 0 0
0 0 x2

a2 0
4 y

12 y2+x2 0 0 1
12 y2+x2


Christoffel Connection

Γ0
02 =

8 y
12 y2 + x2

Γ0
13 =

4x y
12 y2 + x2
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Γ0
20 = Γ0

02

Γ0
23 = −

2
(
4 y2 + x2

)
12 y2 + x2

Γ0
31 = Γ0

13

Γ0
32 = Γ0

23

Γ1
11 = − 1

x

Γ1
22 =

1
x

Γ1
33 = −x

3

a2

Γ2
03 = −2x2

a2

Γ2
12 = − 1

x

Γ2
21 = Γ2

12

Γ2
30 = Γ2

03

Γ2
33 =

4x2 y

a2

Γ3
02 =

2
12 y2 + x2

Γ3
13 =

x

12 y2 + x2

Γ3
20 = Γ3

02

Γ3
23 =

4 y
12 y2 + x2

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
003 = − 16x2 y

a2 (12 y2 + x2)

R0
012 = − 8x y

(12 y2 + x2)2

R0
021 = −R0

012

R0
030 = −R0

003

R0
102 = − 8 y

x (12 y2 + x2)

R0
113 =

4 y
(
24 y2 + x2

)
(12 y2 + x2)2

R0
120 = −R0

102

R0
123 = −

8 y2
(
12 y2 + 7x2

)
x (12 y2 + x2)2

R0
131 = −R0

113

R0
132 = −R0

123

R0
201 = − 96 y3

x (12 y2 + x2)2

R0
202 =

4
(
12 y2 − x2

)
(12 y2 + x2)2

R0
210 = −R0

201

R0
213 = −

2
(
48 y4 + 24x2 y2 + x4

)
x (12 y2 + x2)2

411
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R0
220 = −R0

202

R0
223 = −4 y (6 y − x) (6 y + x)

(12 y2 + x2)2

R0
231 = −R0

213

R0
232 = −R0

223

R0
303 =

4x2 (2 y − x) (2 y + x)
a2 (12 y2 + x2)

R0
312 =

2x (2 y − x) (2 y + x)
(12 y2 + x2)2

R0
321 = −R0

312

R0
330 = −R0

303

R1
023 = − 24x y2

a2 (12 y2 + x2)

R1
032 = −R1

023

R1
203 =

2x3

a2 (12 y2 + x2)

R1
212 = − 1

x2

R1
221 = −R1

212

R1
230 = −R1

203

R1
302 =

2x
a2

R1
313 = −

x2
(
24 y2 + x2

)
a2 (12 y2 + x2)

R1
320 = −R1

302
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R1
323 =

8x y
(
6 y2 + x2

)
a2 (12 y2 + x2)

R1
331 = −R1

313

R1
332 = −R1

323

R2
002 = − 4x2

a2 (12 y2 + x2)

R2
013 = −2x

a2

R2
020 = −R2

002

R2
023 =

8x2 y

a2 (12 y2 + x2)

R2
031 = −R2

013

R2
032 = −R2

023

R2
103 = − 2x3

a2 (12 y2 + x2)

R2
112 =

1
x2

R2
121 = −R2

112

R2
130 = −R2

103

R2
301 =

24x y2

a2 (12 y2 + x2)

R2
302 = − 8x2 y

a2 (12 y2 + x2)

R2
310 = −R2

301

R2
313 =

8x y
(
6 y2 + x2

)
a2 (12 y2 + x2)
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R2
320 = −R2

302

R2
323 =

x2
(
28 y2 + x2

)
a2 (12 y2 + x2)

R2
331 = −R2

313

R2
332 = −R2

323

R3
003 = − 4x2

a2 (12 y2 + x2)

R3
012 = − 2x

(12 y2 + x2)2

R3
021 = −R3

012

R3
030 = −R3

003

R3
102 = − 2

x (12 y2 + x2)

R3
113 =

24 y2 + x2

(12 y2 + x2)2

R3
120 = −R3

102

R3
123 =

8 y
(
6 y2 − x2

)
x (12 y2 + x2)2

R3
131 = −R3

113

R3
132 = −R3

123

R3
201 = − 24 y2

x (12 y2 + x2)2

R3
202 =

24 y
(12 y2 + x2)2

R3
210 = −R3

201
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R3
213 =

48 y3

x (12 y2 + x2)2

R3
220 = −R3

202

R3
223 = − 60 y2 + x2

(12 y2 + x2)2

R3
231 = −R3

213

R3
232 = −R3

223

R3
303 =

16x2 y

a2 (12 y2 + x2)

R3
312 =

8x y
(12 y2 + x2)2

R3
321 = −R3

312

R3
330 = −R3

303

Ricci Tensor

Ric00 =
8x2

a2 (12 y2 + x2)

Ric03 = − 8x2 y

a2 (12 y2 + x2)

Ric11 = −
2
(
72 y4 + 24x2 y2 + x4

)
x2 (12 y2 + x2)2

Ric12 = − 144 y3

x (12 y2 + x2)2

Ric21 = Ric12

Ric22 = −
4
(
6 y2 − 3x y − x2

) (
6 y2 + 3x y − x2

)
x2 (12 y2 + x2)2

Ric30 = Ric03

Ric33 =
4x2

(
5 y2 − x2

)
a2 (12 y2 + x2)
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Ricci Scalar

Rsc = −
6
(
48 y4 − 4x2 y2 + 3x4

)
a2 (12 y2 + x2)2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −144 y4 − 108x2 y2 + x4

a2 (12 y2 + x2)2

G03 =
4 y
(
144 y4 − 36x2 y2 + 7x4

)
a2 (12 y2 + x2)2

G11 = − 60 y2 − 7x2

(12 y2 + x2)2

G12 = − 144 y3

x (12 y2 + x2)2

G21 = G12

G22 =
72 y2 + 5x2

(12 y2 + x2)2

G30 = G03

G33 = −576 y6 − 432x2 y4 + 76x4 y2 − 5x6

a2 (12 y2 + x2)2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
8x2

(
24 y4 − 8x2 y2 + x4

)
a2 (12 y2 + x2)3
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Current Density Class 1 (-Ri µjµ )

J1 =
2x2

(
72 y4 + 24x2 y2 + x4

)
a4 (12 y2 + x2)2

J2 =
4x2

(
6 y2 − 3x y − x2

) (
6 y2 + 3x y − x2

)
a4 (12 y2 + x2)2

J3 = −
4x2

(
21 y2 − x2

)
a2 (12 y2 + x2)3

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 =
144x3 y3

a4 (12 y2 + x2)2

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 =
144x3 y3

a4 (12 y2 + x2)2

J2 = 0

J3 = 0

4.4.48 Homogeneous perfect fluid, spherical
This metric describes a homogeneous perfect fluid in spherical coordinates. a is
a parameter.

Coordinates

x =


t
r
ϑ
ϕ


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Fig. 4.83: Homogeneous non-null electromagnetic fields, type 2, charge density
ρ for a = 1, y = 1.
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Fig. 4.84: Homogeneous non-null electromagnetic fields, type 2, current density
Jx for a = 1, y = 1.
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Fig. 4.85: Homogeneous non-null electromagnetic fields, type 2, current density
Jy for a = 1, y = 1.
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Fig. 4.86: Homogeneous non-null electromagnetic fields, type 2, current density
Jz for a = 1, y = 1.
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Metric

gµν =


−1 0 0 0
0 1

1− r2
a2

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


−1 0 0 0
0 − (r−a) (r+a)

a2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ1
11 = − r

(r − a) (r + a)

Γ1
22 =

r (r − a) (r + a)
a2

Γ1
33 =

r (r − a) (r + a) sin2 ϑ

a2

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R1
212 =

r2

a2

R1
221 = −R1

212

R1
313 =

r2 sin2 ϑ

a2

R1
331 = −R1

313

R2
112 =

1
(r − a) (r + a)

R2
121 = −R2

112

R2
323 =

r2 sin2 ϑ

a2

R2
332 = −R2

323

R3
113 =

1
(r − a) (r + a)

R3
131 = −R3

113

R3
223 = − r

2

a2

R3
232 = −R3

223

Ricci Tensor

Ric11 = − 2
(r − a) (r + a)

Ric22 =
2 r2

a2

Ric33 =
2 r2 sin2 ϑ

a2
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Ricci Scalar

Rsc =
6
a2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
3
a2

G11 =
1

(r − a) (r + a)

G22 = − r
2

a2

G33 = −r
2 sin2 ϑ

a2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 =
2 (r − a) (r + a)

a4

J2 = − 2
a2 r2

J3 = − 2
a2 r2 sin2 ϑ
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Fig. 4.87: Homogeneous perfect fluid, spherical, current density Jr for a = 1.

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.49 Homogeneous perfect fluid, cartesian
This metric describes a homogeneous perfect fluid in cartesian coordinates. a is
a parameter.
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Fig. 4.88: Homogeneous perfect fluid, spherical, current density Jϑ, Jϕ for a = 1.

Coordinates

x =


t
x
y
z


Metric

gµν =


−a2 0 0 −2 ex

0 a2 0 0
0 0 a2 0
−2 ex 0 0 −a

2 e2 x

2


Contravariant Metric

gµν =


− a2

a4−8 0 0 4 e−x

a4−8

0 1
a2 0 0

0 0 1
a2 0

4 e−x

a4−8 0 0 − 2 a2 e−2 x

a4−8


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Christoffel Connection

Γ0
01 = − 4

a4 − 8

Γ0
10 = Γ0

01

Γ0
13 = − a2 ex

a4 − 8

Γ0
31 = Γ0

13

Γ1
03 =

ex

a2

Γ1
30 = Γ1

03

Γ1
33 =

e2 x

2

Γ3
01 =

2 a2 e−x

a4 − 8

Γ3
10 = Γ3

01

Γ3
13 =

(
a2 − 2

) (
a2 + 2

)
a4 − 8

Γ3
31 = Γ3

13

Metric Compatibility

———— o.k.

Riemann Tensor

R0
003 = − 4 ex

a2 (a4 − 8)

R0
030 = −R0

003
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R0
101 =

2
a4 − 8

R0
110 = −R0

101

R0
113 = −2 a2 ex

a4 − 8

R0
131 = −R0

113

R0
303 = − e2 x

a4 − 8

R0
330 = −R0

303

R1
001 =

2
a4 − 8

R1
010 = −R1

001

R1
013 = − 4 ex

a2 (a4 − 8)

R1
031 = −R1

013

R1
301 =

4 ex

a2 (a4 − 8)

R1
310 = −R1

301

R1
313 =

(
a4 − 10

)
e2 x

2 (a4 − 8)

R1
331 = −R1

313

R3
003 =

2
a4 − 8

R3
030 = −R3

003

R3
113 =

a4 − 2
a4 − 8

R3
131 = −R3

113

R3
303 =

4 ex

a2 (a4 − 8)

R3
330 = −R3

303
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Ricci Tensor

Ric00 = − 4
a4 − 8

Ric03 = − 8 ex

a2 (a4 − 8)

Ric11 = −
(
a2 − 2

) (
a2 + 2

)
a4 − 8

Ric30 = Ric03

Ric33 =

(
a4 − 12

)
e2 x

2 (a4 − 8)

Ricci Scalar

Rsc = −
2
(
a4 − 6

)
a2 (a4 − 8)

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −a
4 − 2
a4 − 8

G03 = −
2
(
a4 − 2

)
ex

a2 (a4 − 8)

G11 = − 2
a4 − 8

G22 =
a4 − 6
a4 − 8

G30 = G03

G33 = − 3 e2 x

a4 − 8
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
4

(a4 − 8)2

Current Density Class 1 (-Ri µjµ )

J1 =

(
a2 − 2

) (
a2 + 2

)
a4 (a4 − 8)

J2 = 0

J3 = −
2
(
a2 − 2

) (
a2 + 2

)
e−2 x

(a4 − 8)2

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.50 Petrov type N metric

Petrov type N metric. There is no diagonal element for v. ρ is a parameter.
The radial charge density is rising exponentially.
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Fig. 4.89: Homogeneous perfect fluid, cartesian, charge density ρ for a = 1.
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Fig. 4.90: Homogeneous perfect fluid, cartesian, current density Jr for a = 1.
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Fig. 4.91: Homogeneous perfect fluid, cartesian, current density Jϕ for a = 1.

Coordinates

x =


u
v
x
y


Metric

gµν =


−2 e2 ρ x 2 0 0

2 0 0 0
0 0 1 0
0 0 0 1


Contravariant Metric

gµν =


0 1

2 0 0
1
2

e2 ρ x

2 0 0
0 0 1 0
0 0 0 1


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Christoffel Connection

Γ1
02 = −ρ e2 ρ x

Γ1
20 = Γ1

02

Γ2
00 = 2 ρ e2 ρ x

Metric Compatibility

———— o.k.

Riemann Tensor

R1
202 = 2 ρ2 e2 ρ x

R1
220 = −R1

202

R2
002 = −4 ρ2 e2 ρ x

R2
020 = −R2

002

Ricci Tensor

Ric00 = 4 ρ2 e2 ρ x

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = 4 ρ2 e2 ρ x

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = −ρ2 e2 ρ x

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.51 Space Rotationally Isotropic Metric

Space Rotationally Isotropic Metric. ε = ±1 is a parameter. A(t) and B(t) are
time-dependent functions.

Coordinates

x =


t
x
y
z


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Fig. 4.92: Petrov type N metric, current density J1 for ρ = 1.
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Fig. 4.93: Petrov type N metric, current density J1 for ρ = −1.
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Metric

gµν =


−ε 0 0 0
0 εA2 0 0
0 0 e2 xB2 0
0 0 0 e2 xB2


Contravariant Metric

gµν =


− 1
ε 0 0 0

0 1
εA2 0 0

0 0 e−2 x

B2 0
0 0 0 e−2 x

B2


Christoffel Connection

Γ0
11 = A

(
d

d t
A

)

Γ0
22 =

e2 xB
(
d
d t B

)
ε

Γ0
33 =

e2 xB
(
d
d t B

)
ε

Γ1
01 =

d
d t A

A

Γ1
10 = Γ1

01

Γ1
22 = −e

2 xB2

εA2

Γ1
33 = −e

2 xB2

εA2

Γ2
02 =

d
d t B

B

Γ2
12 = 1

Γ2
20 = Γ2

02
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Γ2
21 = Γ2

12

Γ3
03 =

d
d t B

B

Γ3
13 = 1

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 = A

(
d2

d t2
A

)

R0
110 = −R0

101

R0
202 =

e2 xB
(
d2

d t2 B
)

ε

R0
212 =

e2 xB
(
A
(
d
d t B

)
− d

d t AB
)

εA

R0
220 = −R0

202

R0
221 = −R0

212

R0
303 =

e2 xB
(
d2

d t2 B
)

ε

R0
313 =

e2 xB
(
A
(
d
d t B

)
− d

d t AB
)

εA

R0
330 = −R0

303
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R0
331 = −R0

313

R1
001 =

d2

d t2 A

A

R1
010 = −R1

001

R1
202 = −

e2 xB
(
A
(
d
d t B

)
− d

d t AB
)

εA3

R1
212 =

e2 xB
(
A
(
d
d t A

) (
d
d t B

)
−B

)
εA2

R1
220 = −R1

202

R1
221 = −R1

212

R1
303 = −

e2 xB
(
A
(
d
d t B

)
− d

d t AB
)

εA3

R1
313 =

e2 xB
(
A
(
d
d t A

) (
d
d t B

)
−B

)
εA2

R1
330 = −R1

303

R1
331 = −R1

313

R2
002 =

d2

d t2 B

B

R2
012 =

A
(
d
d t B

)
− d

d t AB

AB

R2
020 = −R2

002

R2
021 = −R2

012

R2
102 =

A
(
d
d t B

)
− d

d t AB

AB

R2
112 = −

A
(
d
d t A

) (
d
d t B

)
−B

B
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R2
120 = −R2

102

R2
121 = −R2

112

R2
323 =

e2 x
(
A
(
d
d t B

)
−B

) (
A
(
d
d t B

)
+B

)
εA2

R2
332 = −R2

323

R3
003 =

d2

d t2 B

B

R3
013 =

A
(
d
d t B

)
− d

d t AB

AB

R3
030 = −R3

003

R3
031 = −R3

013

R3
103 =

A
(
d
d t B

)
− d

d t AB

AB

R3
113 = −

A
(
d
d t A

) (
d
d t B

)
−B

B

R3
130 = −R3

103

R3
131 = −R3

113

R3
223 = −

e2 x
(
A
(
d
d t B

)
−B

) (
A
(
d
d t B

)
+B

)
εA2

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
2A

(
d2

d t2 B
)

+ d2

d t2 AB

AB

Ric01 = −
2
(
A
(
d
d t B

)
− d

d t AB
)

AB

Ric10 = Ric01

Ric11 =
2A

(
d
d t A

) (
d
d t B

)
+A

(
d2

d t2 A
)
B − 2B

B

Ric22 =
e2 x

(
A2B

(
d2

d t2 B
)

+A2
(
d
d t B

)2
+A

(
d
d t A

)
B
(
d
d t B

)
− 2B2

)
εA2

Ric33 =
e2 x

(
A2B

(
d2

d t2 B
)

+A2
(
d
d t B

)2
+A

(
d
d t A

)
B
(
d
d t B

)
− 2B2

)
εA2

Ricci Scalar

Rsc =
2
(

2A2B
(
d2

d t2 B
)

+A2
(
d
d t B

)2
+ 2A

(
d
d t A

)
B
(
d
d t B

)
+A

(
d2

d t2 A
)
B2 − 3B2

)
εA2B2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
A2
(
d
d t B

)2
+ 2A

(
d
d t A

)
B
(
d
d t B

)
− 3B2

A2B2

G01 = −
2
(
A
(
d
d t B

)
− d

d t AB
)

AB

G10 = G01

G11 = −
2A2B

(
d2

d t2 B
)

+A2
(
d
d t B

)2 −B2

B2
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G22 = −
e2 xB

(
A2
(
d2

d t2 B
)

+A
(
d
d t A

) (
d
d t B

)
+A

(
d2

d t2 A
)
B −B

)
εA2

G33 = −
e2 xB

(
A2
(
d2

d t2 B
)

+A
(
d
d t A

) (
d
d t B

)
+A

(
d2

d t2 A
)
B −B

)
εA2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
2A

(
d2

d t2 B
)

+ d2

d t2 AB

ε2AB

Current Density Class 1 (-Ri µjµ )

J1 = −
2A

(
d
d t A

) (
d
d t B

)
+A

(
d2

d t2 A
)
B − 2B

ε2A4B

J2 = −
e−2 x

(
A2B

(
d2

d t2 B
)

+A2
(
d
d t B

)2
+A

(
d
d t A

)
B
(
d
d t B

)
− 2B2

)
εA2B4

J3 = −
e−2 x

(
A2B

(
d2

d t2 B
)

+A2
(
d
d t B

)2
+A

(
d
d t A

)
B
(
d
d t B

)
− 2B2

)
εA2B4

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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4.4.52 Electrovacuum metric
Metric of electrovacuum. There is only a constant current density Jx.

Coordinates

x =


t
x
y
z


Metric

gµν =


−1 0 0 0
0 4

3 0 0
0 0 e−2 x 0
0 0 0 e2 x


Contravariant Metric

gµν =


−1 0 0 0
0 3

22 0 0
0 0 e2 x 0
0 0 0 e−2 x


Christoffel Connection

Γ1
22 =

3 e−2 x

4

Γ1
33 = −3 e2 x

4

Γ2
12 = −1

Γ2
21 = Γ2

12

Γ3
13 = 1

Γ3
31 = Γ3

13

Metric Compatibility

———— o.k.
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Riemann Tensor

R1
212 = −3 e−2 x

4

R1
221 = −R1

212

R1
313 = −3 e2 x

4

R1
331 = −R1

313

R2
112 = 1

R2
121 = −R2

112

R2
323 =

3 e2 x

4

R2
332 = −R2

323

R3
113 = 1

R3
131 = −R3

113

R3
223 = −3 e−2 x

4

R3
232 = −R3

223

Ricci Tensor

Ric11 = −2

Ricci Scalar

Rsc = −3
2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 = − 3
22

G11 = −1

G22 =
3 e−2 x

4

G33 =
3 e2 x

4

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 =
32

23

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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4.4.53 Spatially homogeneous perfect fluid cosmologies
Metric of spatially homogeneous perfect fluid cosmologies. Coordinate functions
are a(t) and Σ(r, k) where k is a parameter. The coordinate dependence of
charge and current density is implicitly defined by the models of a and Σ. There
is no explicit coordinate dependence.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−1 0 0 0
0 a2 0 0
0 0 a2 Σ2 0
0 0 0 a2 Σ2 sin2 ϑ


Contravariant Metric

gµν =


−1 0 0 0
0 1

a2 0 0
0 0 1

a2 Σ2 0
0 0 0 1

a2 Σ2 sin2 ϑ


Christoffel Connection

Γ0
11 = a

(
d

d t
a

)

Γ0
22 = a

(
d

d t
a

)
Σ2

Γ0
33 = a

(
d

d t
a

)
Σ2 sin2 ϑ

Γ1
01 =

d
d t a

a

Γ1
10 = Γ1

01
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Γ1
22 = −Σ

(
d

d r
Σ
)

Γ1
33 = −Σ

(
d

d r
Σ
)

sin2 ϑ

Γ2
02 =

d
d t a

a

Γ2
12 =

d
d r Σ

Σ

Γ2
20 = Γ2

02

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
03 =

d
d t a

a

Γ3
13 =

d
d r Σ

Σ

Γ3
23 =

cosϑ
sinϑ

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 = a

(
d2

d t2
a

)

R0
110 = −R0

101

R0
202 = a

(
d2

d t2
a

)
Σ2

R0
220 = −R0

202

R0
303 = a

(
d2

d t2
a

)
Σ2 sin2 ϑ

R0
330 = −R0

303

R1
001 =

d2

d t2 a

a

R1
010 = −R1

001

R1
212 = −Σ

(
d2

d r2
Σ−

(
d

d t
a

)2

Σ

)

R1
221 = −R1

212

R1
313 = −Σ

(
d2

d r2
Σ−

(
d

d t
a

)2

Σ

)
sin2 ϑ

R1
331 = −R1

313

R2
002 =

d2

d t2 a

a

R2
020 = −R2

002

R2
112 =

d2

d r2 Σ−
(
d
d t a

)2
Σ

Σ
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R2
121 = −R2

112

R2
323 = −

((
d

d r
Σ
)2

−
(
d

d t
a

)2

Σ2 − 1

)
sin2 ϑ

R2
332 = −R2

323

R3
003 =

d2

d t2 a

a

R3
030 = −R3

003

R3
113 =

d2

d r2 Σ−
(
d
d t a

)2
Σ

Σ

R3
131 = −R3

113

R3
223 =

(
d

d r
Σ
)2

−
(
d

d t
a

)2

Σ2 − 1

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
3
(
d2

d t2 a
)

a

Ric11 = −
2
(
d2

d r2 Σ
)
− a

(
d2

d t2 a
)

Σ− 2
(
d
d t a

)2
Σ

Σ

Ric22 = −

(
Σ
(
d2

d r2
Σ
)

+
(
d

d r
Σ
)2

− a
(
d2

d t2
a

)
Σ2 − 2

(
d

d t
a

)2

Σ2 − 1

)

Ric33 = −

(
Σ
(
d2

d r2
Σ
)

+
(
d

d r
Σ
)2

− a
(
d2

d t2
a

)
Σ2 − 2

(
d

d t
a

)2

Σ2 − 1

)
sin2 ϑ

Ricci Scalar

Rsc = −
2
(

2 Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − 3 a
(
d2

d t2 a
)

Σ2 − 3
(
d
d t a

)2
Σ2 − 1

)
a2 Σ2
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
2 Σ

(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − 3
(
d
d t a

)2
Σ2 − 1

a2 Σ2

G11 =

(
d
d r Σ

)2 − 2 a
(
d2

d t2 a
)

Σ2 −
(
d
d t a

)2
Σ2 − 1

Σ2

G22 = Σ

(
d2

d r2
Σ− 2 a

(
d2

d t2
a

)
Σ−

(
d

d t
a

)2

Σ

)

G33 = Σ

(
d2

d r2
Σ− 2 a

(
d2

d t2
a

)
Σ−

(
d

d t
a

)2

Σ

)
sin2 ϑ

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
3
(
d2

d t2 a
)

a

Current Density Class 1 (-Ri µjµ )

J1 =
2
(
d2

d r2 Σ
)
− a

(
d2

d t2 a
)

Σ− 2
(
d
d t a

)2
Σ

a4 Σ

J2 =
Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − a ( d2

d t2 a
)

Σ2 − 2
(
d
d t a

)2
Σ2 − 1

a4 Σ4

J3 =
Σ
(
d2

d r2 Σ
)

+
(
d
d r Σ

)2 − a ( d2

d t2 a
)

Σ2 − 2
(
d
d t a

)2
Σ2 − 1

a4 Σ4 sin2 ϑ
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.54 The main cosmological models
Metric of the main cosmological models. Coordinate functions are A(t), B(t),
and Σ(y, k) where k is a parameter. The coordinate dependence of charge and
current density is implicitly defined by the models of A, B, and Σ. There is no
explicit coordinate dependence.

Coordinates

x =


t
x
y
z


Metric

gµν =


−1 0 0 0
0 A2 0 0
0 0 B2 0
0 0 0 Σ2B2


Contravariant Metric

gµν =


−1 0 0 0
0 1

A2 0 0
0 0 1

B2 0
0 0 0 1

Σ2 B2


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Christoffel Connection

Γ0
11 = A

(
d

d t
A

)

Γ0
22 = B

(
d

d t
B

)

Γ0
33 = Σ2B

(
d

d t
B

)

Γ1
01 =

d
d t A

A

Γ1
10 = Γ1

01

Γ2
02 =

d
d t B

B

Γ2
20 = Γ2

02

Γ2
33 = −Σ

(
d

d y
Σ
)

Γ3
03 =

d
d t B

B

Γ3
23 =

d
d y Σ

Σ

Γ3
30 = Γ3

03

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

449



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Riemann Tensor

R0
101 = A

(
d2

d t2
A

)

R0
110 = −R0

101

R0
202 = B

(
d2

d t2
B

)

R0
220 = −R0

202

R0
303 = Σ2B

(
d2

d t2
B

)

R0
330 = −R0

303

R1
001 =

d2

d t2 A

A

R1
010 = −R1

001

R1
212 =

d
d t AB

(
d
d t B

)
A

R1
221 = −R1

212

R1
313 =

Σ2
(
d
d t A

)
B
(
d
d t B

)
A

R1
331 = −R1

313

R2
002 =

d2

d t2 B

B

R2
020 = −R2

002

R2
112 = −

A
(
d
d t A

) (
d
d t B

)
B

R2
121 = −R2

112
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R2
323 = Σ

(
Σ
(
d

d t
B

)2

− d2

d y2
Σ

)

R2
332 = −R2

323

R3
003 =

d2

d t2 B

B

R3
030 = −R3

003

R3
113 = −

A
(
d
d t A

) (
d
d t B

)
B

R3
131 = −R3

113

R3
223 = −

Σ
(
d
d t B

)2 − d2

d y2 Σ

Σ

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
2A

(
d2

d t2 B
)

+ d2

d t2 AB

AB

Ric11 =
A
(

2
(
d
d t A

) (
d
d t B

)
+ d2

d t2 AB
)

B

Ric22 =
ΣAB

(
d2

d t2 B
)

+ ΣA
(
d
d t B

)2
+ Σ

(
d
d t A

)
B
(
d
d t B

)
− d2

d y2 ΣA

ΣA

Ric33 =
Σ
(

ΣAB
(
d2

d t2 B
)

+ ΣA
(
d
d t B

)2
+ Σ

(
d
d t A

)
B
(
d
d t B

)
− d2

d y2 ΣA
)

A

Ricci Scalar

Rsc =
2
(

2 ΣAB
(
d2

d t2 B
)

+ ΣA
(
d
d t B

)2
+ 2 Σ

(
d
d t A

)
B
(
d
d t B

)
+ Σ

(
d2

d t2 A
)
B2 − d2

d y2 ΣA
)

ΣAB2
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Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
ΣA

(
d
d t B

)2
+ 2 Σ

(
d
d t A

)
B
(
d
d t B

)
− d2

d y2 ΣA

ΣAB2

G11 = −
A2
(

2 ΣB
(
d2

d t2 B
)

+ Σ
(
d
d t B

)2 − d2

d y2 Σ
)

ΣB2

G22 = −
B
(
A
(
d2

d t2 B
)

+ d
d t A

(
d
d t B

)
+ d2

d t2 AB
)

A

G33 = −
Σ2B

(
A
(
d2

d t2 B
)

+ d
d t A

(
d
d t B

)
+ d2

d t2 AB
)

A

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
2A

(
d2

d t2 B
)

+ d2

d t2 AB

AB

Current Density Class 1 (-Ri µjµ )

J1 = −
2
(
d
d t A

) (
d
d t B

)
+ d2

d t2 AB

A3B

J2 = −
ΣAB

(
d2

d t2 B
)

+ ΣA
(
d
d t B

)2
+ Σ

(
d
d t A

)
B
(
d
d t B

)
− d2

d y2 ΣA

ΣAB4

J3 = −
ΣAB

(
d2

d t2 B
)

+ ΣA
(
d
d t B

)2
+ Σ

(
d
d t A

)
B
(
d
d t B

)
− d2

d y2 ΣA

Σ3AB4
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Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.55 Petrov type D fluid

Metric of the Petrov type D fluid. a and n are parameters. The charge and
current densities are partly increasing exponentially with x.

Coordinates

x =


t
x
y
z


Metric

gµν =


−e−2 a x 0 0 0

0 1 0 0
0 0 tn+1 e−2 a x 0
0 0 0 t1−n e−2 a x


Contravariant Metric

gµν =


−e2 a x 0 0 0

0 1 0 0
0 0 t−n−1 e2 a x 0
0 0 0 tn−1 e2 a x


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Christoffel Connection

Γ0
01 = −a

Γ0
10 = Γ0

01

Γ0
22 =

(n+ 1) tn

2

Γ0
33 = −n− 1

2 tn

Γ1
00 = −a e−2 a x

Γ1
22 = a tn+1 e−2 a x

Γ1
33 = a t1−n e−2 a x

Γ2
02 =

n+ 1
2 t

Γ2
12 = −a

Γ2
20 = Γ2

02

Γ2
21 = Γ2

12

Γ3
03 = −n− 1

2 t

Γ3
13 = −a

Γ3
30 = Γ3

03

Γ3
31 = Γ3

13

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 = −a2

R0
110 = −R0

101

R0
202 =

tn−1 e−2 a x
(
n2 e2 a x − e2 a x − 4 a2 t2

)
4

R0
220 = −R0

202

R0
303 =

t−n−1 e−2 a x
(
n2 e2 a x − e2 a x − 4 a2 t2

)
4

R0
330 = −R0

303

R1
001 = −a2 e−2 a x

R1
010 = −R1

001

R1
212 = −a2 tn+1 e−2 a x

R1
221 = −R1

212

R1
313 = −a2 t1−n e−2 a x

R1
331 = −R1

313

R2
002 =

e−2 a x
(
n2 e2 a x − e2 a x − 4 a2 t2

)
4 t2

R2
020 = −R2

002

R2
112 = a2

R2
121 = −R2

112

R2
323 = −

t−n−1 e−2 a x
(
n2 e2 a x − e2 a x + 4 a2 t2

)
4

R2
332 = −R2

323
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R3
003 =

e−2 a x
(
n2 e2 a x − e2 a x − 4 a2 t2

)
4 t2

R3
030 = −R3

003

R3
113 = a2

R3
131 = −R3

113

R3
223 =

tn−1 e−2 a x
(
n2 e2 a x − e2 a x + 4 a2 t2

)
4

R3
232 = −R3

223

Ricci Tensor

Ric00 = −
e−2 a x

(
n2 e2 a x − e2 a x − 6 a2 t2

)
2 t2

Ric11 = −3 a2

Ric22 = −3 a2 tn+1 e−2 a x

Ric33 = −3 a2 t1−n e−2 a x

Ricci Scalar

Rsc =
n2 e2 a x − e2 a x − 24 a2 t2

2 t2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
e−2 a x

(
n2 e2 a x − e2 a x + 12 a2 t2

)
4 t2

G11 = −n
2 e2 a x − e2 a x − 12 a2 t2

4 t2

G22 = −
tn−1 e−2 a x

(
n2 e2 a x − e2 a x − 12 a2 t2

)
4

G33 = −
t−n−1 e−2 a x

(
n2 e2 a x − e2 a x − 12 a2 t2

)
4
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
e2 a x

(
n2 e2 a x − e2 a x − 6 a2 t2

)
2 t2

Current Density Class 1 (-Ri µjµ )

J1 = 3 a2

J2 = 3 a2 t−n−1 e2 a x

J3 = 3 a2 tn−1 e2 a x

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.56 Spherically symmetric electromagnetic field with
Λ = 0

Metric of the Spherically symmetric electromagnetic field with Λ = 0. m and e
are parameters.
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Fig. 4.94: Petrov type D fluid, charge density ρ for a = 1, n = 2, x = 1.

-4

-2

 0

 2

 4

 0  1  2  3  4  5

C
u
rr

e
n
t 
D

e
n

s
it
y
 J

1

t

Fig. 4.95: Petrov type D fluid, current density J1 for a = 1, n = 2, x=1.
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Fig. 4.96: Petrov type D fluid, current density J2, J3 for a = 1, n = 2, x=1.
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Fig. 4.97: Petrov type D fluid, charge density, x dependence ρ(x) for a = 1, n =
2, t = 1.
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Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


2m
r −

e2

r2 − 1 0 0 0
0 1

− 2m
r + e2

r2
+1

0 0

0 0 r2 0
0 0 0 r2 sin2 ϑ


Contravariant Metric

gµν =


− r2

r2−2mr+e2 0 0 0
0 r2−2mr+e2

r2 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 =

mr − e2

r (r2 − 2mr + e2)

Γ0
10 = Γ0

01

Γ1
00 =

(
mr − e2

) (
r2 − 2mr + e2

)
r5

Γ1
11 = − mr − e2

r (r2 − 2mr + e2)

Γ1
22 = −r

2 − 2mr + e2

r

Γ1
33 = −

(
r2 − 2mr + e2

)
sin2 ϑ

r

Γ2
12 =

1
r
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Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

2mr − 3 e2

r2 (r2 − 2mr + e2)

R0
110 = −R0

101

R0
202 = −mr − e2

r2

R0
220 = −R0

202

R0
303 = −

(
mr − e2

)
sin2 ϑ

r2

R0
330 = −R0

303

R1
001 =

(
2mr − 3 e2

) (
r2 − 2mr + e2

)
r6

R1
010 = −R1

001

R1
212 = −mr − e2

r2
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R1
221 = −R1

212

R1
313 = −

(
mr − e2

)
sin2 ϑ

r2

R1
331 = −R1

313

R2
002 = −

(
mr − e2

) (
r2 − 2mr + e2

)
r6

R2
020 = −R2

002

R2
112 =

mr − e2

r2 (r2 − 2mr + e2)

R2
121 = −R2

112

R2
323 =

(
2mr − e2

)
sin2 ϑ

r2

R2
332 = −R2

323

R3
003 = −

(
mr − e2

) (
r2 − 2mr + e2

)
r6

R3
030 = −R3

003

R3
113 =

mr − e2

r2 (r2 − 2mr + e2)

R3
131 = −R3

113

R3
223 = −2mr − e2

r2

R3
232 = −R3

223
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Ricci Tensor

Ric00 =
e2
(
r2 − 2mr + e2

)
r6

Ric11 = − e2

r2 (r2 − 2mr + e2)

Ric22 =
e2

r2

Ric33 =
e2 sin2 ϑ

r2

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
e2
(
r2 − 2mr + e2

)
r6

G11 = − e2

r2 (r2 − 2mr + e2)

G22 =
e2

r2

G33 =
e2 sin2 ϑ

r2

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ =
e2

r2 (r2 − 2mr + e2)

Current Density Class 1 (-Ri µjµ )

J1 =
e2
(
r2 − 2mr + e2

)
r6

J2 = −e
2

r6

J3 = − e2

r6 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.57 Plane symmetric vacuum metric
Metric of a plane-symmetric vacuum. This is a true vacuum metric.

Coordinates

x =


t
x
y
z


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Metric

gµν =


− 1√

z
0 0 0

0 z 0 0
0 0 z 0
0 0 0 1√

z


Contravariant Metric

gµν =


−
√
z 0 0 0

0 1
z 0 0

0 0 1
z 0

0 0 0
√
z


Christoffel Connection

Γ0
03 = − 1

4 z

Γ0
30 = Γ0

03

Γ1
13 =

1
2 z

Γ1
31 = Γ1

13

Γ2
23 =

1
2 z

Γ2
32 = Γ2

23

Γ3
00 = − 1

4 z

Γ3
11 = −

√
z

2

Γ3
22 = −

√
z

2

Γ3
33 = − 1

4 z
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

1
8
√
z

R0
110 = −R0

101

R0
202 =

1
8
√
z

R0
220 = −R0

202

R0
303 = − 1

4 z2

R0
330 = −R0

303

R1
001 =

1
8 z2

R1
010 = −R1

001

R1
212 = − 1

4
√
z

R1
221 = −R1

212

R1
313 =

1
8 z2

R1
331 = −R1

313

R2
002 =

1
8 z2

R2
020 = −R2

002

R2
112 =

1
4
√
z
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R2
121 = −R2

112

R2
323 =

1
8 z2

R2
332 = −R2

323

R3
003 = − 1

4 z2

R3
030 = −R3

003

R3
113 = − 1

8
√
z

R3
131 = −R3

113

R3
223 = − 1

8
√
z

R3
232 = −R3

223

Ricci Tensor

———— all elements zero

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ = 0

Current Density Class 1 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.58 Sheared dust metric

Metric of a sheared dust. n is a parameter. Functions A and B depend on r.

Coordinates

x =


t
r
ϑ
ϕ


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Metric

gµν =


1− n2 0 0 0

0
(
B
tn + tnA

)2
0 0

0 0 t2 0
0 0 0 t2 sin2 ϑ


Contravariant Metric

gµν =


− 1

(n−1) (n+1) 0 0 0

0 t2n

(B+t2n A)2 0 0
0 0 1

t2 0
0 0 0 1

t2 sin2 ϑ


Christoffel Connection

Γ0
11 = −

n t−2n−1
(
B − t2nA

) (
B + t2nA

)
(n− 1) (n+ 1)

Γ0
22 =

t

(n− 1) (n+ 1)

Γ0
33 =

t sin2 ϑ

(n− 1) (n+ 1)

Γ1
01 = −

n
(
B − t2nA

)
t (B + t2nA)

Γ1
10 = Γ1

01

Γ1
11 =

d
d r B + t2n

(
d
d r A

)
B + t2nA

Γ2
02 =

1
t

Γ2
20 = Γ2

02

Γ2
33 = − cosϑ sinϑ

Γ3
03 =

1
t

Γ3
23 =

cosϑ
sinϑ

Γ3
30 = Γ3

03

Γ3
32 = Γ3

23
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Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

n t−2n−2
(
B + t2nA

) (
nB +B + n t2nA− t2nA

)
(n− 1) (n+ 1)

R0
110 = −R0

101

R1
001 =

n
(
nB +B + n t2nA− t2nA

)
t2 (B + t2nA)

R1
010 = −R1

001

R1
212 = −

n
(
B − t2nA

)
(n− 1) (n+ 1) (B + t2nA)

R1
221 = −R1

212

R1
313 = −

n sin2 ϑ
(
B − t2nA

)
(n− 1) (n+ 1) (B + t2nA)

R1
331 = −R1

313

R2
112 =

n t−2n−2
(
B − t2nA

) (
B + t2nA

)
(n− 1) (n+ 1)

R2
121 = −R2

112

R2
323 =

n2 sin2 ϑ

(n− 1) (n+ 1)

R2
332 = −R2

323

R3
113 =

n t−2n−2
(
B − t2nA

) (
B + t2nA

)
(n− 1) (n+ 1)

R3
131 = −R3

113

R3
223 = − n2

(n− 1) (n+ 1)

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
n
(
nB +B + n t2nA− t2nA

)
t2 (B + t2nA)

Ric11 =
n t−2n−2

(
B + t2nA

) (
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1)

Ric22 =
n
(
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1) (B + t2nA)

Ric33 =
n sin2 ϑ

(
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1) (B + t2nA)

Ricci Scalar

Rsc =
2n

(
2nB −B + 2n t2nA+ t2nA

)
(n− 1) (n+ 1) t2 (B + t2nA)

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 =
n
(
nB − 2B + n t2nA+ 2 t2nA

)
t2 (B + t2nA)

G11 = −
n2 t−2n−2

(
B + t2nA

)2
(n− 1) (n+ 1)

G22 = − n2

(n− 1) (n+ 1)

G33 = − n2 sin2 ϑ

(n− 1) (n+ 1)

Hodge Dual of Bianchi Identity

———— (see charge and current densities)
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Scalar Charge Density (-R0 i0
i )

ρ = −
n
(
nB +B + n t2nA− t2nA

)
(n− 1)2 (n+ 1)2

t2 (B + t2nA)

Current Density Class 1 (-Ri µjµ )

J1 = −
n t2n−2

(
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1) (B + t2nA)3

J2 = −
n
(
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1) t4 (B + t2nA)

J3 = −
n
(
nB −B + n t2nA+ t2nA

)
(n− 1) (n+ 1) t4 sin2 ϑ (B + t2nA)

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.59 Plane-symmetric perfect fluid metric
Metric of a plane-symmetric perfect fluid. a and b are parameters. There is a
symmetry in tensors for x and y.

Coordinates

x =


t
x
y
z


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Metric

gµν =


−eb e−2 (t−z)+2 z 0 0 0

0 e2 (z+t) 0 0
0 0 e2 (z+t) 0
0 0 0 a2 eb e

−2 (t−z)+2 z


Contravariant Metric

gµν =


−e−b e2 z−2 t−2 z 0 0 0

0 e−2 z−2 t 0 0
0 0 e−2 z−2 t 0

0 0 0 e−b e
2 z−2 t−2 z

a2


Christoffel Connection

Γ0
00 = −b e2 z−2 t

Γ0
03 = e−2 t

(
b e2 z + e2 t

)
Γ0

11 = e2 t−b e2 z−2 t

Γ0
22 = e2 t−b e2 z−2 t

Γ0
30 = Γ0

03

Γ0
33 = −a2 b e2 z−2 t

Γ1
01 = 1

Γ1
10 = Γ1

01

Γ1
13 = 1

Γ1
31 = Γ1

13

Γ2
02 = 1

Γ2
20 = Γ2

02

Γ2
23 = 1
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Γ2
32 = Γ2

23

Γ3
00 =

e−2 t
(
b e2 z + e2 t

)
a2

Γ3
03 = −b e2 z−2 t

Γ3
11 = −e

2 t−b e2 z−2 t

a2

Γ3
22 = −e

2 t−b e2 z−2 t

a2

Γ3
30 = Γ3

03

Γ3
33 = e−2 t

(
b e2 z + e2 t

)
Metric Compatibility

———— o.k.

Riemann Tensor

R0
101 =

(a− 1) (a+ 1)
(
b e2 z + e2 t

)
e−b e

2 z−2 t

a2

R0
110 = −R0

101

R0
202 =

(a− 1) (a+ 1)
(
b e2 z + e2 t

)
e−b e

2 z−2 t

a2

R0
220 = −R0

202

R0
303 = 2 (a− 1) (a+ 1) b e2 z−2 t

R0
330 = −R0

303

R1
001 =

(a− 1) (a+ 1) e−2 t
(
b e2 z + e2 t

)
a2

R1
010 = −R1

001
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R1
212 =

(a− 1) (a+ 1) e2 t−b e2 z−2 t

a2

R1
221 = −R1

212

R1
313 = − (a− 1) (a+ 1) b e2 z−2 t

R1
331 = −R1

313

R2
002 =

(a− 1) (a+ 1) e−2 t
(
b e2 z + e2 t

)
a2

R2
020 = −R2

002

R2
112 = − (a− 1) (a+ 1) e2 t−b e2 z−2 t

a2

R2
121 = −R2

112

R2
323 = − (a− 1) (a+ 1) b e2 z−2 t

R2
332 = −R2

323

R3
003 =

2 (a− 1) (a+ 1) b e2 z−2 t

a2

R3
030 = −R3

003

R3
113 =

(a− 1) (a+ 1) b e2 z−b e2 z−2 t

a2

R3
131 = −R3

113

R3
223 =

(a− 1) (a+ 1) b e2 z−b e2 z−2 t

a2

R3
232 = −R3

223
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Ricci Tensor

Ric00 = −
2 (a− 1) (a+ 1) e−2 t

(
2 b e2 z + e2 t

)
a2

Ric11 =
2 (a− 1) (a+ 1) e2 t−b e2 z−2 t

a2

Ric22 =
2 (a− 1) (a+ 1) e2 t−b e2 z−2 t

a2

Ricci Scalar

Rsc =
2 (a− 1) (a+ 1)

(
2 b e2 z + 3 e2 t

)
e−b e

2 z−2 t−2 z−2 t

a2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = −
(a− 1) (a+ 1) e−2 t

(
2 b e2 z − e2 t

)
a2

G11 = −
(a− 1) (a+ 1)

(
2 b e2 z + e2 t

)
e−b e

2 z−2 t

a2

G22 = −
(a− 1) (a+ 1)

(
2 b e2 z + e2 t

)
e−b e

2 z−2 t

a2

G33 = − (a− 1) (a+ 1) e−2 t
(
2 b e2 z + 3 e2 t

)
Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
2 (a− 1) (a+ 1)

(
2 b e2 z + e2 t

)
e−2 b e2 z−2 t−4 z−2 t

a2
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Current Density Class 1 (-Ri µjµ )

J1 = −2 (a− 1) (a+ 1) e−b e
2 z−2 t−4 z−2 t

a2

J2 = −2 (a− 1) (a+ 1) e−b e
2 z−2 t−4 z−2 t

a2

J3 = 0

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.60 Spherically symmetric perfect fluid metric (static)
Metric of a spherically symmetric perfect fluid (static). δ and ν are functions
of r.

Coordinates

x =


t
r
ϑ
ϕ


Metric

gµν =


−e2 ν 0 0 0

0 e2λ 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ


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Contravariant Metric

gµν =


−e−2 ν 0 0 0

0 e−2λ 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ


Christoffel Connection

Γ0
01 =

d

d r
ν

Γ0
10 = Γ0

01

Γ1
00 =

d

d r
ν e2 ν−2λ

Γ1
11 =

d

d r
λ

Γ1
22 = −r e−2λ

Γ1
33 = −r sin2 ϑ e−2λ

Γ2
12 =

1
r

Γ2
21 = Γ2

12

Γ2
33 = − cosϑ sinϑ

Γ3
13 =

1
r

Γ3
23 =

cosϑ
sinϑ

Γ3
31 = Γ3

13

Γ3
32 = Γ3

23

Metric Compatibility

———— o.k.
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Riemann Tensor

R0
101 =

d

d r
ν

(
d

d r
λ

)
− d2

d r2
ν −

(
d

d r
ν

)2

R0
110 = −R0

101

R0
202 = − d

d r
ν r e−2λ

R0
220 = −R0

202

R0
303 = − d

d r
ν r sin2 ϑ e−2λ

R0
330 = −R0

303

R1
001 = e2 ν−2λ

(
d

d r
ν

(
d

d r
λ

)
− d2

d r2
ν −

(
d

d r
ν

)2
)

R1
010 = −R1

001

R1
212 = r e−2λ

(
d

d r
λ

)

R1
221 = −R1

212

R1
313 = r sin2 ϑ e−2λ

(
d

d r
λ

)

R1
331 = −R1

313

R2
002 = −

d
d r ν e

2 ν−2λ

r

R2
020 = −R2

002

R2
112 = −

d
d r λ

r

R2
121 = −R2

112
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R2
323 = sin2 ϑ e−2λ

(
eλ − 1

) (
eλ + 1

)
R2

332 = −R2
323

R3
003 = −

d
d r ν e

2 ν−2λ

r

R3
030 = −R3

003

R3
113 = −

d
d r λ

r

R3
131 = −R3

113

R3
223 = −e−2λ

(
eλ − 1

) (
eλ + 1

)
R3

232 = −R3
223

Ricci Tensor

Ric00 = −
e2 ν−2λ

(
d
d r ν r

(
d
d r λ

)
− d2

d r2 ν r −
(
d
d r ν

)2
r − 2

(
d
d r ν

))
r

Ric11 =
d
d r ν r

(
d
d r λ

)
+ 2

(
d
d r λ

)
− d2

d r2 ν r −
(
d
d r ν

)2
r

r

Ric22 = e−2λ

(
r

(
d

d r
λ

)
+ e2λ − d

d r
ν r − 1

)

Ric33 = sin2 ϑ e−2λ

(
r

(
d

d r
λ

)
+ e2λ − d

d r
ν r − 1

)
Ricci Scalar

Rsc =
2 e−2λ

(
d
d r ν r

2
(
d
d r λ

)
+ 2 r

(
d
d r λ

)
+ e2λ − d2

d r2 ν r
2 −

(
d
d r ν

)2
r2 − 2

(
d
d r ν

)
r − 1

)
r2

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.
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Einstein Tensor

G00 =
e2 ν−2λ

(
2 r
(
d
d r λ

)
+ e2λ − 1

)
r2

G11 = −
e2λ − 2

(
d
d r ν

)
r − 1

r2

G22 = −r e−2λ

(
d

d r
ν r

(
d

d r
λ

)
+

d

d r
λ− d2

d r2
ν r −

(
d

d r
ν

)2

r − d

d r
ν

)

G33 = −r sin2 ϑ e−2λ

(
d

d r
ν r

(
d

d r
λ

)
+

d

d r
λ− d2

d r2
ν r −

(
d

d r
ν

)2

r − d

d r
ν

)

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ = −
e−2λ−2 ν

(
d
d r ν r

(
d
d r λ

)
− d2

d r2 ν r −
(
d
d r ν

)2
r − 2

(
d
d r ν

))
r

Current Density Class 1 (-Ri µjµ )

J1 = −
e−4λ

(
d
d r ν r

(
d
d r λ

)
+ 2

(
d
d r λ

)
− d2

d r2 ν r −
(
d
d r ν

)2
r
)

r

J2 = −
e−2λ

(
r
(
d
d r λ

)
+ e2λ − d

d r ν r − 1
)

r4

J3 = −
e−2λ

(
r
(
d
d r λ

)
+ e2λ − d

d r ν r − 1
)

r4 sin2 ϑ

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.61 Spherically symmetric perfect fluid metric (dynamic)

Metric of a spherically symmetric perfect fluid (dynamic). λ, ν, and y are
functions of r and t.

Coordinates

x =

0B@ t
r
ϑ
ϕ

1CA
Metric

gµν =

0BB@
−e2 ν 0 0 0

0 e2λ 0 0
0 0 y2 0
0 0 0 sin2 ϑ y2

1CCA
Contravariant Metric

g
µν

=

0BBB@
−e−2 ν 0 0 0

0 e−2λ 0 0
0 0 1

y2 0

0 0 0 1
sin2 ϑ y2

1CCCA
Christoffel Connection

Γ
0
00 =

d

d t
ν

Γ
0
01 =

d

d r
ν

Γ
0
10 = Γ

0
01

Γ
0
11 = e

2λ−2 ν
„
d

d t
λ

«

Γ
0
22 = e

−2 ν
y

„
d

d t
y

«
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Γ
0
33 = e

−2 ν
sin

2
ϑ y

„
d

d t
y

«

Γ
1
00 =

d

d r
ν e

2 ν−2λ

Γ
1
01 =

d

d t
λ

Γ
1
10 = Γ

1
01

Γ
1
11 =

d

d r
λ

Γ
1
22 = −y

„
d

d r
y

«
e
−2λ

Γ
1
33 = − sin

2
ϑ y

„
d

d r
y

«
e
−2λ

Γ
2
02 =

d
d t y

y

Γ
2
12 =

d
d r y

y

Γ
2
20 = Γ

2
02

Γ
2
21 = Γ

2
12

Γ
2
33 = − cosϑ sinϑ

Γ
3
03 =

d
d t y

y

Γ
3
13 =

d
d r y

y

Γ
3
23 =

cosϑ

sinϑ

Γ
3
30 = Γ

3
03

Γ
3
31 = Γ

3
13

Γ
3
32 = Γ

3
23
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Metric Compatibility
———— o.k.

Riemann Tensor

R
0
101 = e

−2 ν

 
e
2λ

 
d2

d t2
λ

!
+ e

2λ
„
d

d t
λ

«2

−
d

d t
ν e

2λ
„
d

d t
λ

«
+ e

2 ν
„
d

d r
ν

« „
d

d r
λ

«
− e2 ν

 
d2

d r2
ν

!
− e2 ν

„
d

d r
ν

«2
!

R
0
110 = −R0

101

R
0
202 = y e

−2λ−2 ν

 
d2

d t2
y e

2λ −
d

d t
ν

„
d

d t
y

«
e
2λ − e2 ν

„
d

d r
ν

« „
d

d r
y

«!

R
0
212 = −e−2 ν

y

 
d

d r
y

„
d

d t
λ

«
+

d

d r
ν

„
d

d t
y

«
−

d2

d r d t
y

!

R
0
220 = −R0

202

R
0
221 = −R0

212

R
0
303 = sin

2
ϑ y e

−2λ−2 ν

 
d2

d t2
y e

2λ −
d

d t
ν

„
d

d t
y

«
e
2λ − e2 ν

„
d

d r
ν

« „
d

d r
y

«!

R
0
313 = −e−2 ν

sin
2
ϑ y

 
d

d r
y

„
d

d t
λ

«
+

d

d r
ν

„
d

d t
y

«
−

d2

d r d t
y

!

R
0
330 = −R0

303

R
0
331 = −R0

313

R
1
001 = e

−2λ

 
e
2λ

 
d2

d t2
λ

!
+ e

2λ
„
d

d t
λ

«2

−
d

d t
ν e

2λ
„
d

d t
λ

«
+ e

2 ν
„
d

d r
ν

« „
d

d r
λ

«
− e2 ν

 
d2

d r2
ν

!
− e2 ν

„
d

d r
ν

«2
!

R
1
010 = −R1

001

R
1
202 = y e

−2λ

 
d

d r
y

„
d

d t
λ

«
+

d

d r
ν

„
d

d t
y

«
−

d2

d r d t
y

!

R
1
212 = y e

−2λ−2 ν

 
d

d t
y e

2λ
„
d

d t
λ

«
+ e

2 ν
„
d

d r
y

« „
d

d r
λ

«
− e2 ν

 
d2

d r2
y

!!

R
1
220 = −R1

202

R
1
221 = −R1

212
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R
1
303 = sin

2
ϑ y e

−2λ

 
d

d r
y

„
d

d t
λ

«
+

d

d r
ν

„
d

d t
y

«
−

d2

d r d t
y

!

R
1
313 = sin

2
ϑ y e

−2λ−2 ν

 
d

d t
y e

2λ
„
d

d t
λ

«
+ e

2 ν
„
d

d r
y

« „
d

d r
λ

«
− e2 ν

 
d2

d r2
y

!!

R
1
330 = −R1

303

R
1
331 = −R1

313

R
2
002 =

e−2λ
“
d2

d t2
y e2λ − d

d t ν
`
d
d t y

´
e2λ − e2 ν

`
d
d r ν

´ `
d
d r y

´”
y

R
2
012 = −

d
d r y

`
d
d t λ

´
+ d
d r ν

`
d
d t y

´
− d2
d r d t y

y

R
2
020 = −R2

002

R
2
021 = −R2

012

R
2
102 = −

d
d r y

`
d
d t λ

´
+ d
d r ν

`
d
d t y

´
− d2
d r d t y

y

R
2
112 = −

e−2 ν
“
d
d t y e

2λ ` d
d t λ

´
+ e2 ν

`
d
d r y

´ `
d
d r λ

´
− e2 ν

“
d2

d r2
y
””

y

R
2
120 = −R2

102

R
2
121 = −R2

112

R
2
323 = sin

2
ϑ e
−2λ−2 ν

„
e
2λ+2 ν

+

„
d

d t
y

«2

e
2λ − e2 ν

„
d

d r
y

«2«

R
2
332 = −R2

323

R
3
003 =

e−2λ
“
d2

d t2
y e2λ − d

d t ν
`
d
d t y

´
e2λ − e2 ν

`
d
d r ν

´ `
d
d r y

´”
y

R
3
013 = −

d
d r y

`
d
d t λ

´
+ d
d r ν

`
d
d t y

´
− d2
d r d t y

y

R
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Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

4.4.62 Collision of plane waves
This metric does not contain terms du2, dv2. Nevertheless the matrix of the
metric elements has rank 4 due to the off-diagonal elements.

Coordinates

x =


u
v
x
y


Metric

gµν =


0 −2 0 0
−2 0 0 0
0 0 cos2 (b v − a u) 0
0 0 0 cos2 (b v + a u)


Contravariant Metric

gµν =


0 − 1

2 0 0
− 1

2 0 0 0
0 0 1

cos2(b v−a u) 0
0 0 0 1

cos2(b v+a u)


Christoffel Connection

Γ0
22 = −b cos (b v − a u) sin (b v − a u)

2

Γ0
33 = −b cos (b v + a u) sin (b v + a u)

2

Γ1
22 =

a cos (b v − a u) sin (b v − a u)
2
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R3
003 = −a2
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013 = −a b
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Ricci Tensor

Ric00 = 2 a2

Ric11 = 2 b2

Ric22 = a b cos2 (b v − a u)

Ric33 = −a b cos2 (b v + a u)

Ricci Scalar

Rsc = 0

Bianchi identity (Ricci cyclic equation Rκ[µνσ] = 0)

———— o.k.

Einstein Tensor

G00 = 2 a2

G11 = 2 b2

G22 = a b cos2 (b v − a u)

G33 = −a b cos2 (b v + a u)
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R0 i0
i )

ρ =
b2

2

Current Density Class 1 (-Ri µjµ )

J1 = −a
2

2

J2 = − a b

cos2 (b v − a u)

J3 =
a b

cos2 (b v + a u)

Current Density Class 2 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0

Current Density Class 3 (-Ri µjµ )

J1 = 0

J2 = 0

J3 = 0
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Fig. 4.98: Collision of plane waves, current density Jx(u) for v = 1, a = b = 1.
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Fig. 4.99: Collision of plane waves, current density Jy(v) for u = 1, a = b = 1.
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Chapter 5

Einstein’s Great
Contributions to Physics,
New Cosmologies and the
Alternating Theory of the
Universe, as a Replacement
for the Flawed Big Bang
Theory

by

Kerry Pendergast1,

Alpha Institute for Advance Study (AIAS)
(www.aias.us, www.atomicprecision.com)

5.1 Introduction

Einstein is famous for his five great papers of 1905, which changed physics for-
ever. He is also famous for special and general relativity, new cosmologies and
his quest to unify gravity with quantum theory. This chapter gives a brief sum-
mary of Einstein’s early work which transformed physics and describes how this

1e-mail: kp.phys@btinternet.com
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work, has been taken forward by workers at AIAS. It then goes on to describe
how Einstein was able to see that space was curved and how he formulated the
Einstein-Hilbert equation, to mathematically describe gravity as the curvature
of space. Next the methods used to test Einstein’s theory of general relativity
through astronomical observations are described. The evidence for the existence
of black holes is then given, before casting doubt on the existence of black holes
as singularities. Some speculations are then given on the nature of new cosmolo-
gies and the Alternating Theory of the Universe is outlined, as a replacement
for the flawed Big Bang theory. The chapter ends with a devastating criticism
of dark matter and concludes that dark matter is a figment of mathematician’s
imagination!

5.2 Einstein’s Early Work and how it has been
extended by workers at AIAS

Einstein’s early work at the turn of the twentieth century includes his five mir-
acle year papers in 1905, which changed physics. These five papers led:

1. To our understanding of the Photoelectric Effect and quantum theory,

2. Proved to physicists that atoms existed,

3. Contributed to our understanding of special relativity and

4. Gave us the famous equation E = mc2.

5.2.1 Einstein’s Miracle Year and Subsequent Work

Einstein attended Zurich Polytechnic from October 1896 to July 1900. Zurich
polytechnic was a teachers’ and technical college, which sported new state of the
art science laboratories paid for by Werner Siemens. By 1911, the polytechnic
was so well thought of that its status was elevated and was soon renamed ETH
(Eidgenössische Technische Hochschule Zurich).

After graduating Einstein eventually found a well paid job, at the Bern
Patent Office (where he worked until 1909), which was well suited to both his
demeanor and talents. Einstein’s father had owned his own electric lighting and
generating company, which had involved Albert in patent work and the practical
design of electromagnetic devices. Albert found he was able to do his patent
work in a fraction of his working day, leaving him free to surreptitiously work
on his theories while still at his work desk. Michele Besso, Einstein’s life long
friend also worked at the patent office, giving Albert a sounding board for his
theories.

During this time the great advances in theoretical physics were being made
by applying statistical mechanics and kinetic theory to problems of radiation
and thermodynamics. Professor Ludwig Boltzmann had produced influential
work, showing how maths and statistics could be applied to problems involving
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molecules in physics and chemistry. In 1901, Einstein had his first paper pub-
lished which described capillary action in terms of the attraction between large
numbers of molecules. Einstein then spent time considering how statistical me-
chanics could be applied to molecules undergoing diffusion and other processes.
This paved the way for Einstein’s miracle year in 1905, in which he presented
to the world his five great papers that changed physics.

1. Einstein’s miracle year 1905, started with, ’On a Heuristic Point of View
Concerning the production and transformation of light’, which explained
the photoelectric effect and was to lead to quantum theory and Einstein’s
only Nobel Prize.

2. Einstein’s second paper; ’A New Determination of Molecular Dimensions’
used the processes of viscosity and diffusion to formulate two simultaneous
equations for the unknown particle sizes and numbers of particles. Feed-
ing in the data for the case of sugar dissolved in water and solving the
simultaneous equations then produced Avogadro’s number and the size of
the molecules involved.

3. Einstein’s third paper explained the phenomena of Brownian motion and
effectively proved atoms and molecules existed. The British Civil List
Scientist, Robert Brown had discovered in 1828 that pollen grains in wa-
ter could be seen in a microscope altering their speeds and directions, as
if they were receiving random kicks from different directions. Einstein
used statistical mechanics to show that invisible particles many orders of
magnitude smaller at the size of molecules could randomly act together
to produce the random kicks seen. Furthermore, Einstein showed that
the distance that the pollen grains would move away from each starting
position, was proportional to the square root of the time between obser-
vations, which could be proved by simply observing the grains through a
microscope.

4. Einstein’s fourth paper changed our understanding of space and time and
was entitled, ’On the Electrodynamics of moving bodies’. This was Ein-
stein’s theory of special relativity.

5. Einstein’s fifth paper developed from his fourth paper and was entitled,
Does the Inertia of a Body Depend on its Energy Content? This intro-
duced the world to Einstein’s famous equation: E = mc2.

Einstein went on to extend his 1905 theory of special relativity to general
relativity, which included the effects of acceleration and gravity. Einstein finally
developed his famous Einstein-Hilbert field equation in 1915, but the strain of
learning the advanced mathematics of curved surfaces inherent in the theory,
badly affected his health and came close to killing him. Luckily his cousin and
future second wife Elsa Einstein was there to nurse him back to health.

In the second half of his life, Einstein attempted to unify his theory of
quantum theory with his theory of general relativity to produce a unified field
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theory, which is often referred to as his theory of everything. After being taken
ill at his Princeton home, Einstein spent the last two days of his life in the
Princeton Hospital where even hours before dying, he continued to work on
the mathematics required to complete his theory of everything. This work was
subsequently said to be impossible, until Myron Evans proved the critics wrong
by producing ECE theory in 2003.

In formulating the great Einstein-Hilbert field equation of general relativity,
both Hilbert and Einstein had been forced to make a simplification to the math-
ematics of spacetime. The simplification involved making an assumption of sym-
metry, because the Riemann mathematics of curved surfaces they were building
upon, could not incorporate the required asymmetry. The tensor mathematics
Hilbert and Einstein required was however, being pioneered by the great French
mathematician Elie Cartan. Cartan’s tensor mathematics could incorporate the
effect of spin into spacetime and could therefore; hold out the possibility of com-
bining the electromagnetism of light with the curvature caused gravity. Einstein
knew the 1915 Einstein-Hilbert field equation of relativity had shortcomings and
it was only a step towards his goal to describe physics through geometry. He
therefore collaborated unsuccessfully in the twenties with Elie Cartan to try to
combine the curvature of gravity with the spin of light and spacetime. How-
ever, he could not arrive at a solution in his lifetime and it would take till the
twenty-first century, for this ultimate goal of chemical physics to be achieved,
through the advent of Einstein-Cartan-Evans Grand Unified Field Theory.

5.2.2 The Photoelectric Effect, Quantum Theory and the
Photon

1905 was Einstein’s ’Miracle Year’ in which he presented to the world his five
great papers that changed physics.

• The first paper of Einstein’s miracle year 1905 was, ’On a Heuristic Point of
View Concerning the production and transformation of light’. In this first
seminal paper of 1905, Einstein gave his explanation of the photoelectric
effect which led to quantum theory and Einstein’s only Nobel Prize.

Einstein studied for his degree in physics at ETH University in Zurich, which
at that time was called ETH Polytechnic. There, Einstein was so obsessed with
the nature of light that at times he failed to turn up for lectures, because he was
following his own path to ’reveal the enigma’ of light! Einstein’s lecturers were
aware of his undoubted talents in physics, but were put off by his arrogance
and failure to abide by the etiquette dictated by his position as a student. As a
result, Einstein could not get a position in a university after he graduated, but
did find an excellent position to suit his temperament and practical knowledge
of electrical devices, by working as a patent clerk in the Bern Patent Office. This
’hands on’ practical knowledge of electrical generation came from his father’s
business enterprises. His father had been given contracts to light the streets of
Munich in Albert’s school days. However, the business was based on DC current
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and faltered when the follow on contracts were awarded to Einstein’s father’s
rival, Siemens. Siemens used the profits generated by his thriving business, to
turn ETH Polytechnic’s physics department into a state of the art facility for
training physicists and physics teachers. In 1905, while working as a patent
clerk, Einstein published five papers which revolutionized physics. His paper on
the photoelectric effect, asserted that rays of light are not continuous, but travel
as discrete quantities or packets of energy, which we now call quanta or photons.
This paper was to earn Einstein belatedly the 1921 Nobel Prize for physics and
enabled him to return to Zurich as a Physics Professor at Zurich University, the
’sister’ university to ETH. In 1905 Einstein’s explanation of Brownian motion
proved to physicists that atoms and molecules existed. Einstein had previously
studied the work of leading physics philosophers, such as Mach who did not
believe in atoms, and Einstein’s work with Brownian motion brought home to
the maturing Albert, that physics was unnecessarily abstract and Boltzmann
was right to believe in the deterministic nature of matter at the atomic level!
Boltzmann’s equations for describing the particulate nature of matter by col-
lisions between countless numbers of spheres did indeed have its root in real
collisions between atoms and molecules.

Evans had since his early years in Aberystwyth, also become obsessed by
the nature of light in its chemical manifestation in spectroscopy. Far infra red
spectroscopy had become the main thrust of his work, as soon as he had started
working for his Ph D. This work required Evans to consider how light in the
far infra red low energy range, would affect the movement of molecules. In
the infra red, light causes the atoms in molecules to vibrate about their bonds.
The enigma in the far infra red was how light caused molecules to translate,
rotate and oscillate. Evans’ move into computer simulation was essentially an
extension of Einstein’s work on Brownian motion. Thus, for years Evans had
been following a similar path to Einstein’s, but this connection was not ob-
vious. When Evans moved to Zurich, he would not simply cross paths with
Einstein geographically, but also through the mutual desire of the two physi-
cists to understand more fully the nature of light. Poetically then, Myron made
the discovery at Zurich, which would further our understanding of light and
the photon and in time would facilitate the completion of Einstein’s life’s work!
Einstein’s understanding of light built on the work of the Civil List Scientist
Michael Faraday. Now, Evans would build on the work of both men with his
work on the Inverse Faraday Effect, which fittingly was carried out in Zurich
with Wagniere research group.

5.2.3 The Existence and Motion of Atoms

• Einstein’s second miracle year paper was, ’A New Determination of Molec-
ular Dimensions’. In this paper Einstein used the processes of viscosity
and diffusion to calculate the size of molecules and the value of Avogadro’s
number.

• Einstein soon followed up this paper with his third miracle year paper,
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which used Brownian motion to prove atoms did actually exist.

Robert Brown (1773-1858) was the Scottish botanist on the Matthew Flinders
Expedition (1801-1803) to New Holland (now called Western Australia) aboard
the Investigator, where he discovered several thousand new plant species. In-
terestingly, Brown also discovered and named the nucleus found in cells. In
1828, Brown noticed that tiny particles, such as pollen grains in water or dust
in air lit up in a beam of light, are in random motion even though the air or
the water appears still. This random motion is called Brownian motion. Robert
Brown’s contributions to botany and cell biology, together with his discovery of
Brownian motion, led to his appointment to the Civil List.

Brown was not able to explain Brownian motion, but in 1905 Einstein was.
Einstein stated that the random motion of tiny pollen grains, is due to collisions
with even smaller, fast moving water particles. Einstein had already derived
Avogadro’s number from a diffusion experiment in his second great paper of
1905, enabling him to calculate the approximate sizes of atoms and molecules
and thereby providing important proof for their existence and deriving Avo-
gadro’s number. Einstein’s third great paper in 1905 allowed him through his
explanation of Brownian motion, to prove to physicists that atoms did actually
exist. The great thing about Albert’s paper on Brownian motion, was the proof
did not simply rely on mathematics, but could be proven experimentally simply
by watching pollen grains down a microscope tube and timing their motion.
This was a great feat of Baconian science that is sadly lacking from much of
modern theoretical physics, which is too reliant on abstract mathematics at the
expense of experimentation.

Evans took Einstein’s work on Brownian motion further, while at Aberyst-
wyth and Oxford and this led to two separate awards from the Royal Society
of Chemistry within the space of a year. These were the Harrison Memorial
Prize and Meldola Medal and were awarded for an extension of the Brownian
motion theory called Mori theory (See the early papers of Evans’ Omnia Opera
and the monograph "Molecular Dynamics" which is available on www.aias.us).
Evans has worked on Brownian motion with Gareth Evans, Bill Coffey and
Paolo Grigolini. The overview description in Evan’s Omnia Opera also gives
an account of this work, and one or two of Evans’ "top ten papers" is on the
subject. Myron and his colleagues worked on the Smoluchowski, Fokker Planck
and Kramer’s equations, and also on the Euler Langevin equation. Mori theory
extends the friction coefficient of the Langevin equation into a memory function
and continued fraction. Evans’ and his team tested this with far infra red data
obtained at Aberystwyth. Later this work developed into the Pisa Algorithm
(see Omnia Opera). Myron used a combination of simulation, theory and data.
The "collection of positive opinion" on www.aias.us shows this work had great
impact, for example the letter from Max Maglashan of University College Lon-
don, of which Myron was Ramsay Memorial Fellow (1974 to 1976) based at
Aberystwyth.

In 1905 in his second great paper; ’A New Determination of Molecular Di-
mensions’ Einstein had used the processes of viscosity and diffusion to formulate
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two simultaneous equations for the unknown particle sizes and numbers of par-
ticles. By feeding in the data for the case of sugar dissolved in water and solving
the simultaneous equations, Einstein produced Avogadro’s number and the size
of the molecules involved. In his third great paper in 1905 Einstein had gone
on to use observations of the Brownian motion, to prove that pollen grains are
moving due to interaction with much smaller particles called molecules. This is
similar to a Langevin equation approach.

Jean Perrin (1870-1942) had shown in 1895 that cathode rays had a nega-
tive charge, preparing the way for the discovery of the electron and calculated
Avogadro’s number by several methods. Perrin also did the experimental work
to test Einstein’s Brownian motion prediction on the movement of atoms and
in so doing proved to physicists, that John Dalton’s atomic theory was cor-
rect. He also proposed in 1909, that the constant should be named in honor
of Avogadro, who had proposed it in 1811. Perrin went on to receive the 1926
Nobel Prize for Physics, largely for his work on Avogadro’s constant. Perrin’s
and Einstein’s work vindicated Boltzmann’s belief in the existence of atoms and
showed clearly that even at the atomic level, nature is deterministic and follows
the laws of physics, so well described by Newton in his book ’The Principia".

Paul Langevin (1872-1946) worked closely with the Curies and like Pierre and
Marie studied magnetism in detail, which led to Paul giving its explanation in
terms of electrons in atoms. He is also famous for the ’Langevin Equation’ which
is a stochastic differential equation used to describe Brownian motion. Einstein
frequently visited Paul Langevin and Marie Curie in Paris and also met them
at the Solvay conferences, from 1911. Langevin found that magnetism is due to
the motion of electrons in atoms. In chemistry the spin of electrons in orbitals
give rise to magnetism. As orbitals are progressively filled with electrons the
magnetism builds up. However, once orbitals are half full the electrons pair up,
with the additional electrons spinning in the opposite direction to the electrons
already in the orbital, causing the observed magnetism to be cancelled out.
Iron is a strongly magnetic material (ferromagnetic), because each atom sports
five unpaired electrons with their spin lined up to produce the extra strong
magnetism

In later years, diffusion equations were developed by Smoluchowski, Fokker,
Planck and Kramers. In the seventies there was strong interest in this at the
Dublin Institute for Advanced Studies, clearly following the research guidance
of people like Schrödinger and Synge at DIAS. Evans’ tested out these very
complicated equations in the far infra red, using the Elliot 4130 and CDC 7600.
This can all be traced back to those first years of the twentieth century, which
were so important to physics.

Evans’ developed the Langevin equation for the far infra red using mem-
ory function methods in his Ph. D. Work (see early Omnia Opera papers on
www.aias.us). This work was later extensively developed with Bill Coffey at
Trinity College Dublin and Paolo Grigolini in Pisa. The Debye bell shaped di-
electric loss is produced from the rotational Langevin equation, but gives the
Debye plateau in the far infra red. This was first recognized and named at the
EDCL by Myron’s Ph. D. supervisor, Professor Mansel Davies. The friction
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coefficient of the Langevin equation was developed into a continued fraction
of memory functions. Gareth Evans, Colin Reid and Myron used this method
extensively in the far infra red, giving a first explanation of the far infra red
spectra of materials. Myron added computer simulation to this technique in
1975, using one of the very first simulation methods developed by the Konrad
Singer group at Royal Holloway College, and the Oxford Group of Professor
Sir John Rowlinson where Evans worked from 1974 to 1976. With the greatly
improved power of modern computers, it should be possible to simulate millions
of molecules now and allow the far infra red to be described with ever greater re-
finement, using the same basic methods worked out in the seventies by Myron’s
EDCL "Hall of Fame" group (BBC Mid Wales link on www.aias.us).

5.2.4 Special Relativity

• Einstein’s fourth miracle year paper changed our understanding of space
and time and was entitled, ’On the Electrodynamics of moving bodies’.
This was Einstein’s theory of special relativity. Special relativity came
about as a result of the speed of light being measured and tested experi-
mentally.

In 1675, the Dutch astronomer Ole Roemer noticed that the times of the
eclipses of Jupiter’s moons, were affected by the position of the Earth in its
orbit around the Sun in relation to Jupiter. When Jupiter was at opposition, at
its closest approach to the Earth, the position of the satellites was ahead of the
predicted times. This showed that the time taken for light to cross the Earth’s
orbit could be determined by the variations in the eclipses of Jupiter’s moons,
due to the Earth’s position. The timings work best with the moon Io, because
it is one of the smaller Galilean moons and being the nearest to Jupiter is the
fastest to emerge from eclipse. The time and distance could then be used to
calculate the speed of light. Using the accepted diameter of the Earth’s orbit of
the time, the speed of light was calculated as 200, 000 km/s.

In 1849 the French physicist Hippolyte Louis Fizeau used a rapidly rotating
toothed wheel to reduce the need for vast distances to be used for speed of
light experiments. Light was shone through the teeth of a first wheel, through
a second wheel five miles away and reflected back along its path through the
same gap. With the toothed wheels rotating at hundreds of times a second,
time intervals of fractions of a second could be measured. This method gave a
better value for the speed of light as 313, 300 km/s. In 1926 Leon Foucault’s
improved method using rotating mirrors, achieved a figure of 299, 796 km/s for
the speed of light.

In the second half of the nineteenth century, the full importance of the speed
of light to physics, astronomy and cosmology was starting to be appreciated.
Maxwell’s equations asserted that the speed of light could not be exceeded
and light would always move away from an observer at the speed of light, no
matter how fast the observer was moving. Oliver Heaviside’s experiments with
electricity were also throwing up important results.
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In 1887 Albert Abraham Michelson (1852-1931) and Edward Morley (1838-
1923), carried out the famous Michelson-Morley experiment. An observer on
Earth travels at 30 km per second in the direction of the Earth’s orbit and
Michelson and Morley designed an experiment to measure the effect on the
speed of light. They expected to find light traveled faster when assisted by the
Earth and slower in the opposite direction, but were perplexed to find the speed
of the observer and apparatus had no effect.

In 1892 George Fitzgerald (1851-1901) working at Trinity College, Dublin
explained the results of the Michelson-Morley experiment by suggesting that as
objects approached the speed of light, their length in the direction of motion
would become progressively shorter and this could account for the constancy of
the speed of light seen by a moving observer. Heaviside’s new equations and
experiments helped Fitzgerald come to this conclusion. Fitzgerald’s qualitative
hypothesis was adopted almost immediately by Hendrik Lorentz (1853-1928)
who set about making it mathematically precise.

In 1904, Hendrik Lorentz produced the Lorentz transform which could quan-
tify the contraction of length at high speeds. Jules Poincaré (1854-1912), the
great French mathematician and physicist was able to see the importance of
Lorentz transformations to the synchronization of time and relativity. The
scene was set for Einstein to formulate his theory of special relativity, which he
did in 1905.

Michael Faraday, the father of classical electrodynamics, believed all forms
of light were composed of electromagnetic waves moving at the speed of light.
The Faraday Effect provided the first experimental evidence that light and mag-
netism were related and inspired Faraday to champion his views to the public,
which he did in 1846, with his lecture, ’Thoughts on Ray Vibrations’. However,
his views on the nature of light were not widely accepted. James Clerk Maxwell
(1831-79) the great physicist and mathematician did believe Faraday’s ideas
however and set about proving them.

The German Wilhelm Weber was also on the case. In 1858 Weber had mea-
sured the ratio of magnetic to electric forces and when Maxwell fed Weber’s ratio
result into his own equations, a velocity equal to the speed of light appeared.

In 1868, Maxwell managed to reduce his mathematical ideas concerning light,
into the four Maxwell equations, which unified electricity and magnetism as a
wave traveling in the ether at the speed of light. Maxwell’s equations of electro-
magnetism mathematically confirmed what Faraday had been saying about the
nature of light for the many years and forever changed our views on the nature
of light.

In addition in 1864, Maxwell was able to state that visible light was only one
form of light within an electromagnetic spectrum which included invisible forms
of light of longer and shorter wavelengths. In the next thirty years radio, X and
gamma rays would be discovered and added to the electromagnetic spectrum.
Herschel had already discovered infrared light in 1800, when he saw that a
thermometer placed beyond the red end of light from a prism, indicated it was
being heated by a previously unknown form of light
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Infrared telescopes such as UKIRT (United Kingdom Infra Red Telescope)
observe objects that are relatively cold, such as dust clouds (nebulae) containing
stars at the start of their lives. Infrared light can penetrate dust clouds, because
it has wavelengths longer than visible light. This is similar to red light being
able to penetrate fog better than white light. The biggest and best telescope
in the world operating in the far infrared is in Hawaii and is named in honor of
James Clerk Maxwell or JCMT for short.

Maxwell’s great mathematical ability was appreciated from his earliest days
in Cambridge and in 1852; he was invited to become an apostle. The Apostles
were a secret society (founded in 1820), composed of the twelve students who
were considered to have the greatest intellect of those currently at Cambridge.
On leaving, the apostles became Angels and met in secret every few years, at
a Cambridge College. Many angels such as Bertrand Russell went on to work
in the media, government and church. Maynard Keynes and the Bloomsbury
group were well known before the First World War. The apostles came to the
attention of the public again in 1951, with the exposure of the Cambridge spy
ring. Anthony Blunt (MI5) and Guy Burgess (MI6) were both spies passing
information to the soviets.

Maxwell’s equations predicted that light would always move away from an
observer at the speed of light, no matter how fast the observer was moving.
When Einstein was a student he was intrigued by Maxwell’s equations and
their implications. This stimulated him to formulate his great theory of special
relativity.

The theory proposed by Maxwell was developed using William Hamilton’s
quanternions. Quanternions are a non-commutative extension of complex num-
bers, which were subsequently converted into vector form by Oliver Heaviside,
to produce the Maxwell Heaviside (MH) theory. Sir William Rowan Hamil-
ton (1805-1865) was a great Irish mathematician and physicist. His work later
became relevant to quantum physics, where the ’Hamiltonian’ bears his name.

Oliver Heaviside (1850 to1925) from Camden town, London, made major
contributions to physics and mathematics. In 1885 he presented Maxwell’s equa-
tions in their present form, which is why they can be referred to as the Maxwell
Heaviside equations of field theory. He also developed operational calculus, the
theory of vectors, the Heaviside step function, the Heaviside equation of teleg-
raphy, and (in 1889) the basic equation for the motion of charge in a magnetic
field. He developed m.k.s. units, the use of complex numbers for circuit theory,
and the modern theory of Laplace transforms through his powerful operational
calculus method. He deduced the denominator root (1 - (v/c) squared) fifteen
years before Einstein in his studies of the speed of light in circuits.

In 1896 Oliver Heaviside was awarded a Civil List pension on the recom-
mendation of Rayleigh, Kelvin, Fitzgerald and others. He is one of the greatest
physicists and mathematicians in history and deserves to be better known.

Heaviside also proposed that the vector potential A in classical electrody-
namics be an abstract entity, only the fields E and B are physical in that view.
The latter is the opposite of the view of Faraday and Maxwell, who consid-
ered the potential (electrotonic state of Faraday) to be physical. The Heaviside
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point of view evolved into the gauge principle in the twentieth century, mainly
through the ideas of Weyl. This principle states that the action is invariant
under the gauge transformation of any field. This appeared to be effective until
Evans proposed the ECE spin field B(3) in Physica B, 182, 227 and 237 (1992).
The B(3) field implies an O(3) gauge invariance for electrodynamics, as in the
work Evans did from about 1992 to 2003 (see collected papers on www.aias.us).

In paper 71 an invariance principle was introduced with the intention of
replacing the gauge principle. In papers 71 and 72 some applications were de-
veloped of the invariance principle. In paper 73 some details of its advantages
over the gauge principle were developed. Evans proposed the invariance prin-
ciple in paper 71, because it is based directly on an invariant of ECE theory
and Cartan geometry - the tetrad postulate. The latter is frame invariant (the
covariant derivative of the tetrad always vanishes in all frames of reference).
It was shown from this property that the tetrad field (i.e. all fields) must in-
clude a phase alpha, which cannot depend on distance and time and is therefore
"global", in the rather vague but received terminology, which Evans follows for
convenience - "local" and "global". The local and global connection can be used
to explain effects of quantum entanglement, showing that the Heisenberg un-
certainty principle is wrong and that Einstein was correct to assert that nature
is deterministic and ’God does not play dice’.

In 2005, Myron W. Evans followed in the footsteps of William Herschel,
Robert Brown, John Couch Adams, Michael Faraday, Alfred Wallace and Oliver
Heaviside by being awarded a civil list pension. At the present time, Myron
Evans is the only scientist in Britain or the Commonwealth to hold this high
honor.

5.2.5 E = mc2

• Einstein’s fifth miracle year paper developed from his fourth paper and
was entitled, Does the Inertia of a Body Depend on its Energy Content?
This introduced the world to Einstein’s famous equation: - E = mc2.

Einstein is perhaps best know for his equation E = mc2, which shows that a
small amount of mass can be converted into a vast amount of energy. E stands
for energy, m is the mass and c stands for the speed of light. The speed of light
is the fastest speed achievable and the speed of light squared is a vast number.
Therefore the equation shows that when a small amount of mass or matter is
converted into energy, a vast amount of energy is created as is seen in the atomic
bomb. This conversion of matter into vast amounts of energy, through nuclear
reactions turning one element into another, is the power of the stars and is the
source of the Sun’s energy that allows life to thrive on Earth.

In the nineteenth century two major breakthroughs were made, which took
chemistry and biology forward at a great rate. In chemistry, Dalton, Davy
and Faraday did much to show atoms existed, allowing chemistry to develop
and expand at an ever increasing rate, which did much to fuel the industrial
revolution. In biology, it was the work of Darwin, who was born two hundred
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years ago in Shrewsbury, along with Alfred Wallace from Usk in Monmouthshire,
whose theories on ’survival of the fittest’ led to an understanding of the theory
of evolution, which had already been recognized by scientists for hundreds of
years, including Darwin’s grandfather. Obviously this had implications for the
power of the church and religious individuals were obviously going to oppose
evolution and strive to maintain creationism, as the only explanation for the
ascent of man. Lord Kelvin opposed evolution on the grounds that evolution
would require billions of years for the changes to animal and plant life to be
incorporated, but Kelvin believed that the Sun could not shine for more than
a few million years by chemical combustion. This is where the work of the
Curies, along with Frederick Soddy and Ernest Rutherford would come into
play. Einstein’s famous equation E = mc2, would then be used to show that
the Sun would easily be able to shine, for the billions of years needed for the
effects of survival of the fittest to lead to the evolution, as witnessed in the fossil
record.

Madam and Pierre Curie in Paris at the turn of the century did the impor-
tant work of separating uranium and radium from pitchblende, from mines in
Czechoslovakia. The Curies then supplied Soddy and Rutherford with radioac-
tive materials to work on in McGill University in Canada. Here the chemist
Soddy and the physicist Rutherford were able to observe the transmutation of
elements for the first time and to discover that radioactive isotopes have a char-
acteristic half life, the time which is taken for half the atoms of a particular
isotope to undergo radioactive decay, into other elements. In 1904, Rutherford
came to London to give a lecture at the Royal Institution, where he showed that
the age of rocks could be determined by measuring how much radioactive decay
had occurred since the rocks had been formed or crystallized. Uranium has a
half life of around a billion years and over this time; half the atoms would have
decayed to form lead. Rutherford had simply measured the proportion of lead
to uranium and related this to the known half life of uranium, to give the age
of the rock samples. This gave a figure in the billion plus range for the oldest
rock samples and showed the Earth had indeed been around long enough for
evolution to take place. Furthermore, Einstein’s 1905 equation E = mc2, was
able subsequently to explain that through nuclear reactions and transmutations
of the elements, such a vast amount of energy was created, that the Sun was
easily able to shine steadily for the time required to support life on Earth, for
this evolution to take place.

Soddy returned to Britain in 1903, to work with Lord Ramsay at University
College, London, where he was able to show alpha particles are the nuclei of
helium emitted during nuclear fission, the splitting in two of unstable nuclear
isotopes. Soddy also showed subsequently that elements could exist in alterna-
tive forms which he called isotopes. Soddy also went on to show, that alpha
particle emission causes an element to shift two spaces to the left in the periodic
table and the emission of a beta particle, causes the element to shift one space
to the right. Thus, Soddy could be called the world’s first successful alchemist.
In 1904, Soddy left London to continue his great work at the University of
Glasgow. Soddy’s work is of great importance in chemical physics and society,
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as described by Aberystwyth’s Professor Mansel Davies in his 1992 article in
the ’Annals of Science’, entitled ’Frederick Soddy: The Scientist as Prophet’.
His work greatly influenced H. G. Wells, particularly concerning the use of ra-
dioactivity to make atomic weapons, which is considered in Well’s books. H. G.
Well’s in turn greatly liked the writings of Soddy. Interestingly, Mansel Davies
wrote a book on the history of science at the request of Wells. Soddy stud-
ied chemistry initially in Aberystwyth, before continuing his studies at Oxford.
This connection was celebrated in Aberystwyth, when the radiation laboratory
set up by Dr. Cecil Monk at the Edward Davies Chemical Laboratories, was
named ’The Soddy Laboratory’. Sadly, Dr. Monk who had lived at Borth,
outside Aberystwyth for many years, passed away early in 2009. Soddy’s work
with Ramsay is again celebrated in Aberystwyth, through Myron’s award of a
University College London, Ramsay Fellowship, which Myron used to finance
his researches in Aberystwyth. H. G. Wells was also well regarded in Aberyst-
wyth and its former head of chemistry, Professor John Meurig Thomas ended
his book on Michael Faraday’s life at the Royal Institution by quoting Well’s
work.

Well’s work used science to predict what the future could be like and how
the folly of man could lead to anarchy. This is the theme of the great film,
’Things to Come’ in which after the collapse of civilizations, petrol needed to be
refined from coal to allow planes to fly again: putting coal mines into the front
of new power struggles. The pit shown in the 1936 film is the Griffin Colliery in
Blaina, which was closed due to problems with too much gas in its coal seams.
Later the colliery became entirely covered with the earth extracted from the
nearby Rose Heyworth Colliery, in order to get to the coal underground. Now
nearly every pit in South Wales has gone, but the colliery shown in the 1936
film, is still there hidden beneath its tomb of earth: A time capsule for future
generations to uncover.

When Soddy the alchemist left London for Glasgow, he was replaced as Lord
Ramsay’s assistant at University College, London in 1904 by Otto Hahn, the
German chemist. Hahn in 1905 went on to work with Rutherford at McGill
University in Canada. Following in Soddy’s footsteps, Hahn would become
a major figure in nuclear chemical physics, in the first half of the twentieth
century and at the outbreak of World War 2 produced a paper describing how
the uranium atom could be split by bombardment with neutrons. This was
a key experiment in producing both nuclear energy and creating an atomic
bomb, through the process of fission and gave Hahn the 1944 Nobel Prize for
Chemistry. At the outbreak of War, Niels Bohr was in New York and on reading
Hahn’s Berlin paper, recognized that splitting the uranium nucleus could lead
to a chain reaction which could release the power described by the equation
E = mc2, as a war winning weapon. Bohr warned the American government
about it, before returning to Copenhagen, where he would eventually meet up
with his old friend Heisenberg, at a time when Denmark was under occupation.

Hahn had written a book on radiochemistry during his time at Cornell Uni-
versity, before returning to Germany. In a twist of fait, Hahn managed to keep
out of the Nazis atomic bomb project, but his knowledge of radiochemistry de-
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scribed in his book, was used by the Americans to achieve the separation of the
isotopes of uranium during the Manhattan Project.

After the war, the world’s knowledge of the nature of the atom had come on
in leaps and bounds and major laboratories were founded, such as Aldermaston
in Britain and Los Alamos in the USA, in addition to their equivalents in France
and Russia. It was soon recognized that fusing hydrogen atoms as occurs in the
Sun and stars, would release a thousand times more energy in a nuclear bomb,
than the fission of uranium and plutonium does. In the space of a decade,
both Russia and America would master the process of fusion which is the secret
behind the Sun’s longevity and is the source of energy for life on Earth.

Niels Bohr developed good links with the allies during World War 2. At the
outbreak of war, he had alerted the Americans to the possibility of a uranium
chain reaction leading to a Nazi atomic weapon. By the time Heisenberg visited
Bohr in occupied Copenhagen in 1941, their famous special relationship was
faltering. In October 1943, Bohr escaped from occupied Denmark and was
flown from Sweden to Britain in a De Havilland Mosquito bomber, to assist
with the British and American bomb projects.

The Mosquito was an all wood bomber designed by De Havilland at the
outbreak of war and put into services in only twenty-one months. It was one of
the iconic planes of World War 2, being twenty miles an hour faster than the
spitfire and the fastest plane in the world when first produced. Its all wood
design meant it was easy to build and did not need the metal, which was in
short supply during this time. Later versions of the Mosquito were given a
nose cannon or powerful guns and were a menace to enemy submarines and to
trains crossing occupied territory. One Mosquito attacked the train carrying
Jean-Pierre Vigier for interrogation, thereby saving his life.

Jean-Pierre Vigier was born in the Sorbonne in Paris and educated in Geneva,
where he took doctoral degrees in physics and mathematics. He was a member
of the general staff of the French Resistance in the Savoy Mountains. Vigier
having been betrayed to the Vichy Gestapo was being taken to Lyons for in-
terrogation by Klaus Barbie, the war criminal not known for his gentility when
the train was bombed by the R.A.F. allowing Vigier to escape from captivity
to rejoin the Resistance. He joined the French Army in 1944 and was wounded
at the Remagen bridgehead across the Rhine, but soon repatriated by a US
mechanized infantry division. He was awarded the Medaille de Resistance and
the Legion d’Honneur.

Vigier joined Joliot-Curie’s staff after the war, but did not want to be in-
volved in this atom bomb work and resigned in protest at the French nuclear
bomb. He was invited to work with Einstein at the Princeton Institute of Ad-
vanced Study, but was refused a visa because he was a member of the French
Communist Party and the McCarthy witch hunts were on at the time. Vigier
however was able to work with Prince Louis de Broglie at the Institut Henri
Poincaré in Paris and together they were able to continue Einstein’s work in
deterministic physics into the latter part of the twentieth century.

Both Vigier and de Broglie were champions of Einstein’s deterministic physics
in the latter part of the twentieth century. Vigier linked up with Myron to write
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the series of books ’The Enigmatic Photon’. This link up gave Myron vital links
back to Einstein and De Broglie allowing him to receive insights into the nature
of their work, which would stimulate advances in theory, which would ultimately
lead to the Einstein-Cartan- Evans unified field theory in 2003.

One valuable insight was the revelation that Einstein was an ardent believer
in photon mass. In the standard model, photon mass has been discounted from
the time of the 1927 Solvay Conference, in which theoretical physicists moved
away from the deterministic physics of Einstein, De Broglie and Newton into
an obtuse mathematical representation of the atomic world, which progressively
moved further and further away from Baconian Science based on matching the-
ories with experiment. Richard Feynman eloquently summed up the standard
model of physics in the latter part of the twentieth century, by stating, ’that
you should not be worried if you do not understand quantum electrodynamics
(QED), because he did not understand it and nor did anyone else!’ Theoretical
physicists see this statement as testament to Feynman’s greatness whereas AIAS
scientists see this as a clear admission that the standard model has spun itself a
web of mathematical deceit, which has captured the Copenhagenists in a Tho-
lian Web, from which they cannot extract themselves, no matter how elaborate
they make their mathematics. Supporters of the standard model tell us that the
theory of quantum electrodynamics is the most accurate theory ever thought
up; and yet it can be shown that Planck’s constant, which is used in their calcu-
lations, is not known to anything like the accuracy required for producing their
astonishingly accurate results.

Heisenberg transformed Schrödinger’s ground breaking equation into his
mathematical matrix mechanics, which lost its valuable connection to deter-
ministic and real science. Mathematicians were thrilled, because Heisenberg
matrix mechanics could be used as a job creation scheme to keep them em-
ployed, without the need to understand deterministic and real physics. The
Heisenberg uncertainty principle was certainly not a principle of physics, but
rather a con to confuse the world of science into funding, physics which was not
soundly based. The uncertainty principle was clearly wrong, because Compton
had already shown that X-rays could be observed colliding with electrons and
their paths could be observed before and after collision. Compton received the
Nobel Prize for physics for this work, which clearly showed momentum is con-
served in collisions between photons and electrons and that light as Einstein
had claimed, had mass. The conservation of momentum also showed that there
was no uncertainty in the system at the atomic level as claimed by Heisenberg.
The Copenhagenists and advocates of the standard model have conveniently
forgotten Compton’s seminal experimental work and have conveniently been
given substantial funding to pursue their quaint and idiosyncratic theories, at
the expense of the tax payer and real physicists!

Clearly then it can be seen that photons do indeed have mass. Furthermore
mass can be converted into light to give truly vast amounts of energy, which
can be calculated by Einstein’s famous equation E = mc2. Likewise, light can
be converted to mass.
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The mass of an electron changing into energy according to the equation
E = mc2, produces light of a wavelength and frequency corresponding to the
X-ray region of the electromagnetic spectrum.

In the standard model of physics there exists the well known ’Measurement
Problem’. Theoretical physicists of the Copenhagen school believe wrongly, that
photons and electrons exist in a limbo state until observed and then turn into
either a wave state or a particle state, depending on the way the observation is
conducted. This is the interpretation of wave particle duality that dates back
to Bohr and Einstein. Einstein would try to convince Bohr how ludicrous this
interpretation was by asking, ’Does that mean the Moon is not there when I am
not looking at it!?

In chemistry and ECE theory, wave particle duality means that electrons
have simultaneously a particle nature and a wave nature, as first recognized
by Prince Louis De Broglie. In high resolution electron microscopy, the wave
nature of an electron is customized by controlling the speed of the electron,
by accelerating it through the desired potential after it has been emitted from
the electron gun at the top of the microscope. As the electrons moves faster,
their wavelength shortens in a controllable way and after hitting the sample the
electrons are diffracted and their exact position can be seen as a pattern on a
fluorescent screen inside the microscope. The diffraction pattern is ’played with’
by tilting the sample in two directions in the beam, until the diffraction pattern
suddenly becomes fully illuminated. When this occurs the atoms in the crystals
are lined up in columns and the sample is face on. Now the electron lenses can
be switched on and the lattice can be imaged directly and the position of the
atoms in the unit cell of the crystal visualized directly! The required resolution
for lattice imaging to be made possible is of the order of just over an angstrom
and the wavelength of the electron beam is simply set, by setting the voltage for
the acceleration of electrons to the order of one hundred kilovolts. There is no
uncertainty here of the type fantasized about by Heisenberg! The wavelength of
the electrons is defined and the position of the collision in the sample is defined
right down to the atomic level!

The electron microscope shows that electrons develop increasing wave char-
acteristics as they accelerate through the electric field, as they head towards the
sample after leaving the electron gun at the top of the microscope. Prince Louis
de Broglie had predicted this in the twenties, when he suggested for his Ph. D
thesis in Paris that electrons could exhibit wave particle duality in the same
way that a photon does. De Broglie believed that an electron in orbit around
the nucleus of an atom was guided by a pilot wave. The electron microscope
shows that electrons do indeed become wavy when they are accelerated to high
speeds. It is therefore quite obvious, that an electron being captured by an ion
or becoming trapped by the electric potential well of an atomic nucleus, will
accelerate as it goes into a dive towards the positively charged nucleus (in a
dive that is analogous to a Sun dive of a comet from the Oort cloud, chang-
ing direction towards the Sun) and the pilot wave will develop and adapt and
guide the electron into a suitable allowed orbit or orbital around the nucleus.
When an allowed orbit is reached, the electron then emits a photon of the cor-
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responding wavelength to allow a suitable quantity or quanta of energy to be
dissipated, to trap the electron into that stable permitted orbit. The electron is
then guided around the nucleus by the pilot wave that has emerged as a result
of the encounter of the electron with the atom or ion. The electron now has a
particle aspect being guided around the nucleus with its associated wave aspect.
The wave and particle are intimately interlinked to display a simultaneous wave
particle duality.

This wave particle duality is an inherent property of an electron in orbit
around an atom and does not need to be observed in order for it to exist, just
as the Moon exists and maintains its orbit whether we look at it or not! This
is why Einstein came up with his EPR thought experiment to show ’quantum
entanglement’ was impossible. The standard model is crippled by its support
for the measurement problem, which maintains that electrons in orbit around
an atom are in a limbo state (as are photons supposed to be) until observed and
the measurement causes the electron to take on either a particle or wave nature.
This is obviously absurd and Einstein’s E = mc2, can be rolled out to prove
it. If an electron existing as a particle was to change to a pure wave motion
when observed, the resulting energy of the wave corresponding to the mass of
an electron would be in the X-ray region of the electromagnetic spectrum! This
would mean that anyone observing an atom or indeed any material would risk
being bathed in X-rays. This simply does not occur, showing that the standard
model is both wrong and redundant. Prince Louis De Broglie and Einstein were
right after all. At the Solvay conference Wolfgang Pauli had told De Broglie to
’Shut Up!’ History then recorded that De Broglie then went away and did shut
up!

However, on the train back to Paris after the conference, Einstein told De
Broglie that it was up to him to show deterministic physics reigned supreme. De
Broglie did shut up for many years, but in the fifties Vigier encouraged Louis to
once more take up the challenge. The work of Einstein was conveyed to Vigier
by De Broglie and Vigier eventually wrote books with Myron in the nineties
to continue the cause of deterministic physics. This work was then taken to
its conclusion by the Alpha Institute for advanced Study. Notably, through the
advent of the electron microscope, Prince Louis De Broglie’s unique contribution
to physics can be remembered and it can be seen that his insight into the wave
particle duality of the electron was spot on. Furthermore, Einstein’s equation
E = mc2, can be used to demonstrate that the Copenhagenists were utterly
wrong and that the standard model is no more! Q.E.D.

5.3 Einstein and General Relativity

• Special relativity did not incorporate the effects of acceleration and gravity
on spacetime, so in 1906 Einstein turned his mind to a theory of general
relativity to overcome this shortfall. Through one of his famous thought
experiments he was able to see that acceleration and gravity are equivalent
and space is curved. However he did not see the importance of torsion to
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curvature until much later, when he tried unsuccessfully with the French
Mathematician Elie Cartan to extend his theory to incorporate light into
his theory to create his fabled unified field theory.

The story of general relativity starts with Euclid and his Euclidian geometry
dealing with flat surfaces, because general relativity allows us to understand the
force of gravity in terms of the geometry. Euclid gave us the means to draw
lines and angles and relate them together by theorems, which explained how
they interacted and depended on one another. Euclid gave us the means to
mathematically construct a box and Einstein was able to make his breakthrough
in general relativity, by considering how an observer inside a box would perceive
the actions of acceleration and gravity. This thought experiment led Einstein
to formulate his equivalence principle, in which he made the important step of
realizing that the acceleration due to gravity has something to do with geometry
- the equivalence principle. The development of general relativity from the
equivalence principle to the famous Einstein-Hilbert Equation field equation of
general relativity required Einstein to become acquainted with developments in
mathematics describing how objects move in time and space.

Vectors came into use at the turn of the eighteenth century and the term
is derived from the Latin verb to carry. The vector points in the specified
direction, with its length giving the magnitude of the force required to ’carry’
in that direction. It was first used by astronomers to describe how the ’radius
vector’, a line drawn from a planet to the focus of an ellipse, ’carries’ the planet
around the centre. Vector usually appeared in the phrase radius vector. The
French term was rayon vecteur as seen in Laplace’s ’Celestial Mechanics, which
was translated by the British Civil List Scientist, astronomer and mathematician
Mary Fairfax-Somerville 1780-1872.

The modern meanings of the terms ’vector’ and ’scalar’ were introduced by
William Rowan Hamilton (1805-1865) of Trinity College Dublin, in his paper
to the Royal Irish Academy in 1844 entitled ’On Quaternions’. Quaternions are
a non-commutative extension of complex numbers which still find use in three
dimensional rotations, but have largely been replaced by vectors. Hamilton also
introduced the term ’tensor’ in 1846.

In 1906, when Einstein started thinking about general relativity, he turned to
his old classmate Marcel Grossmann from his days in Zurich’s ETH University
for advice on how to proceed. Grossmann was a mathematical genius and was
able to acquaint Einstein with the work of Riemann, Christoffel, Ricci and Levi-
Civita on a then new kind of geometry, generally known as Riemann geometry,
in which space and time were merged together in spacetime, and in which the
framework or frame of reference could be dynamic and curve. Bianchi’s work was
also to be of seminal importance, in Einstein’s quest to extend special relativity,
to include the effects of acceleration and gravity.

Professor Luigi Bianchi (1856-1928) was a great Italian mathematician, who
worked in Pisa with Gregorio Ricci-Curbastro (1853-1925) who invented ten-
sor calculus and Tullio Levi-Civita (1873-1941) who was born in and worked
from Padua. All three mathematicians developed ground breaking mathemati-
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cal treatments which were needed for the geometrically based Einstein-Hilbert
Equation of general relativity.

In 1900, ’Ricci’ and Levi-Civita published their theory of tensors, which Ein-
stein studied to help him understand the spherical geometry needed for general
relativity. In 1915 Levi-Civita corresponded with Einstein to correct some er-
rors in his calculus and also contributed work to Paul Dirac’s equations in 1933.
Levi-Civita became a professor in Rome in 1918, where he worked successfully
until he was sacked by the Fascist government.

Einstein’s breakthrough to general relativity and curved space started in
1907, when he realized that the effect of gravity and acceleration are the same.
This is his equivalence principle. This can be shown by considering a box that
could be isolated in space or a lift suspended by a cable in Earth’s gravity. A
person in the box, who could feel the effect of gravity, would not be able to tell
if he was stationary in a lift or being accelerated by a rocket in space. Similarly
if the person was weightless, he would not know if he was isolated in space or if
the lift was in free fall. This is Einstein’s equivalence principle.

In 1907, Einstein’s old mathematics tutor Minkowski from ETH University,
put Einstein’s theory of special relativity into a new mathematical framework,
which put space and time together as spacetime. It was now seen that space
and time were not independent of each other, but together formed the fabric of
space. However, Einstein soon came to see that space and time were curved or
warped by massive objects. Special relativity showed how objects behaved when
approaching the speed of light, but gravity and acceleration was not included
in this treatment. Einstein wanted to incorporate gravity and acceleration into
special relativity, to formulate general relativity. To do this he came up with an
amazing thought experiment, which showed gravity and acceleration are equiv-
alent. This is called his equivalence principal and led him to realize space was
curved. If a light beam entered sideways into a spacecraft that was accelerating
upwards, an observer in the spacecraft would see the beam bending downwards
as it crossed the cabin. By the equivalence principle, gravity and acceleration
are equivalent, so massive objects would cause space to bend by virtue of their
gravitational field.

Einstein considered what a light beam would look like to an observer in the
box, if the box was moving or stationary. In the case of the box being stationary,
the beam would travel horizontally across the box to the far wall. However, if
the spacecraft or box was accelerating rapidly upwards, then the box would
move upwards as the beam of light traveled towards the far wall. The light
beam would be seen by the observer to curve downwards. Einstein saw that
gravity and acceleration were equivalent, meaning that if the spacecraft or box
was not accelerating, but rather was in a powerful gravitational field, the beam
of light would once again be seen to bend. This thought experiment led Einstein
to the conclusion, that space bends in a gravitational field and this bending of
space-time produced the gravitational field.

Before Galileo’s time it was assumed that heavy objects fell to Earth faster
than light objects. The Feather and Guinea experiment shows that this is not
the case. The acceleration due to gravity is the same for light objects and heavy
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objects. Consider astronauts arriving and entering a space station orbiting the
Earth. The density of the space station increases when the astronauts are inside
the space station, but this does not affect the orbital speed or diameter of the
orbit of the space station.

The bending of space as described by Einstein gives an alternative explana-
tion to the elliptical path of the planets, given by Newton after Kepler deduced
his laws of planetary motion from observational data. Both Newton’s and Ein-
stein’s explanations of planetary motion can closely predict the orbits of the
planets, even though their theories are radically different.

General relativity tells us that massive bodies cause space and time to warp
and this is what gives rise to Newton’s force of gravity. Objects moving close to
this warped space follow the best straight line they can, which becomes more
curved when close to a massive body or when the body is more massive. The
resulting curved path is what gives rise to orbital motion. The mass, volume or
density of the moving object does not affect the diameter of the object’s orbit
around the massive body. It is only the objects speed through the curved space
that determines the objects orbit.

David Hilbert was a late starter in the ’general relativity’ stakes. In June
1915 in Göttingen, Einstein gave lectures on how he was going to get to the
equations of relativity. Hilbert was present at those lectures and Einstein gave
him the run down of how he was going to finally solve the problem. Soon after,
Einstein realised he had wasted several years in his quest, by not following up
work with Grossman on Riemann tensors.

Hilbert meanwhile set out to beat Einstein to the post by finding the equa-
tions first. Einstein was horrified when he found out that Hilbert had joined the
race. Einstein became very worried that Hilbert would beat him to the punch
and worked furiously to complete his ’Einstein equation’ even to the point of
risking his health. In November 1915 both physicists completed the tasks within
days of each other. Einstein was however burnt out with the exhaustion of run-
ning the race and pictures taken of Einstein in early 1915 and early 1916 show
the youthful looking Einstein had changed to the older looking Einstein that we
are all familiar with. Einstein was so exhausted that he had to spend the early
months of 1916 being nursed back to health by his partner Elsa Einstein. This
great contest in mathematical physics has parallels to Ali’s famous ’Rumble in
the Jungle fight’, which exhausted Ali and Foreman so much that it could have
cost either boxer their lives. Hilbert however thrived on the competition and
took the view that General Relativity was inherently Einstein’s theory and that
he (Hilbert) had only worked on the final mathematical steps to the finish.

Einstein took about ten years to find the Einstein field equation, from 1906
to 1915. Einstein made several, entirely understandable, false turns as is well
known, because he had nothing to guide him. He finally realized that the second
Bianchi identity is proportional to the Noether Theorem. This was all expressed
in terms of Riemann geometry and curvature, but we now know (paper 88) that
it can all be expressed in terms of torsion. Hilbert derived the same equation
using a lagrangian.
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David Hilbert (1862-1943) independently inferred the EH field equation in
1915 using the Lagrangian method. A Lagrangian is a function that summa-
rizes the dynamics of the system and is named after Joseph-Louis Lagrange
(1736-1813) who was born in Turin and worked in France, Italy and Prussia.
Lagrange was one of the greatest mathematicians of the eighteenth century
and made contributions to number theory, as well as celestial mechanics. La-
grange followed Leonhard Paul Euler (1707-1783) as director of mathematics
at the Prussian Academy of Sciences in Berlin, on the recommendation of Jean
le Rond d’Alembert (1717-1783). His students included Joseph Fourier and
Simeon Poisson.

Einstein made two major discoveries en route to the famous field equation: 1.
That the second Bianchi equation then available had to be used, and 2. That the
covariant derivative (not the flat spacetime ordinary derivative) had to be used
in the Noether Theorem. Einstein’s theory was tested by light seen to be bending
around the Sun during the 1919 total solar eclipse. When the measurements
where declared correct by the Royal Society, Einstein became the world’s first
scientific superstar and was nominated for the 1921 Nobel Prize. However after
the accuracy of the solar eclipse measurements were questioned, Einstein was
given the 1921 Nobel Prize, not for relativity, but for his explanation of the
photoelectric effect, which had led to the realization that light was composed of
photons and had led to quantum theory. Niels Bohr was given the 1922 Nobel
Prize, for his application of Einstein’s quantum theory to explain the emission
spectrum of the hydrogen atom. This description showed that electrons occupy
concentric shells in atoms, with the innermost shells being more tightly held
than shells further out. Prince Louis de Broglie then realized that electrons
are guided around the atom with a pilot wave, so that electrons simultaneously
exhibited a wave and particle nature known as wave particle duality. The icing
on the cake came in 1925 when Erwin Schrödinger produced his famous wave
equation, which mathematically described the motion of the electron around
the atom. All should have been now straight forward in physics, but at the
1927 Solvay Conference mathematicians muddied the water and the advance of
theoretical physics was stopped in its tracks!

5.4 Testing Relativity, by Observing Light Bend-
ing Around the Sun

Ernest Rutherford’s daughter Eileen married Ralph Fowler (1889-1944) in 1921.
Fowler lectured mathematics from 1920 at Cambridge University and wrote an
important book on stellar spectra, temperatures and pressures. Fowler worked
with Dirac at Cambridge, introducing him to quantum theory in 1923 and col-
laborating with him on the statistical mechanics of white dwarf stars. Fowler
also worked with the great English astronomer Arthur Eddington.

Arthur Stanley Eddington (1882-1944) replaced Darwin’s son as the Plumian
Professor of Astronomy in 1913 and became the Director of the Cambridge Ob-
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servatory in 1914. Eddington showed that the matter in stars is ionized due
to the high temperatures involved and that the pull of gravity on the matter
is balanced by the gas and radiation pressure. Eddington showed that the gas
pressure required to balance the star’s gravity indicates that the core tempera-
tures of stars must be millions of degrees. He went on to support the idea that
a star’s energy is produced by the nuclear fusion of hydrogen into helium.

The equation E = mc2, demonstrates that light has mass and as such should
be deflected by a gravitational field. In 1911, Einstein calculated the deflection
of light from a star, caused by proximity to the Sun. He took into account that
time is slowed down by a strong gravitational field and this effect would increase
the deflection.

In 1914 a German astronomical expedition set off to observe the total eclipse
of the Sun in the Crimea. However, the World War started and the team was
arrested by the Russians before they could observe it. Luckily for the team
however, they were soon released on an exchange of prisoners. If the team had
been successful they would not have proved Einstein right, because he had not
yet calculated the deflection expected for the light beam correctly. Later he
realized that gravity also bends space as well as slowing down time, making the
path the light takes longer and doubling the angle of deflection in his initial
calculations. Why Einstein decided that the angle should be exactly doubled is
not clear and so must be put down to his great scientific insight or otherwise to
an educated guess to allow his calculations to continue and to provide a figure
that could be tested experimentally. Either way, Einstein was correct in his
assumption as has been shown by the NASA Cassini probe, which is now able
to show that the deflection is indeed twice the Newtonian value experimentally
to a very high precision.

General relativity came from the equivalence principle in which acceleration
and gravity were considered to be equivalent by considering an observer in a
box. The observer could be in a lift or in a spaceship. If the observer felt the
pull of gravity in the box then this could simply be the pull of gravity on the
stationary lift. However, if he was in a spaceship he could be feeling the ship
accelerating at a rate corresponding to the Earth’s gravity ’g’. Similarly, if the
spaceship was stationary the observer would become weightless, but if the box
was actually a lift with the cable snapped he would also feel weightless and
would not be aware the box was falling with an acceleration of ’g’, because he
to would be accelerating at the same rate as the box.

Einstein conceived the bending of light and space by gravity from this
thought experiment. If light enters through a window in the box inside the
rocket as it accelerates upwards, then the box would move up as the light crossed
to the other side, causing the observer to see the light bending as it crossed the
box. The bending of the light would naturally be greater if the acceleration
was greater. Einstein’s great insight was then to realize that the effect would
be equivalent to an observer held stationary in a gravitational field inside the
lift. The greater the gravitational field the greater the bending. Einstein had
conceived general relativity, extending special relativity of objects moving at
high speeds, close to the speed of light, to include the effects of gravity and
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acceleration also. Einstein only needed now to put his ideas into mathematical
form to produce his famous Einstein equation. However, this involved cutting
edge mathematics and Einstein had been a ’lazy dog’ in this respect as a stu-
dent in ETH University in Zurich, opting to take the easier mathematic options,
despite being capable of taking the much harder mathematical courses. Luckily,
the mathematical genius Marcel Grossmann was in Einstein’s class at ETH Uni-
versity, so Einstein was able to pick his brains on the nature of the mathematics
required to describe curved space. The mathematics Einstein was advised to
study was that of Riemann and Noether. Albert Einstein then went on to de-
rive his Einstein field equation from the second Bianchi identity without torsion
(Riemann geometry) and the Noether Theorem.

In 1915, when Einstein introduced the world to General Relativity, his in-
sights were so fantastic, that he needed to gain support through experiment,
if this new theory of gravity was to be believed. The bending of light by the
Sun’s gravity, as photons passed close by, was the test. In May 1919, Arthur
Eddington the British astronomer led an expedition to the Island of Principe off
the coast of Africa to observe the total eclipse of the sun, while a second British
expedition set off to Sobral in Brazil. Photographs were taken during totality
to see if bright stars close to the sun had shifted their position. At the same
total eclipse, measurements were also recorded by the expedition in Sobral in
Brazil. At the time of totality the Sun was in the constellation of Taurus the
bull. The Bull’s head in Taurus is marked by a ’V’ shaped cluster, known as
the Hyades, consisting of reasonably bright stars, with the much brighter and
nearer star Aldebran marking the bull’s eye.

As it turns out some of the results for the bending of light recorded on the
Brazil photographic plates were in better agreement with Newtonian theory,
while Eddington’s measurements were supportive of Einstein. After consulting
with the Astronomer Royal and J. J. Thomson (President of the Royal Society),
it was decided to disregard the results from Brazil and so in November 1919,
Eddington was able to state that Einstein’s theory of relativity had passed this
test of validity. Einstein then became a world wide celebrity. The experiment
for calculating the bending of light close by the Sun does not now need a total
eclipse. In October each year two quasar radio sources pass close to the Sun
and the apparent changes in the angle between them, can be followed by radio
telescope in broad daylight.

Einstein-Cartan-Evans (ECE) theory takes the prediction of the deflection of
light a step further, by predicting that the light will also twist. The polarization
of the light is predicted to change as it passes close to massive objects such
as white dwarfs with strong gravitational fields. This can be seen in M. W.
Evans, "Generally Covariant Unified Field Theory" (volume three, Abramis,
Oct. 2006), where the dielectric theory is developed, and "ECE Theory of
Gravity Induced Polarization Changes" on the www.aias.us homepage.

In ECE theory, the essential new thing is the homogeneous current j, which
adds a term on the right hand side of the Faraday Law of induction. This results
in various optical effects such as changes of polarization, observed in a white
dwarf as in the paper.
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ECE theory reduces to Einstein-Hilbert theory when the Cartan torsion
vanishes, so producing all that Eddington saw. Calculations were helped by
Freeman Dyson, who later moved to the Princeton Institute of Advanced Stud-
ies. The accuracy of the light bending now is 1: 100,000 (NASA Cassini, 2003
onwards), supporting EH. The extra effects of ECE come from the Cartan tor-
sion, which is entirely missing in EH. The homogeneous current j gives the way
in which torsion affects EH.

In 2004, Kerry Pendergast was awarded a Royal Society Partnership Grant
in relation to an astronomical project entitled ’Daylight Astronomy’. As part of
the award, Kerry was invited to a special evening viewing of the Royal Society’s
Summer Exhibition, which highlights groundbreaking projects in education and
industry. Impressively representatives from Jodrell Bank were there, describing
their discovery of a double pulsar in a binary orbit, in which both pulsar beams
would over time eclipse each other in their orbits, as seen from earth. This
allowed an unparalleled opportunity to study the bending of space and the
slowing of time in giant gravitational fields and was dubbed the test bed of
relativity theory. Later, Kerry reflected that this double pulsar was just the
ticket for taking the Eddington Experiment and general relativity forward into
the 21st century, since it could be used to test and study the prediction made
by ECE theory, that a polarized light beam would not only bend around a
high gravitational field, but would also tilt. In 2007, Kerry was invited for the
day to Jodrell Bank and took the opportunity to discuss the problem with two
professors there. They described the experiment as ’cute’.

It is only a matter of time before workers at Jodrell Bank or elsewhere get
around to carrying out this experiment, which has the capability of proving ECE
theory beyond doubt and could well lead to a Nobel Prize for the first team to
accomplish the task. It is very possible that the data required has already
been collected, but without its significance being realised. This experiment is
an intriguing update to Eddington’s great total solar eclipse work that brought
Einstein world fame!

The double pulsar was discovered by Jodrell Bank in 2003. The rotation
times are 2.8 seconds for one and in the millisecond range for the other and
their orbit get smaller by 7mm a day as predicted. The 2.8 second pulsar has a
mass of 1.25 and the 23 millisecond pulsar has a mass of 1.34 solar masses. They
orbit each other every 2.4 hours with an orbit slightly smaller than the diameter
of our Sun and are traveling at 0.01 the speed of light. The 7 mm decrease per
revolution is due in ECE to T / R not being quite constant. In fact in ECE
theory, T / R replaces the universal constant G / c squared for a given M. The
"ECE Paradox" is that the EH equation does not obey the Bianchi identity, and
as with all paradoxes this is leading to wholly new information - notably that
gravitation is not quite universal in the sense that G / c squared is not quite
constant. This shows up in binary pulsars and also in the Pioneer anomalies
now perplexing NASA. In paper 106 the orbit of a binary pulsar is described
without using gravitational radiation, which has never been directly observed.

ECE theory replaces Riemann geometry with the much more powerful Car-
tan geometry, which allows not only the bending of spacetime to be taken into
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account, but also the effect of the twisting or torsion of spacetime, allowing all
the forces of physics to be described in terms of geometry. When light grazes the
Sun the slowing down of time causes the light to bend. Additionally the bending
of space by the Sun’s gravity causes the light beam to bend also. Nevertheless,
even in ECE theory there is no explanation as to why the slowing time of light
in a gravitational field and the bending of light should both produce the same
degree of bending, so that the angle of deflection is double the angle calculated
by Einstein for Newtonian gravitational theory. However, Myron has proposed
that:- R = omega T as another form of the null geodesic condition and believes
this will explain why the light deflection is twice the Newtonian value whenever
light (electromagnetic radiation) is deflected by gravity, i.e. by light grazing an
object of any mass M. "There is no doubt from NASA Cassini that the deflec-
tion of light in the Eddington type experiment is twice the prediction of the
Newtonian theory to 0.001% or thereabouts. It is now known however (papers
93 to 105 of ECE theory on www.aias.us) that the use of the Christoffel symbol
is incompatible with the Bianchi identity of Cartan. The version of the Bianchi
identity used by Einstein omits the torsion, which is unfortunately an irretriev-
able flaw. This showed up in the Hodge dual of the Bianchi identity, and it turns
out that we cannot just set T = 0 in the Bianchi identity. Therefore in paper
103 onwards an attempt has been initiated to make the great Einsteinian the-
ory fully compatible with the Cartan torsion. The conditions for the observed
deflection have been defined and described in paper 105. This work can account
for the Pioneer anomaly while the Einstein Hilbert theory cannot, because it
cannot adjust M. The problem is that the so called "Schwarzschild metric" used
routinely in astronomy is not the one devised in 1916 by Schwarzschild him-
self in two exact solutions. Stephen Crothers has shown this definitively (see
www.aias.us). In paper 105 a first attempt was made to explain the true origin
of the so called Schwarzschild metric. Also, ECE theory predicts in a simple
way that the polarization of light is changed by gravitation, as are all the optical
and electrodynamical properties, whereas the Einstein Hilbert theory is a pure
kinematic theory based on the mass of the photon being attracted by an object
of mass M.

5.5 Black Holes, Singularities and Large Masses

Observationally large masses are detectable at the centres of galaxies, which
are usually referred to as black holes. However, the existence of black holes
is contested in this book, because it is shown, that contrary to popular belief,
they do not emerge from the flawed Einstein field equation. The connection used
by Einstein was incorrect (see papers 122 onwards on www.aias.us). To keep
on using this incorrect correction symmetry is misguided and here Einstein’s
original calculations have been wholly replaced by ECE theory. Since "black
holes" are not therefore predicted mathematically, it may be better to replace
this term with the term "large mass".

Einstein completed his attempt to formulate his field equation of general
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relativity at the end of 1915, in a photo finish with David Hilbert. However, this
Einstein-Hilbert field equation was not really the definitive equation of curved
spacetime that he had set out to formulize ten years earlier. It only marked the
furthest point that Einstein was able to reach, in his quest for his great equation.
In order not to let Hilbert take all the credit, the race to formulate the equation
stopped at the end of 1915, with both Einstein the physicist and Hilbert the
mathematician sharing the credit. The equation appeared to be good enough to
satisfy the needs of a relativistic theory of gravity, with regards to describing the
corrections needed to Newton’s work, in order to describe the orbits of satellites
and trajectories of space probes, but led to problems of interpretation in some
areas of cosmology. However, it failed to describe the orbital motions of stars
in spiral galaxies, but ECE theory has been able to account for this motion in
terms of torsion.

The short comings of the Einstein-Hilbert field equation, resulted from false
assumptions and simplifications being made right at the start of the work, re-
garding how Riemann mathematics could be applied to the curvature of space.
A symmetric assumption was made and the role of torsion was not incorpo-
rated. Whilst gravity could be described as the curving of space by mass, the
possible twisting forces due to electromagnetic forces was omitted and as a re-
sult, the famous E-H field equation is not as comprehensive in its descriptions,
in the way that was intended. The omissions and incorrect assumptions also
prevented Einstein from completing his later work, of combing light and gravity
to produce his fabled theory of everything. In the field of cosmology, Einstein’s
field equation predicted the existence of black holes, but short comings in the
equation meant that the nature of these black holes was not defined, since as
black holes were predicted to collapse, infinities would occur in the calculations,
which meant that the meaningfulness of the calculations would break down and
the equation, would no longer describe physical realty in the vicinity of the black
hole.

Einstein accepted the limits inherent in his field equation in relation to black
holes and singularities and even wrote a paper in 1939, to assert that black holes
and singularities could not exist in nature. It is can now be seen that Einstein’s
papers on general relativity are incorrect, because of the use of an incorrect
connection. So the era 1915 - 2009 in cosmology, can now be moved forward
by using theory such as ECE, that by virtue of uses the correct geometry, can
overcome the shortcomings inherent in the Einstein-Hilbert equation. Many
physicists and mathematicians over the last hundred years have used Einstein’s
equation, to predict black holes will collapse to zero volume to form singularities,
with infinite gravity and energies. This is not a physical reality however and
recently physicists and theoreticians have woken up to the situation and are
now coming to believe, that while there is good observational evidence for the
existence of large masses, singularities do not necessarily exist and new work
needs to be done, to produce a more realistic mathematical and theoretical
description of the situation.

Astronomy is predominantly an observational science and with the advent
of astronomical telescopes, our view on the universe has been expanded and
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with the vast distances involved in space, we have even been able to look back
in time. With the naked eye we are able to just about glimpse the Andromeda
galaxy, from which it takes the light two million years to reach our eyes. With
modern telescopes and photographic images, it is now possible to see billions
of years into the past and to the edge of the known universe, when viewing
distant galaxies. Augmenting the worlds biggest and best land based telescopes
are NASA’s great space telescopes and on the ground and in space different
telescopes have been built, that can give us views across the cosmos not only in
the visible, but across all the different regions of the electromagnetic spectrum.
Notable amongst these telescopes, are the two hundred inch Palomar Telescope,
Gemini, Keck and the Very Large Telescope (VLT) in Chile, which operate
predominantly in the visible. These are augmented by the Jodrell Bank radio
observatory, UKIRT and the JCMT in the infra red and in space by Spitzer
(infra red), Hubble (visible, UV and infra red), Chandra (X-ray) and Fermi at
gamma ray frequencies.

It is believed that black holes are formed at the end of the lives of massive
stars. However, in this book a new description, such as ’large mass density’is
preferred to black hole. For stars of average mass, the stalling of energy pro-
ducing nuclear fusion reactions, results in gravitational forces overwhelming the
outward radiation pressure and an implosion occurs, which causes the nuclear
core of the star to collapse into a white dwarf star, while simultaneously, the
outer remnants of the star are ejected at high velocity into inter stellar space
to form a planetary nebula. These nebulae have all kinds of shapes, just as
snowflakes do, with the characteristic white dwarf star seen at their centres and
are well seen in the visible region of the electromagnetic spectrum. The col-
lapse of the star’s nuclear core to form a white dwarf, results in the mass of
the star’s core being contained in a volume similar to that of a city and New-
ton’s inverse square law of gravitation can be used to show that gravitational
force has increased exponentially as the radius of the core has shrunk. However,
stars around ten times or more massive than the Sun end their lives even more
spectacularly in a supernova and the collapse of the core goes further!

It is thought that stars going supernova, produce a neutron star or pulsar.
These supernova remnants have been greatly studied at radio frequencies by
observatories such as Jodrell Bank in Cheshire, England. The most famous of
these pulsars, is probably the one at the centre of the Crab Nebula, which was
the result of the supernova first seen in 1054. Jodrell Bank has a radio dish
dedicated to observing the crab pulsar, whenever it is above the horizon. Over
time, it has been seen that the rate of rotation of this pulsar is very gradually
decreasing.

NASA’s Fermi Gamma-ray Space Telescope (formerly known as the Gamma-
ray Large Area Space Telescope or GLAST for short), was launched into space
in June, 2008. It has several instruments on board and has already discovered
a number of pulsars by detecting gamma ray emissions. A pulsar’s gamma ray
emissions account for around ten percent of a pulsars total energy emissions,
which is over a million times more than its radio emissions.

The Vela and Crab Nebula pulsars are the brightest sources of persistent
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gamma ray emission in the sky. The Vela pulsar spins eleven times every second,
but despite its brightness only delivers one gamma ray photon to the Fermi Space
Telescope every two minutes and the faintest pulsars only deliver two gamma
ray photons to the Telescope in an entire day!

It is believed that when the most massive stars undergo supernova events,
they collapse beyond the point of forming white dwarfs or pulsar neutron stars,
to form black holes. Black holes are believed to have such a vast mass density,
due to the collapse, that the gravitational forces become so large, that not
even light can escape. It is therefore speculated that extremely massive stars
undergoing supernova, collapse to produce black holes. Whether black holes
exist is questionable however, because the collapse forms an object with a large,
but finite mass density. The gravitational forces become extremely large, but
cannot produce singularities and this process, certainly cannot be the physical
result of a mathematically incorrect equation, the Einstein field equation.

If black holes are truly black, no light should be able to escape from them
and it could be assumed that they cannot be seen or detected. However, one
method of detecting black holes or large mass objects is by analyzing images
that exhibit gravitational lensing, such as Einstein’s Cross. Black holes unseen
in the foreground of an image, can distort the light from objects and galaxies
much further back in space, to act like a lens, to give a magnification to the
more distant objects and can even provide alternative paths for the light to
take. Gravitational lensing is thought to provide evidence for the existence of
black hole or large mass supernova remnants and for supermassive black holes
or super dense objects at the centres of galaxies.

Black holes are thought to release high energy radiation, as matter falls
into them and this high energy radiation can be detected in the X-ray and
gamma regions of the spectrum, to provide further evidence for the existence of
black holes. The Chandra X-ray space observatory provides valuable data here.
Chandra can examine the X-ray emitted from ’feeding’ black holes, be they in
our own our own neighborhood of space or in nearby galaxies. The Chandra
X-ray images of the Andromeda galaxy can be superimposed on optical images,
to show the location of the black holes studded throughout the galaxy.

Galaxies are now thought to have super massive black holes at their centre,
but these are more often than not shrouded in dust and gas, making it rather
difficult to observe them. Our own spiral galaxy is believed to have a supermas-
sive black hole at its centre, but this is obscured from view, by vast amounts
of dust, because we have to view the centre of our galaxy, through the galactic
plane, in which the stars, gas and dust of the galaxy is concentrated. In the last
decade or two, the obscured centre of our galaxy, has been rendered visible by
observing it in the infra red, with telescopes, such as the twin 10 metre Keck
telescopes (near infra red), the 3.8 metre, United Kingdom Infra red Telescope
(UKIRT) and in the submillimetre (between the far infra red and microwave),
with the 15 metre, James Clerk Maxwell Telescope (JCMT) on Manau Kea,
in Hawaii. The JCMT is able to look further into the infra red, by cooling its
detecting instrument close to absolute zero, by using a tank of liquid helium.
Importantly, these instruments have allowed the thirty or so stars, closest to
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the galactic centre to be observed for sufficient time to have their orbits plotted.
These stars are seen to be rapidly orbiting an invisible, supermassive object and
their orbits can each be used to calculate the mass of the object, which they are
orbiting!

Four hundred years ago in 1609, Galileo made himself a refracting telescope
and pointed it to the sky to observe the planets, Moon and Sun in greater de-
tail than had been previously achieved. He quickly produced one of the most
important books in scientific history, called ’The Starry Messenger’ and estab-
lished himself as the world’s greatest astronomer. One of his most important
revelations was that Jupiter had four giant moons, which over the course of a
few days could be seen orbiting Jupiter. By noting the position of Jupiter’s four
great Galilean moons (Io, Europa, Ganymede and Callisto), in terms of Jupiter
diameters from Jupiter, it is a simple process to find their periods (time to com-
plete one orbit) and this can be easily used to calculate the mass of Jupiter.
The four moons, give four independent results for the mass of Jupiter, which are
in good agreement. The average of the four masses provided by observing the
four moons, gives confidence in the data obtained and a more accurate value for
the estimate of Jupiter’s mass. This method has been adapted in recent years,
to find the mass of the supermassive black hole at the centre of our galaxy.
Observations of the orbits of the thirty or so stars nearest to the galactic centre
provide an estimate for the mass of the supermassive object, as several million
solar masses! This object is heavy, but cannot be a singularity. This book shows
in different ways that the metrics of the Einstein field equation are incorrect, so
nothing can be deduced from them.

Thus, it appears that there is good observational evidence for the existence
of black holes or large masses and indeed for supermassive objects. However,
it is true to say that no one has ever seen such an object directly and it is not
known how compacted a the object can become, before repulsive and relativistic
effects stop the contraction going further. Black holes are believed to develop
spin as the contraction occurs and this would help to balance contraction forces,
as would the vast temperatures that would be generated. What actually goes
on inside a black hole is anybody’s guess, since the traditional equations of
physics break down under these conditions. General relativity and Einstein’s
field equation breaks down, because as contraction occurs, infinities would occur
as the radius of the black hole contracts. For 1/r, where the radius r tends to
zero, then gravitational fields would go to infinity and time would stop and
space would curve in on itself. This has been acceptable to mathematicians for
the last hundred years or so, but is not real physics, since infinities do not agree
with the realities of the physical world we observe.

Attempts have been made to describe the inner workings of black holes in
terms of a combination of quantum theory, which describe the contributions
from the very small, with the Einstein field equation, describing gravitational
forces as the curving of space on the large scale, in a combined theory called
quantum relativity. However, the two theories do not fit well together in any
meaningful way and there is no reason to believe that matter would contract
to form singularities, which only have meaning to mathematicians. We can
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conclude that although there is good evidence for the existence of these dense
objects, no one has ever seen one and no one can actually say for sure, what
is going on inside a black hole and what exactly a black hole is and if the
collapse actually stops, before the dense object can become a black hole. Solving
the black hole problem is now being tackled by physicists, astronomers and
mathematicians working together to try to come up with a solution. What
is required here is a grand unified field theory of physics, which can combine
general relativity with quantum theory and electromagnetism. The leading
grand unified field theory to date is ECE theory, which combines the torsion of
spinning spacetime with the curving of space by gravitational forces.

It is interesting to consider the roles that supermassive objects play in the
creation and evolution of galaxies. M87 is a nearby galaxy in the Virgo cluster,
in which gas spinning at its centre can be used to indicate that a supermassive
object resides within the galactic core. It is now believed that supermassive
objects can be found at the centre of the vast majority or even all galaxies.
Furthermore, a relationship has been found between the mass of galaxies and the
mass of the supermassive objects residing at their centres. The mass of a galaxy
is found to be one thousand times greater, than the mass of the supermassive
object at its centre. This indicates that the supermassive objects at the centres
of galaxies are not the destructive entities that they may thought to be, but on
the contrary are an integral part of the make up of the galaxy. What role these
so called ’black holes’ play in the creation and evolution of galaxies is open
to debate. The most active supermassive black holes at galactic centres are
believed to be responsible, for the extremely active galaxies, known as quasars.
What quasars actually are has puzzled astronomers for many years.

In the autumn of 2009, the active blazer galaxy 3C 454.3 some seven bil-
lion light years away in Pegasus, brightened to overtake the Vela pulsar as the
brightest gamma ray source in the sky. Effectively, we are looking down the
barrel of this object’s particle jet, which is powered by the galaxy’s central su-
permassive black hole. Traditionally, it is believed that such jets are the result
of oppositely directed jets of particles, traveling close to the speed of light, being
produced as a result of matter falling into the supermassive black hole at the
galactic centre. However, it is perhaps worthwhile considering other possibilities
for these events, which emit energy and matter from these supermassive black
holes.

Rather than the supermassive entity at the galactic centre, feeding on nearby
stellar material, the interpretation could be turned on its head, by considering
the possibility that the mass concentration is on the contrary a source of high
energy discharge, in the form of a spewing white hole. The white hole could have
an energy source we have not yet recognized and being unable to contain this
burgeoning energy, is expelling it as high energy gamma rays beams, radiating
from the source, in opposite directions, as is seen in the Pegasus blazer. The
beam of gamma rays reaching the Earth may only be a fraction of the gamma
ray energy leaving the galactic centre. As the high energy gamma rays leave
the immense electric, magnetic and gravitational fields that exist in the poorly
understood black hole region, the vast majority of the gamma rays could perhaps
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undergo conversion into matter. Whereas X-rays would produce electrons by
conversion to particle form, gamma rays two thousand times more energetic
would be the right mass to be converted to the well known nuclear particles of
neutrons and protons. Neutrons are unstable outside the atomic nucleus and
over a timescale of minutes would degrade steadily to form proton and electron
pairs. Such pairs are more commonly known as hydrogen atoms. On taking
their particle form, the speed of the gamma rays would drop from light speed
and be captured by the gravitational field of the galaxy and provide the source
of hydrogen for the next generation of stars. Perhaps this is what gives rise to
the familiar bar structures that are seen in the central bulge regions of galaxies
and is the source of the young stars evolving to form the spiral arms of blue
spiral galaxies!

This could also be the source of cosmic rays, which happen to be ninety
percent made up of protons and ten percent helium and alpha particles. After
traveling across space for millions or billions of years, after being emitted from
the cores of blazers and active galaxies, the high energy gamma rays could be
stimulated to convert to particle form as protons, and alpha particles (four times
the energy) as they interact with the solar wind, the Earth’s magnetic field and
the atmosphere to be detected as the particles we call cosmic rays.

Gamma rays have energies which correspond to the masses of neutrons and
protons and therefore, the conversion of gamma rays to their particle form,
could account for the abundance of hydrogen atoms in the universe. Perhaps
the centre of new active galaxies, such as quasars possess the magnetic or electric
field that can cause a kind of resonance to occur, where a gamma ray reservoir
or primordial voltage produces or interacts with a super massive white hole, to
provide the source of hydrogen, which is the most abundant element found in
nature. Similarly, gamma rays for times more energetic could produce helium,
the second most abundant element in nature and would explain it being present
in higher abundances than is explained by its formation in nuclear fusion in
stars.

5.6 New Cosmologies

Fred Hoyle (1915-2001) was an English astronomer from Yorkshire, who founded
the Institute of Astronomy at Cambridge University and was also an honorary
professor at Cardiff University from 1975, where the ’panspermia theory’ that
life on Earth is in part due to the transport of viable cells from space, has been
developed by Professor Chandra Wickramasinghe. Micro-organisms have now
been detected as high as forty-one kilometres up in the stratosphere. Hoyle
developed the theory of the structure of stars and made key advances in the
understanding of how chemical elements in stars are formed by nuclear reactions.

In the 1950’s, Hoyle proposed the Steady-State theory as an alternative to
the notion that the Universe began with a ’Big Bang’ some 13.8 billion years
ago. Infact, the term ’Big Bang’ was coined by Hoyle as a derogatory description
for the expanding universe theory. The battle between the two theories took
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place in the fifties and sixties, before the discovery of the cosmological back-
ground radiation in 1964, delivered Hoyle’s theory a supposed knockout punch.
However, Hoyle’s theory has not been dead but only dormant and new ideas
are being developed, which could offer an alternative explanation for the cosmic
background radiation. One idea is that light of galactic origin, is absorbed by
iron ’whiskers’ produced by supernovae and then reemitted as microwaves.

The steady state theory hinges on the creation of matter between galaxies
over time. As galaxies move apart new galaxies evolve to fill the space in between
them. Just as a river flows, but the river remains the same, the universe could be
considered to be expanding, but unchanging. A problem with this theory today
is that the Hubble Telescope’s deep field image shows that the most distant and
oldest galaxies are different to galaxies in our neighborhood.

Hoyle believed that solutions to major unsolved problems were best solved
by exploring radical hypotheses, whilst at the same time showing due reference
to well-attested scientific tools and methods. This was because if scientific
breakthroughs were always orthodox in nature, they would already have been
discovered.

In 1929 Edwin Hubble started work at the newly completed telescope at
Mount Wilson, in California. The telescope he was about to use was the world’s
most modern and biggest. Many people have pondered the question, ’Are there
any other universes, beside our own?’ At the time the known universe was
the Milky Way galaxy, which contained some nebulae which had a character-
istic spiral shape and which were thought to be gas clouds within the Milky
Way. In 1923, Edwin made his first great discovery. While looking at the spiral
Andromeda nebula, known as M31 with the world’s biggest telescope, he was
able to see that the gas nebula was not made of gas, but was actually made
of stars. This had already been confirmed in the previous century, by the Earl
of Ross’s observatory in Ireland, with his ’Leviathan Telescope’. Hubble went
further, when he identified a special type of variable star, known as a Cepheid
variable, in the Andromeda galaxy, which was able to give him its distance.
Thus, the spiral nebulae that were already discovered at that time could in-
fact, be regarded as other universes at a great distance from the Milky Way.
Consequently, these other universes became classified as galaxies and it became
known that our Milky Way was only one of a great number of other galaxies,
some of which like our own had a characteristic spiral shape.

The distances of stars to a distance of around seventy light years are deter-
mined by the method of solar parallax. Beyond this distance, special variable
stars can be used as a yardstick. At still father distances, the Doppler Effect is
brought into play to determine distances by the red shift method.

Stephan’s Quintet was discovered by Frenchman Jean Marie Eduard Stephan,
with his 40-cm refractor at Marseilles in 1877, with five galaxies contained in
a mere 5’ field and was something of a historical curiosity. Four had measured
redshifts in the range 5750-6750 km/s, while one, NGC 7320, measured a mere
790 km/s. Conventional cosmology would, by associating redshift with dis-
tance, place this one galaxy much closer than its "companions", and argue it to
be unassociated with them; their closeness on the sky would be thought purely
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coincidental. However, in the 1960s Halton Arp and others proposed that NGC
7320 could be seen to be interacting with its companions, and therefore must
be associated with them. Arp argued that the redshifts of objects might not
measure their distances so reliably as many thought. Halton Arp worked at one
time with Sir Fred Hoyle. In chapter five of volume three of GCUFT (paper
49), the red shift is explained with the dielectric version of ECE, without the
need for the Big Bang.

The cosmic microwave background radiation hypothesis came into play, after
the horn radio antenna, constantly recorded a signal no matter what direction it
was facing. After all possible causes for the radio interference were discounted,
the sky and deep space became the only source left and the rest is history.
However, Professor Pierre-Marie Robitaille of Ohio State University, who is an
expert in radiological studies, now believes the cosmological 2.8 K background is
due to radiation from the oceans, which could remove a great supporting plank
from the need for the Big Bang theory as reported in paper 93. The PLANCK
satellite is to be sent to the second Langrage point and could well confirm
Professor Robitaille’s new interpretation of the cause of the radio interference.
Arp and Roscoe have also collected a great deal of data against Big Bang; see
Roscoe in vol. 119(3) of ACP (2001). The age of galaxies is another vast set of
data against Big Bang, as has been pointed out by Norman Page.

What is needed now is a new way to look at the problem afresh, with the
emphasis on what can be clearly seen across the universe. It is now widely
assumed that at the centre of galaxies there are black holes, which feed on stars
which fall into them. However, it is important to keep an open mind to allow
observed data to be interpreted properly. Often history shows scientists are led
by good reasoning to take the opposite view to what the information is actually
telling them. In ECE theory, cosmological equation (52) brings spin coupled
resonance into play. Spin coupled resonance offers the possibility of interpreting
old data in new ways. In the evolution of galaxies, spin coupled resonance could
give a mechanism by which matter could actually be created at the centre of
galaxies, giving an opposite view compared to the standard view accepted today.
In the middle of a galaxy there may not be an all devouring black hole, but a
matter producing white hole (in other words: a region of massive spin coupled
resonance).

The advent of powerful robotic telescope has opened up the field of direct
imaging of galaxies over huge distances to analysis by computer or humans.
Millions of galactic images are now being taken robotically and many images are
also provided with spectrographic data, which gives distances via the red shift
method. Foremost amongst the robotic telescopes for revealing much needed
data for cosmology is the ’Sloan Digital Sky Survey’. The Sloan Survey has
provided millions of pictures of an area covering all of the northern sky and
provides a means to allow deductions to be made from simple observations. It
is now time to make sense of this myriad of images to explain how galaxies form
and evolve. It may soon be seen as obvious, that small galaxies evolve from
much smaller clusters of stars and gas which clump into bigger conurbations.

Analysis emerging from the Sloan Survey is leaning towards galaxies starting
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out, as spinning spiral galaxies emerging inside a cocoon of dust and matter.
The direction of spin of the galaxy is revealed by examining which way the spiral
arms are wound, but the direction of spin clockwise or anticlockwise would of
course be the opposite if viewed from the opposite side of the disc. Young spiral
galaxies would tend to be smaller and sport a blue colour due to large fast lived
giant blue stars. Blue giants live life in the fast lane, but only last a few million
years and so are found in young galaxies, where star formation is happening
apace. Short lived blue stars produce second generation stars, many of which
will be smaller and redder in colour and which contain elements formed, during
the supernova destruction of the blue stars. Galaxies are not that far apart
compared with their sizes and so collisions between them is not unusual, but
goes with the territory. Spiral galaxies can frequently be seen in various stages
of collisions and collisions can cause them to change shape, but if they are young
enough and forming new stars, rotation can again predominate to restore the
spiral footprint. It is seen that in galactic clusters, spirals tend to be found with
other spirals and large elliptical galaxies are found with other large elliptical
galaxies. The elliptical galaxies are thought to be large, through feeding on
other galaxies and reddish in colour because their star making days are coming
to an end and the fast lived blue stars have already burnt out.

A major question that needs answering is, why there appears be two dis-
tinctly different types of galaxies; namely the giant elliptical galaxies and the
spiral galaxies. Elliptical galaxies are large and star formation has stopped, so
appear to be much older than the blue spiral galaxies, which are also seen in
large numbers. Strangely, elliptical galaxies tend to be seen in large clusters,
whereas spirals tend to be seen by themselves.

The Sloan survey is on track to reveal new insights into the nature and
evolution of galaxies and may confirm, that blue spirals galaxies are young
galaxies in the beginning of aggregation and red elliptical galaxies, have reached
the end of their active lives. It is now being recognized that red elliptical galaxies
at the end of their lives, have lost the cocoon of gas that once fuelled star creation
and this could be, because large older galaxies possess a ’galactic wind’ along
the lines of the solar wind, but acting on a galactic scale to blow dust and light
elements, away from old galaxies and into the vacuum of intergalactic space.
Thus, older galaxies could be in a state of ’evaporation’, seeding space with new
material for new young galaxies to form and providing ’fuel’ for the steady state
production and birth of new stars and galaxies.

Horst Eckardt has described galactic evolution with ECE theory, by using
the equations:

∇ · g = 4π G ρ (5.1)

g = −∇φ+ ωφ (5.2)

Using (5.2) in (5.1) produces an Euler Bernoulli equation. Under well defined
conditions this can have a resonant initial condition, which would be the start
of an evolution of some type. This could be a galactic evolution as described
above and the equation could be used to produce analytical models which it
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is possible to animate. The resonant initial condition would be the birth of a
galaxy, which then evolves out to the condition:

∇ · g = 0 (5.3)

as observed in the flat part of the velocity curve where the dynamics are totally
non Newtonian, but easily described by ECE.

It is puzzling why blue spiral galaxies are segregated from red elliptical
galaxies. What has been recently realized is, that as blue spirals approach red
elliptical galaxies they change into red spirals, showing that their star making
ability has been lost. There is evidence that the cocoon of star forming gas
in blue spirals, is blown away as they approach the red elliptical galaxies, giv-
ing evidence of a kind of galactic wind, which could be a feature of galaxies
approaching the later stages of galactic evolution.

In the late thirteenth and early fourteenth century, Marco Polo and his
father and uncle made contact and traded with Kublai Khan and the Mongol
empire as far as China. Marco Polo’s book of his travels, gave the inspiration
to Christopher Columbus, to find a route to the Eastern riches by means of the
sea, traveling west. This of course resulted in Columbus’s discovery of America
in 1492! With time the need to train navigators for English voyages of discovery,
led to the foundation of Gresham College and subsequently the Royal Society,
institutions in which the great experimental scientist Robert Hooke made his
name.

Robert Hooke is one of the world’s greatest ever scientists and was very dif-
ferent in his approach to his work compared to Newton. Newton was the great
mathematical physicist, whereas Hooke relied upon his great insight into nature
and was like an English Leonardo De Vinci, with the ability to apply himself to
all sorts of problems. Hooke came up with the famous law, which describes how
elastic materials such as rubber and springs, stretch when a force is applied.
Hooke’s law produces a straight line graph, when extension is plotted against
load. Once the graph has been plotted, it can be used to interpolate, to find ac-
curately other values for extension or loads for which the measurements were not
actually measured. The important thing is that the value of the mathematical
function lies between known values!

In reaching out, to discover the nature of the universe across the vastness
of space, it is not always possible to interpolate in the manner just described
for a Hooke’s Law graph and so the process of extrapolation must be used,
where the line is extended past the points at the extremes of the graph. In
cosmology, this extrapolation can give the cosmologist a false sense of security
with the validity of his data and lead to wrong or invalid conclusions, which
are not well founded on observational data. This could well be the case for
red shift measurements, taken from light which has traveled extreme distances.
Over smaller cosmic distances, the red shift and blue shift can be used to show
that objects are moving towards or away from the Earth. This is verified by
observing double stars, with the motion of the stellar partners alternatively
giving red and blue shifts to their spectrum, corresponding to their position in
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their orbit with respect to the Earth. It is usually assumed, that even at truly
vast distances, the red shift is simply due to the speed of the object (in this
case a distant galaxy) moving away from the Earth. However, over extreme
distances, this relationship may not hold.

If we take the case of Hooke’s Law for a simple spring, increasing the loads
initially corresponds to the extensions found by extrapolation, but beyond the
limit of proportionality, the spring goes past the elastic limit where Hooke’s Law
is no longer obeyed. Thus, for extreme red shifts, it could be argued that other
factors come into play. It is known that when light travels in a vacuum that
it travels at the speed of light, but when it travels through a medium such as
glass slows down. Over the truly vast distances of distant galaxies, the fact that
space is not a true vacuum, but contains dust gas and subatomic particles could
come into play. As a result the big picture could be that on the vast scale, light
travels slower or loses energy through interactions with the interstellar medium
and as a result, the light shifts to the red, for reasons not related to the speed
of the light source away from the Earth. ECE paper 49 was built around the
interaction of light with inter-stellar gravitation via the homogeneous current
of ECE theory. This is the cause of Beer Lambert absorption and refraction
(change of frequency as in a prism, the red shift).

In Hooke’s Law extrapolating past the limit of proportionality is clearly
not valid. Experimentally it can be seen adding too many weights leads to
unexpected results, in the form of a big bang as the material snaps and the
weights crash to the floor. In cosmology, the validity of the big bang is by
no means certain and the evidence should be periodically reexamined, to see if
there are alternative explanations to account for the red shift and the cosmic
microwave background. Surprisingly, this reexamination of the evidence rarely
takes place in cosmological circles and the evidence is considered to be beyond
question. However, it is good scientific practice to present alternatives to the
predominant theory where appropriate!

Radio absorption of the inter-galactic medium is known experimentally.
Vigier et al. have shown that this type of absorption casts doubt on the Big
Bang theory, by virtue of five critical tests:

1. Angular size;

2. Redshift;

3. Hubble diagram test;

4. Galaxy number count;

5. Differential log N log S test.

If we accept the background Penzias-Wilson radiation (a big if!), the 2.7
K microwave background radiation is the mean temperature of the Universe,
indicating a dark night sky. In ECE cosmology, this background (if it exists)
would be due to the Beer Lambert law as in paper 49. Interaction of gravitation
and light, with the homogeneous current j, causes absorption and heating. From
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the Stefan Boltzmann law, the mean black body temperature emitted form the
heated universe is 2.7 K, which resolves Olbers’ paradox. In general red shifts are
spectra in ECE theory. The origin and distribution of elements, is as described
by the Pinter Hypothesis, some parts of the universe may be locally expanding
or contracting, but overall the universe is boundless and without beginning or
end.

Kepler’s analysis of the data for the movement of the planets through the
zodiac, led to Kepler’s laws and the realization the planets orbited the Sun in
ellipses. Kepler’s laws also helped Newton formulate his theory of universal
gravitation and the inverse square law. The inverse law tells us that gravitation
does not simply decrease linearly with distance, but as the distance doubles,
the force of gravity reduces to only a quarter of its initial strength (1/2x1/2
=1/4), so that gravitational force reduces rapidly with distance, similar to that
experienced, when two opposite poles of a pair of magnets are progressively
moved further apart and released.

The planets were formed from a cloud that began rotating as it condensed,
to form the massive Sun at its centre, with proto-planets called planetisimals
around it. The gravitational pull between planetisimals, caused collisions and
eventually resulted in the stable orbits of the remaining planets. When the Civil
List Scientist Herschel discovered the planet Uranus, the size of the solar system
was doubled at a stroke. It was naturally assumed that the flat disc occupied by
the planets of the solar system as far as Uranus, could be extrapolated beyond
the orbit of Uranus, into the orbit of as yet unknown planets. Anomalies in
the orbit of Uranus were used by the Civil List Scientist John Couch Adams
to mathematically pinpoint the position of the planet Neptune, showing that
extrapolation of the plane of the planets orbits held to that distance. However,
further extrapolation to the orbital distance of Pluto, which was discovered in
1930, was not valid.

Pluto was known to have a much more elliptical orbit than the other planets
and its orbit, was at much more of a tilt to the orbital plane, than that of the
planets. Instead, beyond Neptune, it is now known the Kuiper belt exists, where
thousands of Pluto like, giant ’dirty snowballs’ are presumed to exist and where
the plane of the planets, opens out becoming ’thicker and thicker’, with the plane
opening out into an increasingly wide belt, eventually transforming into the Ort
Cloud, where millions of comets are held in a loose orbit in a sphere around the
Sun. Inside the Ort cloud, is the region of space, which is closer to the Sun and
which was swept clean by gravity, four and a half billion years ago, to produce
the Solar System. When the Sun ignited, its solar wind swept away remains of
the cloud from which it was formed, with its local domination of space, being
seen to lessen significantly firstly at the Kuiper belt and almost completely as
the region of the Ort cloud is reached. This emphasizes the lessons learned
from Hooke’s law graphs, which are plotted beyond the limit of proportionality.
The law may break down for the system, but for reasons which can be readily
understood, by looking at the bigger picture and applying Baconian rules to
determine the reasons why.

The great question about gravity is ’how far can we extrapolate Kepler’s laws
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and the force of gravity away from the Sun, before the limit of proportionality
is reached and other factors come into play?’ The Pioneer and Voyager probes
have been heading out of the solar system for many years now and already there
are signs that the limits of proportionality have been passed. This is shown by
data on the motion of the probes that are described to as the Pioneer and
Voyager anomalies. The anomalies may as yet be small, but are believed to be
real. In ECE theory, it is presumed that at this distance, the gravitational force
caused by the curvature of space, is decreasing to the point, where the torsion
of the spinning spacetime of electromagnetism is starting to become significant
in comparison.

Could our theories for the start and evolution of the universe need changing
or updating? Is our universe really 13.8 billion years old as predicted by the
Big Bang theory and did the universe start from a singularity?

The latest Hubble deep field image can see galaxies back in time to only
700 million years after the supposed Big Bang. The first stars and galaxies
are said to have been forming around 500 million years after the Big Bang,
but in the 700 million year old image provided by the Hubble space telescope,
the stars are already similar or identical to those seen in our local galaxies
today, being composed of second generation stars. Galaxies being composed
of second generation stars, only two hundred million years after the first stars
were formed, could be seen as evidence, that the oldest galaxies imaged by the
Hubble telescope are older than allowed for by the Big Bang theory.

The Hubble Space Telescope deep field images show galaxies, which are
billions of light years away, at the edge of the observable universe. It is said
that these image, show the galaxies formed far in our past, do not look identical
to nearby galaxies, which have been formed in more recent times. This suggests
that there has been an evolution of galaxies, since the time of the big bang and
is strong evidence against Hoyle’s steady state theory. However, there are good
reasons why the image of galaxies from billions of years ago is different from
those of today:-

Firstly, the image of galaxies from the edge of the observable universe may
suffer from a small degree of gravitational lensing, by material along its optical
path to the telescope. Secondly, dust in the intervening space may cause a
degree of distortion through refraction. Thirdly, objects at extreme distances,
undergo a high degree of red shifting of their light, before it reaches an observer.
Therefore, for the most distant galaxies, this red shifting will cause the original
visible light to shift into the infra red, to be replaced by ultra violet light that
has moved out of the ultra violet and into the visible part of the spectrum,
before it reaches the observer. The Hubble deep field image of the most distant
galaxies, would therefore not be identical to nearby galaxies, because the visible
image of the distant galaxies, would effectively be comprised of light of shorter
wavelengths and would therefore be a comprised more of light from the blue
end of the visible spectrum and ultraviolet light. This ’ultraviolet image’ of
distant galaxies, would therefore be expected to be different, from the truly
visible image of galaxies from our own neighborhood.

The cosmic microwave background could be no more, than radiation showing
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the temperature of gas and dust that has cooled to the ambient temperature of
space, so maps of this background simply show the mass densities of space in
various directions.

Red shift data only suggests the universe is expanding and in no way tells
us, that the universe expanded from a singularity at the start of time! The age
of the universe is indicated to be 13.8 billion years, but this is simply the time
estimate, for when the now expanding universe, would be in its smallest state
of contraction. It does not follow that before this time, the universe was all
contained in a singularity and this was where time started! The question is not
’What happened before the mythical Big Bang’, but rather, ’what happened
before the expansion!’

This question is easily answered. Before the big expansion there was the
great contraction! What we call the big bang, is merely the cross over point of
maximum matter density, marking the minimum contraction point of the known
universe at that time. To go back further in time, you just go backwards in time
to the previous state of the universe, which then was undergoing a contraction.

Now, the universe is no longer seen as 13.8 billion years old at all. That
time in the past, is merely the switch over event, from the general contraction
of old, to the general expansion that we see today. We can consider a time
in the past, when the universe was double its supposed age now. At a time
27.6 billion years in the past, stars, galaxies and matter in general would be
undergoing a contraction, towards the centre of gravity of the region of space,
which we call our universe. Interactions between galactic clusters and super
clusters will be taking place in complex ways, so just as the motion of icebergs
and weather patterns follow unpredictable patterns, by the time the universe
reaches its point of greatest matter density, some 13.8 billion years ago, the
galaxies will be spread out in such a way that it will not meet at a point, to
form a singularity, causing time to stop and the universe to meet an unphysical
end! Rather, the bulk of the galaxies, stars and matter will simply pass by
one another, due to the vastness of space, even in its contracted form and pass
into the state of expansion that we see today. Some material may go into
a melting pot at the centre of this contraction and enter a super contracted
state, heat up to extremely high temperatures, resulting in emission of high
energy electromagnetic radiation, which in time, could be observed as the cosmic
background echo of this supposed event. In another, 13.8 billion years time, this
’change over universe’ will be identical to the one we see today, without the need
to invoke a big bang, emanating from a singularity’. We have here a universe,
alternating between periods of expansion and contraction.

This ’Alternating Universe’ explains everything that can be explained by the
’Big Bang’ theory and more" and does not encounter the problem of singularities
and infinities. It neatly side steps and answers the problem, ’what happened
before the Big Bang?’ It gives a mechanism for the creation of matter from
energy 13.8 billion years ago and can explain why two types of galaxies exist.
The new spiral galaxies may have emerged after the contraction was complete
13.8 billion years ago and the old elliptical galaxies, may have been formed long
ago, when the universe was collapsing and have simply passed by one another
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as the universe reached its greatest mass density and switched into the state of
expansion that we see today! Spiral galaxies, already in existence would merge
and form further elliptical galaxies around this time!

Why globular clusters are associated with galaxies is a problem that needs
explaining. Globular clusters orbit the central bulge of spiral galaxies in highly
elliptical paths, which are outside the plane of the galaxy. Furthermore, esti-
mates of the age of globular clusters indicate that they may be older than their
’parent’ galaxies and may predate the time of the supposed big bang. With
the age of globular clusters being estimated between fourteen and eighteen bil-
lion years old, they may be a product of a time when the known universe, was
approaching its most contracted state and thus globular clusters, may be a by-
product of special star forming processes, which were possible or even prevalent
at this ’change over’ time of the universe. The composition of the stars in glob-
ular clusters, indicate that they are population II stars, which are thought to
be composed of matter, which was forming stars at this time, because they lack
the heavier elements found in stars that are found in galactic spiral arms for
instance, that have been formed from matter from previous generations of stars,
that have gone supernova.

Our Milky Way galaxy contains about 150 globular clusters and with ninety
percent of them lying in directions close to the centre of our galaxy, led earlier
astronomers to realize that the centre of our galaxy lay in the constellation of
Sagittarius. The origin of globular clusters is open to debate and their supposed
age, suggests that they could have been already been around before their parent
galaxy was formed and so they could simply have been captured by the gravi-
tational fields of newly formed galaxies. This could certainly provide a reason
for globular clusters having idiosyncratic, elliptical orbits, outside the plane of
spiral galaxies.

Globular clusters are usually composed of between one hundred thousand
and a millions equally spaced stars of similar size, age and composition. The
arrangement and nature of the stars, makes them quite unlike other stars and
star clusters in galaxies. They are particularly prevalent in the giant elliptical
galaxy, M87. A galaxy noted for its strong X-rays emissions.

The centre of our Milky Way galaxy is in the constellation of Sagittarius and
was found at the dawn of radio astronomy in 1932, to be a strong source of radio
waves. This central, radio region, known as Sagittarius A, is about fifty light
years across and is associated with magnetic field lines. The physical centre of
our galaxy is found within Sagittarius A and is known as Sagittarius A*. This
massive central core is over ten billion miles across (120 astronomical units) and
is big enough to engulf the orbit of Pluto (forty AU from our Sun). It does not
emit much radiation, but contains around three million solar masses of radiation
and matter. What happens inside Sagittarius A*, the central core of our galaxy
is anybody’s guess. The Einstein-Hilbert equation of general relativity has no
validity here, but what is evident is that, since this region, containing three
million solar masses, has not shrunk to a point; it cannot be described as a
singularity! The lack of strong emissions from Sagittarius A*, means that our
Milky Way is described as being a non active galaxy. We do however; have an
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active galaxy as a neighbor, in the form of the giant, elliptical galaxy M87!
It is believed by many, that red shift measurements show that all galaxies are

moving away from each other. However, this is not strictly true. Galaxies are
grouped together in clusters and clusters are grouped together in superclusters.
Nearby galaxies can be moving towards or away from their neighbors. Clusters
of galaxies interact with each other and even superclusters exert measurable
gravitational effects on the superclusters of galaxies that surround them. It is
only on the giant scale, that galaxies are indicated to be moving away from one
another. Popular science has been too focused on the big Bang theory and as a
result, advances in our knowledge of the way the galaxies are structured, on the
intermediate scale of the universe, has not been given the attention it deserves.
This new knowledge has been brought about in the last few decades, by bigger
telescopes, improved electronics and the amazing advances in computer power.

The cosmological red shift and expansion of galaxies, is often explained by
drawing galaxies on a balloon. As more air is blown into the balloon, the
galaxies move apart from each other and none of them is actually at the centre
of the universe. The balloon illustrates, how in theory, the galaxies emerged
from a common centre; which is the location of the Big Bang. The balloon
gives a simple, but clever representation to illustrate the theory. However, with
new data on the motion and location of galaxies becoming available, it is no
longer the revealing model it once was. A new model is needed to describe, the
eloquent structure that is now seen, percolating through the firmament.

The arrangement of galaxies is no longer best described by a single balloon,
but is now given a three dimensional structure by describing it in terms of soap
bubbles. It is obvious that the bulk of the vastness of space is empty and this
structure is represented, by the empty space within the soap bubbles, but the
real action takes place where the bubbles interact along their surfaces. It is
now known that galaxies pan out in this fashion. Computer simulations of this
structure, produced by image and distance data, gives a structure that looks
like a three dimensional representation of nerve cells, with the galactic voids
represented by the body of the cells and the location of galaxies being strung out
along the nerve fibres. Another way of describing the arrangement of galaxies
would be as having a kind of honeycomb structure. Now if we compare the
balloon model with the honeycomb model, we can see that if some time in the
past the universe was more compressed (like a compressed sponge), the voids
in the cells of the honeycomb would get smaller and the galaxies and matter in
the universe would become more concentrated, but there would not necessarily
be a centre to the vastness of space and the universe.

The new alternating model of the universe, expounded here, could be visu-
alized by compressing and releasing, a three dimensional, rubber based version
of bubble wrap or honeycombed structured material. Here, there is no centre to
the compression and expansions, but in its compressed state, there are stored
energy implications, which could affect the production and evolution of galax-
ies. This can be compared with the oscillations of a pendulum, where the total
energy of the system stays the same, but gravitational potential energy and
kinetic energy, exchange in a periodic fashion. Globular clusters and quasars
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are thought to have been formed, in the time frame of the big bang or time of
maximum compression of our universe. Some estimates of the age of globular
clusters are from fourteen to eighteen billion years, which is older than the sup-
posed age of our universe and the big bang of 13.8 billion years. Quasars are
very distant galaxies that are so far away, that they only look like stars in tele-
scopes. Quasars are thought to be active galaxies, outpouring vast amounts of
energy and by virtue of their measured red shifts, are believed to be ten billion
or more years old. Quasars may be an early product of the universe, after the
compression stage of the universe had changed to the expansion stage, we see
today.

Our Milky Way and the Andromeda galaxy are the largest members of our
closest group of forty or so galaxies. Our nearby galaxies are referred to as our
local group. Looking outwards from our galaxy in various directions, we see
groups of galaxies, concentrated in certain directions, which reveal the locations
of our nearest galactic superclusters. Our nearest supercluster and the one of
which we are a member, is called the Virgo cluster. Bang in the middle of the
Virgo supercluster, is our nearest galaxy with an active nucleus. This galaxy
is the giant elliptical galaxy M87 and it may be asked why such a remarkable
galaxy, just happens to be at the centre of our galactic supercluster. Perhaps it
is just chance, but there may be a reason that is as yet not clear to us.

M87 is 55 million light years away, is the largest giant elliptical galaxy to
Earth and is one hundred and twenty light years across. At its centre is a super-
massive, compact structure, which at six billion solar masses, is two thousand
times the mass of Sagittarius A*, at the centre of our galaxy. It is a strong
source of both radio waves and X-rays. It is an active galaxy, emitting matter
and radiation from its central region, in a jet seen sprawling at least 5,000 light
years into space at speeds close to the speed of light. This monumental elliptical
galaxy is also notable for its plethora of ancient globular clusters. There are
12,000 globular clusters in M87, nearly a thousand times more, than are found
in our Milky Way galaxy. There are also narrow X-ray emitting filaments to be
found in the galaxy, stretching across 100,000 light years of space. The X-rays
could be a source of electrons, helping to explain the strong radio emissions from
the galaxy. The volume of the supermassive structure at the centre of M87 is
thought to be similar to the size of Sagittarius A, of the order of the volume of
the Pluto’s orbit around the Sun. Long exposure photographs of M87 give it a
size in the sky, as seen from Earth, as slightly bigger than our Moon!

An intriguing twist to Fred Hoyle’s Steady State Theory would be that
matter is created inside active galactic nuclei, by spacetime resonance with the
primordial voltage. X-ray and gamma rays, spewing from these structures could
be converted to their particle forms of electrons, protons and alpha particles to
seed the universe, with the matter needed for the creation of new galaxies.
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5.7 Dark Matter in Focus

Recently spacially discerning spectroscopy has been applied to globular clus-
ters, to determine the Doppler shift of individual stars. The results show that
globular clusters do not obey Newton’s inverse gravitational law and do not
fit the predictions of the dark matter hypothesis. However, ECE theory can
easily explain this anomaly and also the reason that there are so may spiral
galaxies to be seen. There is an excellent simulation by Dr. Horst Eckardt of
the torsion based theory of spiral galaxies, which can be viewed on www.aias.us
. This is preferred by Ockham’s razor of natural philosophy to the standard
model, because it is much simpler and more powerful and is developed from
the first principles of general relativity. "Dark matter" on the other hand is a
phenomenological, unscientific idea that is used to try to compensate for the
apparent "missing mass" of a spiral galaxy. In fact, there is no "missing mass";
the galaxy is a spiral, because of the torsion of spacetime. This torsional theory
adheres to the basic principles of general relativity, that physics is geometry.
"Dark matter" does not exist in nature. Maps of "dark matter" are in fact
maps of the torsion of spacetime throughout the universe, thus proving Einstein
Cartan Evans (ECE) theory.

In paper 76, Horst Eckardt shows that the structure and velocity curve of a
spiral galaxy can be described in terms of a constant Cartan torsion (spinning
spacetime) using ECE theory. It is shown, that in the central bulge region of
a spiral galaxy, gravitational attraction predominates as described by Riemann
curvature. However, it can be seen that in the spiral arms of the galaxy, the
Cartan torsion becomes predominant, so that the structure of the arms becomes
a hyperbolic spiral due to the underlying constant spinning of spacetime. In
this generally covariant unified field theory, dark matter does not exist and is
replaced by the Cartan torsion missing from the Einstein Hilbert field theory of
gravitation and its weak field limit, Newtonian dynamics.

The Einstein-Hilbert equation is one of the greatest achievements of human
thought in any area, because nature is shown to be geometry. Paper 88 makes
this very clear, through the use of the simpler torsion tensor. The spinning of a
spiral galaxy is a beautiful, visible example of the torsion at work. Dark matter
does not exist at all and the theory of dark matter is completely wrong. It be-
longs in the same category as phlogiston or epicycles. Cosmologists, who naively
believe in dark matter, are now seeking to compound their ill conceived ideas,
by linking them to particle physics and string theory. String theory initially
showed some promise, but physicists failed to ditch it when it became obvious,
that its use produced no new insights in nature and did not produce any testable
hypotheses. Instead more and more complex mathematics was introduced to
hide its failings and extra dimensions added to explain away anomalous results,
as the web of their own mathematical strings tightened in on them. ECE can
explain the data and has none of the short comings of string theory.

The main advantage is that ECE is generally covariant in all sectors, and
only needs to be developed in four dimensions. ECE theory is already being
used for engineering and to facilitate the start up of new companies, while string
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theory is unable to predict anything, that is not already better and more simply
understood by ECE theory. ECE theory can be applied to phenomena of all
kinds, such as non-linear optics, in which string theory cannot be applied. String
theory grew out of particle and field theory and is still largely confined to that
area of physics, after about forty years of trying to predict anything that is really
new. In five years, ECE theory has been widely applied to physics, chemistry
and electrical engineering. String theory is not used at all in chemistry and
engineering and is not used in physics, except in specialized circumstances.
String theory carries with it all the flaws of standard general relativity, so is no
advance on 1915 and neglects the Cartan torsion, which has been so eloquently
used in ECE theory and which allows new theoretical insights to be used, to
develop new technologies and to found new companies!

Proponents of dark matter have invented dark matter to account for stars
orbiting galactic centre too quickly. Dark matter has been eloquently contrived
to explain the anomaly, but has no basis in the experimental science of the
last five hundred years. Dark matterist’s simply play think of a number and
play round with it until it fits the data they are trying to simulate. This is
merely a mathematical exercise, with no foundation on Baconian principles.
In other words it is pseudoscience or gobbledygook! It is like a wheel being
balanced in a garage. The forces around the wheel centre can be seen to be
out of balance, simply by placing the wheel horizontally on a spirit level. The
spirit level then indicates where and how dense weights need to be placed, in
order to balance the wheel. In this case the ’missing’ mass is determined and
calculated experimentally so the forces balance. However, it is ludicrous to think
this process can be done to balance the forces in the spiral arms of spinning
galaxies. The mathematical balancing of a galaxy, by placing a spherical shell
of ’lead’ of a certain mass around it, is simply a mathematical exercise with
no foundation in the natural world. It could be used however, to indicate the
degree to which our understanding of the movement of stars in spiral galaxies
is outside the limits of proportionality of Newton’s Law of gravitation and to
give an indication of the size of the unknown forces which are acting. It is
ludicrous however, to go against five hundred years of Baconian science and
bring in the concept of ’the dark matter halo’ that cannot be detected, because
it does not produce visible light or any other form of electromagnetic radiation.
This smacks of introducing the workings of a deity, who arranges the universe
by putting invisible structures in place, which human’s cannot see, in order to
drive the universe by a kind of celestial clockwork. Effectively, all that dark
matter proponents have done, is reinvent the crystal spheres used in ancient
times, to explain the movements of the planets, Moon and Sun in the Heavens
driven by invisible angels, with the movements being accompanied around the
cosmos by the ’Music of the Spheres’. All very comforting and inspiring, but
hardly twenty-first century rocket science!
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