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Preface

This monograph evolved out of Einstein Cartan Evans (ECE) field theory when
an investigation was being made of the inhomogeneous field equation. This
involved the calculation of a quantity which in the shorthand notation of ECE
theory (see www.aias.us) is denoted R A q. Here R is the Hodge dual of the
curvature form and ¢ is the Cartan tetrad form. The symbol A denotes Cartan’s
wedge product. The Cartan Evans identity states that:

DAT:=RAq (1)

and in the Einstein field equation the Hodge dual torsion T is zero. In tensor
notation Eq. (1) becomes:

DT = B, (2)

where T is the torsion tensor in four dimensional spacetime, and where R”
is the curvature tensor. The latter can be worked out from the Einstein field
equation, so Eq. (2) gives a new test for this equation. The curvature tensor
R* " should be zero because the Einstein field equation uses a zero torsion
T by construction. I proceeded to work out R* *” by hand, but soon found
that this was far too laborious. Thereafter, in mid 2007, Horst Eckardt and his
group in Munich wrote code for the evaluation of R" *” by computer algebra.
This resulted in paper 93 on www.aias.us and came up with the important
finding that the Einstein field equation gives a non zero R" *” in general, and
is therefore wholly incorrect.

This finding was thereafter reinforced by later papers of the ECE series,
which showed that every known metric of the Einstein field equation is incorrect.
In paper 122 of the ECE series the root cause of this disaster for the now obsolete
physics of the twentieth century was discovered, the connection in Riemannian
geometry must be antisymmetric in its lower two indices p and v. For some
obscure reason Einstein and his contemporaries used a symmetric connection,
an elementary error. The antisymmetry of the connection is shown easily as
follows. Define the commutator of covariant derivatives in any four dimensional
spacetime:

D,, =—-D,, :=[D,,D,)]. (3)
then well known textbook calculations show that:

D VP =R, V7 =T, D\VF (4)

il



PREFACE

where R”, , is the curvature tensor, T/\l“, is the torsion tensor, V* is a vector

and D)V? is its covariant derivative. The torsion tensor is defined by:
A A A
™, =T, -T2, (5)

where F;)V is the connection. The latter therefore has the same symmetry as
the commutator, i.e. it is antisymmetric in 4 and v:

A A
Fuy - 7]‘—‘1/,1,1" (6)

Both the commutator and the connection vanish if p is the same as v. This
means that the torsion and curvature vanish if p is the same as v. The error
made by Einstein, and repeated until the evolution of ECE, was:

A A
I, =717, #7 0. (7)

This error, and its repetition for ninety years, is inexplicable in logic, it is
perhaps due to belief retention. When we submitted paper 93 to Physica B
in 2007/2008 it was met by crude personal abuse, so this seems indeed to be
hostility due to belief retention, a commonplace human failing. This means that
academic physics itself comes under the microscope, being a clearly unreliable
subject. Schroedinger, and independently, Bauer, were the first to criticise the
Einstein field equation in 1918, and these criticisms have echoed down the years.
Academic physics seems to have ignored them illogically.

The use of the antisymmetric connection led to important new antisymme-
try laws which have been developed in later papers of the ECE series, papers
which attract a huge readership of high quality on www.aias.us, but which are
anathema to academic physics. The latter has therefore been isolated as a
non-scientific remnant by other scientific professions, by industry, government,
military staffs and individual scholars in their hundreds of thousands.

Once it is accepted that the connection is antisymmetric in its lower two
indices, its Hodge dual may be defined as in the textbooks:

~ 1

A /2, aBpA
F/,Ll/ = 5”9” / euuaﬁraﬁ (8)
where ||g||'/? is the square root of the positive value of the determinant of the
metric, a weighting factor which cancels out in later calculations. In Eq. (8)

the totally antisymmetric unit tensor ¢,,*? is defined as the flat space tensor.
The Hodge dual torsion is the tensor:

m

A PA A
T ur Fp,u - FV,U,' (9)

Neither the connection nor the Hodge dual connection are tensors, because
under the general coordinate transformation they do not transform as tensors.
They are nevertheless antisymmetric in their lower two indices. The Hodge dual
transformation applied to Eq. (4) produces:

D, VP =R, V' —T%, D\V’ (10)

iv
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in which the structure of the torsion tensor must be defined as in Eq. (9). It
follows that the covariant derivative used in Eq. (10) must be:

D,VP =09,VP +T0,V (11)
and that the Hodge dual curvature tensor must be:

5 T T TP TA T TA

Rf . = 0,10, — 0T, + FZ/\FW — I, (12)

The two tensors (9) and (12) must therefore give a new identity of differential
geometry:

DAT® :=dAT" +w% AT :== R% A" (13)

which has become known as the Cartan Evans identity. The original Cartan
identity is well known from the textbooks to be:

DAT® :=dAT" +w% AT := R A ¢". (14)

The Cartan Evans identity (13) shows that the Einstein field equation is in-
correct, as explained already in this preface, and this book is dedicated to this
demonstration, with chapters by other colleagues who have independently re-
futed the Einstein field equation and standard cosmology with its pseudoscien-
tific contrivances.

The Cartan Evans identity is Hodge dual invariant with the Cartan identity.
The former identity in tensor notation is:

b,r%,+D,1%, +DT°, =R,  + R, +R",,, (15)
which is the same as:

D, T*"" := R* I (16)
in which the covariant derivative is defined by:

D,VP:=0,V* +T0, V. (17)

A special case of Eq. (16) is:
DT .= R" 1. (18)

The Cartan identity in tensor notation is:

DHT“VP + DpT“W + D,,T“pu = Rawp + R“WV + Raup# (19)
which is the same as:

D, T = R“M‘“’ (20)
in which the covariant derivative is

— A

D,V?P:=0,V* + Ffu\V . (21)
A special case of Eq. (20) is

DT = R"M‘“’. (22)
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Chapter 1

Introduction

by
Myron W. Evans!,

Alpha Institute for Advance Study (AIAS)
(www. aias.us, www.atomicprecision.com,)

This book is a review of recent criticisms of the well known Einstein field
equation of 1915, which is still the basis for ideas such as big bang, black holes
and dark matter, and of the precision tests of general relativity in the standard
physics. The book is divided into chapters by contemporary critics of the equa-
tion. Chapter two is a review of the well known Einstein Cartan Evans (ECE)
variation on relativity theory, which correctly considers the role of space-time
torsion and reinstates torsion in its central role. This chapter is paper 100 on
the www.aias.us site, the most read site of contemporary physics, and gives a
rigorous proof of the Bianchi identity of Cartan geometry and its dual identity.
It is shown that the Einstein field equation does not obey these fundamental
identities of geometry because of its neglect of torsion. Chapter three is by
Stephen Crothers, a leading scholar on solutions of the equation. In his chapter
Crothers give several clear arguments as to the fundamental incorrectness of big
bang, and exposes glaring errors in the mathematics of such claims. Similarly,
Crothers shows with clarity and rigor that claims to the existence of black holes
and dark matter cannot be mathematically correct, and so have no significance
in physics.

Chapter four is by Horst Eckardt, and uses recently developed computer
algebra to show that all mathematical solutions of the Einstein field equation
in the presence of finite energy momentum density violate the dual identity
proven in chapter two and in several papers on www.aias.us. For each line
element solution of the Einstein field equation, computer algebra is used to give
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all the Christoffel symbols and all elements of the Riemann, Ricci and Einstein
tensors. Each line element is checked for metric compatibility, and each line
element is checked to see if it obeys the fundamental Ricci cyclic equation,
known in the standard literature as the first Bianchi identity. This appellation
of the standard physics is a misnomer, because it is neither a true identity
nor was it given by Bianchi. It was first given by Ricci and Levi-Civita. The
rigorously correct Bianchi identity in geometry was first given by Cartan as is
well known, and as is equally well known, must include the torsion ineluctably.
Finally in this chapter by Eckardt, the line element solutions are tested against
the dual identity proven in chapter two. The results are given in tables and
graphs. They are exceedingly intricate, so the computer is used to build up the
tables without manual transcription error. The results show clearly that the
Einstein field equation is incorrect geometrically - meaning that the standard
theory of relativity must be revised fundamentally to place torsion as a central
feature of the natural and engineering sciences. This is what ECE theory does.

In the fifth chapter, Kerry Pendergast uses his skills as an educator and
writer to put these results in historical and scientific context. In so doing he
uses some of the material from his "virtual best seller" on www.aias.us, called
"Crystal Spheres" to give a historically accurate description of the evolution of
the theory of relativity.

In the remainder of this introductory chapter a brief account is given of
the evolution of space-time torsion in geometry and ECE theory. The latter is
reviewed in detail in chapter two of this book, (paper 100 of www.aias.us). The
fundamental idea of the theory of relativity is that physics must be an objective
subject independent of anthropomorphic bias.

This philosophy was given for example by High Renaissance thinkers such
as Bernardino Telesio and Francis Bacon, but goes back to classical times. Its
most well known manifestation appears in the Idol of the Cave philosophy of
Bacon. By this he means the fantasies of the human mind, the word "idol"
being used in its original classical Greek meaning of "dream". Bacon asserts
that the workings of nature must be manifest through empirical testing of human
ideas, in our times "experimental data". Contemporary science is based on this
philosophy combined with the earlier philosophy of William of Ockham, that
the simpler of two theories is preferred in natural philosophy or physics. The
invisible college of Francis Bacon later developed into the Royal Society, which
espouses the Baconian philosophy.

In Newtonian times the idea of absolute space and of absolute time was pre-
dominant, and the whole of Newtonian mechanics is based on the separation
of space and time. The anthropomorphic bias of the human mind makes this
separation seem entirely natural from everyday experience. Time seems to be
moving in one way, in space we can move forwards an backwards, and the two
concepts appeared to be described by Newtonian mechanics with the later ad-
dition of the Euler, Laplace and Hamilton equations and so forth in classical
dynamics. In the nineteenth century these well known concepts of dynamics
were challenged by the then new classical electrodynamics, notably the vector
equations of Heaviside. These are the well known equations of classical electro-
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dynamics, developed from the quaternion equations of Maxwell and Faraday’s
concept of field of force which he named the electro-tonic state. The Heaviside
field equations are misnamed "the Maxwell equations" in the standard books
in physics, and importantly, are not Newtonian in nature. They are covari-
ant under the Lorentz transformation, not the Galilean transformation of space
separated from time.

Heaviside developed his equations a few years before Michelson and Morley
proved the absence of the aether, causing a crisis of thought in natural philos-
ophy as is well known. The results of the Michelson Morley experiment were
discussed by Heaviside and Fitzgerald, who can be said to be the founders of the
theory of relativity. This discussion culminated in the proposal by Fitzgerald of
length contraction to explain the results of the Michelson Morley experiment.
This was a qualitative proposal made to the journal "Science" and it took a
further eight years or so for Lorentz to produce the equations of the Lorentz
transform, in which space and time both transform. About this time, 1900,
Poincare, Bianchi, Ricci and Levi-Civita began to develop the theory of ten-
sors, a term coined by Hamilton. The Heaviside equations were put into tensor
form, the electromagnetic field was shown to be part of a four by four matrix
so that electricity and magnetism became part of the same entity. In the years
1900 to 1905 several scientists contributed to special relativity, and in 1905 Ein-
stein proposed the constancy of the speed of light as a cornerstone and showed
that the equations of dynamics are Lorentz covariant in special relativity, as
well as the Heaviside equations of electro-dynamics. Around the same time
Minkowski developed the contra-variant covariant notation and the concept of
Minkowski space-time, or flat space-time described by the metric diag (-1, 1,
1, 1). Therefore the discussions between Heaviside and Fitzgerald culminated
circa 1906 in the theory of special relativity as still used today. In this theory a
frame translates with constant velocity with respect to a second, and the equa-
tions of physics retain their tensor form under the Lorentz transform. It is now
known that special relativity is the most precise theory in physics, having been
rigorously tested in many ways.

The development of general relativity, in which a frame moves in any way,
i.e. arbitrarily, with respect to another, is due to Einstein from about 1906
onwards. The basic tensorial idea of general relativity is that the equations
of physics retain their form under any type of transformation, and that this
transformation is a coordinate transformation in four dimensions (ct, X, Y, Z).
General relativity is a philosophical departure from special relativity because in
the former subject the metric is no longer the static diag (-1, 1, 1, 1). Also,
physics is thought of in terms of a geometry that is not Euclidean. Perhaps this
is the greatest achievement of Einstein, the application of Riemann geometry to
physics. The fundamental task of development of the Einstein field equation is
how to make physics proportional to geometry. This is the easiest way to think
of general relativity because it is not an intuitive concept, neither is length con-
traction nor time dilation, nor space-time nor the Lorentz transform. The well
known Einstein field equation of 1915 was finally arrived at independently by
Einstein and Hilbert after many discussion with experts in tensor theory and
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geometry such as Levi-Civita and Grossman. The field equation states that
a quantity in Riemann geometry is proportional to the Noether Theorem of
physics, the latter being essentially the conservation laws of physics in tensor
form, or generally covariant form. The quantity in geometry is what the stan-
dard physics calls the second Bianchi identity. The proportionality constant is
k, the Einstein constant. The Einstein field equation then follows by assuming
that the covariant derivative on both sides can be removed, so that the Einstein
tensor itself is proportional through k to a quantity known as the canonical
energy momentum density of matter.

This is the equation that is still used in the standard physics to predict such
things as big bang, black holes and dark matter. They are all consequences
of the Einstein field equation, which has become dogmatic in nature. As early
as 1918 Bauer and Schroedinger independently showed major shortcomings of
the Einstein field equation and the Eddington experiment is known now to be
essentially an exercise in anthropomorphic bias, lacking entirely the precision to
prove the field equation as is so often claimed in the standard physics. In the
early twenties, Cartan showed that the Riemann geometry itself is incomplete
because of its lack of space-time torsion. The torsion was unfortunately elimi-
nated by Ricci and Levi-Civita through their use of the symmetric connection,
often attributed to Christoffel.

The Einstein field equation is therefore based on a geometry in which torsion
is eliminated arbitrarily. There is no logical justification for this elimination of
torsion. In this book, it is shown what happens when the torsion is neglected -
essentially a disaster for twentieth century standard physics. The only way in
which standard physics can justify its claims is to assert without logic that tor-
sion is a mathematical abstraction. In logic, torsion is no more of an abstraction
than curvature, on which the whole of the illogical paraphenalia of big bang,
black holes and dark matter is based. Chapter two shows essentially how the
torsion is central to a generally covariant unified field theory, the ECE theory.
Chapter three by Crothers show shows the vacuum solutions of the Einstein
field equation are meaningless, and reveals the basic errors repeated down the
twentieth century by the standard physics. Chapter four by Eckardt uses newly
developed computer algebra to show precisely how the lack of torsion leads to a
basic contradiction with the Bianchi identity of Cartan in its Hodge dual form,
and chapter five by Pendergast summarizes the historical context.



Chapter 2

A Review of Einstein Cartan
Evans (ECE) Field Theory

by
Myron W. Evans!,

Alpha Institute for Advance Study (AIAS)
(www. aias.us, www.atomicprecision.com,)

2.1 Introduction

The well accepted Einstein Cartan Evans (ECE) field theory [1,12] is reviewed in
major themes of development from Spring 2003 to present in approximately 103
papers and volumes summarized on www.aias.us and www.atomicprecision.com.
Recently a third website, www.telesio-galilei.com, has been associated with these
two main websites of the theory. Additionally, these websites contain educa-
tional articles by members of the Alpha Institute for Advanced Study (AIAS)
and the Telesio-Galilei Association, and also contain an Omnia Opera listing
most of the collected works of the present author, including precursor theories
to ECE theory from 1992 to present. Most original papers are available by hy-
perlink for scholarly study. It is seen in detail from the feedback activity sites
of the three main sites that ECE theory is fully accepted. All the 103 papers to
date are read by someone, somewhere every month, and detailed summaries of
the feedback are available on www.aias.us. Additionally ECE theory has been
published in the traditional manner: in four journals with anonymous reviewers,
(three of them standard model journals), and is constantly internally refereed
by AIAS staff. The latter are like minded professionals who have worked vol-
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untarily on ECE theory and in the development of ATAS. Computer algebra
(Maxima program) has been developed to check hand calculations of ECE the-
ory and to perform calculations that are too complicated to carry out by hand.
Therefore a review of the main themes of development and main discoveries of
ECE theory is timely.

The ECE theory is a suggestion for the development of a generally covariant
unified field theory based on the principles of general relativity, essentially that
natural philosophy is geometry. This principle has been proposed since ancient
times in many ways, but its most well known manifestation is probably the
work of Albert Einstein from about 1906 to 1915, culminating in the proposal
of the well known Einstein Hilbert (EH) field equation of gravitation. This
work by Einstein and contemporaries is very well known, but a brief summary
is given here. After several false starts Einstein proposed in 1915 that the
so called “second Bianchi identity” of Riemann geometry be proportional to
a form of the Noether Theorem in which the covariant derivative vanishes of
the canonical energy-momentum tensor. It is much less well known that in so
doing, Einstein used the only type of geometry then available to him: Riemann
geometry without torsion. The EH field equation follows from this proposal by
Einstein as a special case:

Gy = KTy (2.1)

where G, is the Einstein tensor, k£ is the Einstein constant, and 7T}, is the
canonical energy - momentum tensor. Eq. (2.1) is a special case of the Einstein
proposal of 1915:

D*G,,, = kDT, = 0 (2.2)

where on the left hand side appears geometry, and on the right hand side ap-
pears natural philosophy. David Hilbert proposed the same equation at about
the same time using Lagrangian principles, but Hilbert’s work was motivated by
Einstein’s ideas, so the EH equation is usually attributed to Einstein. The EH
equation applies however only to gravitation, whereas ECE has unified general
relativity with the other fields of nature besides gravitation. The other fun-
damental fields are thought to be the electromagnetic, weak and strong fields.
ECE has also unified general relativity with quantum mechanics by discarding
the acausality and subjectivity of the Copenhagen School, and by deriving ob-
jective and causal wave equations from geometrical first principles. The two
major and well accepted achievements of ECE theory are therefore the unifi-
cation of fields using geometry, and the unification of relativity and quantum
mechanics. This review is organized in sections outlining the main themes and
discoveries of ECE theory, and into detailed technical appendices dealing with
basics. These appendices include flow charts of the inter-relation of the main
equations.

In Section 2.2 the geometrical first principles of ECE theory are summarized
briefly, the theory is based on a form of geometry developed [13] by Cartan
and first published in 1922. This geometry is fully self-consistent and well

10
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known - it can be regarded as the standard differential geometry taught in good
universities. The dialogue between Einstein and Cartan on this geometry is
perhaps not as well known as the dialogue between Einstein and Bohr, but is the
basis for the development of ECE theory. It is named “Einstein Cartan Evans”
field theory because the present author set out to suggest a completion of the
Einstein Cartan dialogue. This dialogue was part of the attempt by Einstein and
many others to complete general relativity by developing a generally covariant
unified field theory on the principles of a given geometry. For many reasons
this unification did not come about until Spring of 2003, when ECE theory was
proposed. The main obstacles to unification were adherence in the standard
model to a U(1) sector for electromagnetism, the neglect of the ECE spin field
B(3), inferred in 1992, and adherence to the philosophy of the Copenhagen
School. Standard model proponents adhere to these principles at the time of
writing, but ECE proponents now adopt a different natural philosophy, since
it may be claimed objectively from feedback data that ECE is a new school of
thought.

In Section 2.3 the main field and wave equations of ECE are discussed in
summary. They are derived from the well known principles of Cartan’s geom-
etry. The gravitational, electromagnetic, weak and strong fields are unified by
Cartan’s geometry, each is an aspect of the same geometry. The field equations
are based on the one true Bianchi identity given by Cartan, using different rep-
resentation spaces. The wave equations are derived from the tetrad postulate,
the very fundamental requirement in natural philosophy and relativity theory
that the complete vector field be invariant under the general transformation
of coordinates. To translate Cartan to Riemann geometry requires use of the
tetrad postulate. Therefore both the Bianchi identity and tetrad postulate are
fundamentals of standard differential geometry and their use in ECE theory is
entirely standard mathematics [13].

In Section 2.4 the unification of phase theory made possible by ECE is sum-
marized in terms of the main discoveries and points of development. The main
point of development in this context is the unification of apparently disparate
phases such as the electromagnetic phase, the Dirac and Wu Yang phases, and
the topological phases. ECE theory presents a unified geometrical approach to
each phase, and this approach also gives a straightforward geometrical expla-
nation of the Aharonov Bohm effects and “non-locality”. The electromagnetic
phase for example is developed in terms of the B(3) spin field [14] and some
glaring shortcomings of the standard model are corrected. Thus, apparently
simple and well known effects such as reflection are developed self-consistently
with ECE, while in the standard model they are at odds with fundamental sym-
metry [1,12]. The standard model development of the Aharonov Bohm effects
is also incorrect mathematically, obscure, controversial and convoluted, while in
ECE theory it is straightforward.

In Section 2.5 the ECE laws of classical dynamics and electrodynamics are
summarized in the language of vectors, the language used in electrical engi-
neering. The equations of electrodynamics in ECE theory reduce to the four
laws: Gauss law of magnetism, Faraday law of induction, Coulomb law and
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Ampére Maxwell law. In ECE theory they are the same in vector notation as in
the familiar Maxwell Heaviside (MH) field theory, but in ECE are written in a
different space-time. In ECE the electromagnetic field is the spinning of space-
time, represented by the Cartan torsion, while in MH the field is a nineteenth
century concept still used uncritically in the contemporary standard model of
natural philosophy. The space-time of MH is the flat and static Minkowski
space-time, while in ECE the space-time is dynamic with non-zero curvature
and torsion. This difference manifests itself in the relation between the fields
and potentials in ECE, a relation which includes the spin connection.

In Section 2.6, spin connection resonance (SCR) is discussed, concentrat-
ing as usual on the main discoveries and points of development of the ECE
theory. In theory, SCR is of great practical utility because the equations of
classical electrodynamics become resonance equations of the type first inferred
by the Bernoulli’s and Euler. Therefore a new source of electric power has been
discovered in ECE theory - this source is the Cartan torsion of space-time. Am-
plification occurs in principle through SCR, the spin connection itself being the
property of the four-dimensional space-time with curvature and torsion which
is the base manifold of ECE theory. It is well known [15] that these resonance
equations are equivalent to circuits that can be used to amplify electric power.
In all probability these circuits were the ones designed by Tesla empirically.

In Section 2.7 the utility of ECE as a unified field theory is illustrated through
the effects of gravitation in optics and spectroscopy. These are exemplified by
the effect of gravitation on the ring laser gyro (Sagnac effect) and on radiatively
induced fermion resonance (RFR). RFR itself is of great potential utility because
it is a form of electron and proton spin resonance induced not by a permanent
magnet, but by a circularly polarized electromagnetic field. This is known as
the inverse Faraday effect (IFE) [16] from which the ECE spin field B(3) was
inferred in 1992 [17]. The spin field signals the fact that in a self consistent
philosophy, classical electrodynamics must be part of a generally covariant field
theory. This is incompatible with the U(1) sector of special relativity still used
to describe electrodynamics in the standard model. Any proposal for a unified
field theory based on U(1) cannot be generally covariant in all sectors, leaving
ECE as the only satisfactory unified field theory at the time of writing.

In Section 2.8 the well known radiative corrections [18] are developed with
ECE theory, and a summary of the main points of progress illustrated with the
anomalous ¢ factor of the electron and the Lamb shift. It is shown that claims
to accuracy of standard model quantum electrodynamics (QED) are greatly ex-
aggerated. The accuracy is limited by that of the Planck constant, the least
accurately known fundamental constant appearing in the fine structure con-
stant. There are glaring internal inconsistencies in standards laboratories tables
of data on the fundamental constants, and QED is based on a number of what
are effectively adjustable parameters introduced by ad hoc procedures such as
dimensional renormalization The concepts used in QED are vastly complicated
and are not used in the ECE theory of the experimentally known radiative cor-
rections. The Feynman perturbation method is not used in ECE: it cannot be
proven to converge as is well known, i.e. needs many terms of increasing com-
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plexity which must be evaluated by computer. So ECE is a fundamental theory
of quantized electrodynamics from the first principles of general relativity, while
QED is a theory of special relativity needing adjustable parameters, acausal and
subjective concepts, and therefore of dubious validity.

In Section 2.9, finally, it is shown that EH theory has several fundamental
shortcomings. As described on ww.telesio-galilei.com EH has been quite severely
criticized down the years by several leading physicists. Notably, Crothers [19]
has criticized the methods of solution of EH, and has shown that uncriti-
cally accepted concepts are in fact incompatible with general relativity. These
include Big Bang, dark hole and dark matter theory and the concept of a
Ricci flat space-time. He has also shown that the use of the familiar but mis-
named “Schwarzschild metric” is due to lack of scholarship and understanding
of Schwarzschild’s original papers of 1916. ECE has revealed that the use of the
familiar Christoffel symbol is incompatible with the one true Bianchi identity of
Cartan. This section suggests a development of the EH equation into one which
is self consistent.

Several technical appendices give basic details which are not usually given
in standard textbooks, but which are nevertheless important to the student.
These appendices also contain flow charts inter-relating the main concepts and
equations of ECE.

2.2 Geometrical Principles

The ECE theory is based on the two structure equations of Cartan, and the
Bianchi identity of Cartan geometry. During the course of development of the
theory a useful short-hand notation has been used in which the indices are
removed in order to reveal the basic structure of the equations. In this notation
the two Cartan structure equations are:

T=DANgq=dNqg+wAq (2.3)
and

R=DANw=dhwH+wAw (2.4)
and the Bianchi identity is:

DANT =dNT+wAT:=RAq. (2.5)

In this notation T is the Cartan torsion form, w is the spin connection symbol,
q is the Cartan tetrad form, and R is the Cartan curvature form. The meaning
of this symbolism is defined in all detail in the ECE literature [1,12], and the
differential form is defined in the standard literature [13]. The purpose of this
section is to summarize the main advances in basic geometry made during the
development of ECE theory.

The Bianchi identity (2.5) is basic to the field equations of ECE, and its
structure has been developed considerably [1,12]. It has been shown to be
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equivalent to the tensor equation:

Rl)’\/“/ + R;);Vp + Ri\pu
= 0,1, — 0,0y, + 10,15, —T),T7, (2.6)
+0,T7, — 0., + 1,19, —T7,T9, '
+0.I, — 0,1, + )10, —T5,19,

in which a cyclic sum of three Riemann tensors is identically equal to the sum of
three fundamental definitions of the same Riemann tensors. These fundamental
definitions originate in the commutator of covariant derivatives acting on a
four-vector in the base manifold. The latter is four dimensional space-time with
BOTH curvature and torsion [1,13]. This operation produces:

[Dy, D,)V? = R,V =T, D\V? (2.7)
where the torsion tensor is:
T, =T}, -T;,. (2.8)

The curvature or Riemann tensor cannot exist without the torsion tensor, and
the definition (2.7) has been shown to be equivalent to the Bianchi identity
(2.6).

The second advance in basic geometry is the inference [1,12] of the Hodge
dual of the Bianchi identity. In short-hand notation this is:

DAT:=RAq (2.9)

and is equivalent to:

[Dy, DylupV? = R, V7 — Tp,D\V? (2.10)

opy
where the subscript HD denotes Hodge dual. From these considerations it may
be inferred that the Bianchi identity and its Hodge dual are the tensor equations:
DMTMW _ Rnuuu (2.11)
and
D, T"" = R" " (2.12)

in which the connection is NOT the Christoffel connection. Computer algebra
[1,12] has shown that the tensor ", " is not zero in general for line elements
that use the Chrstoffel symbol, while T%*” is always zero for the Christoffel
symbol. So the use of the latter is inconsistent with the tensor equation (2.12).
Therefore the neglect of torsion makes EH theory internally inconsistent, so
standard model general relativity and cosmology are also internally inconsistent
at a basic level. In short-hand notation the geometry used in EH is:

RAg=0 (2.13)
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which in tensor notation is known as “the first Bianchi identity”:

RrR",,,+ R"

pvp pur TR p =0 (2.14)

in the standard model literature. However, this is not an identity, because it
conflicts with equation (2.5), and is true if and only if the Christoffel symbol
and symmetric metric are used [1,13]. Eq. (2.14) was actually inferred by Ricci
and Levi-Civita, not by Bianchi. So it is referred to in the ECE literature as
the Ricci cyclic equation.

In the course of development of ECE theory a similar problem was found
with what is referred to in the standard model literature as “the second Bianchi
identity”. In shorthand notation this is given [13] as:

DAR=0 (2.15)
but again this neglects torsion. In tensor notation Eq. (2.15) is:
DPR'{UM, + D#Rnwp + D"Rncrpu =0. (2.16)

It has been shown [1,12] that Eq. (2.15) should be:
DA(DAT):=DAN(RAq) (2.17)

which is found by taking DA on both sides of Eq. (2.15). Eq. (2.17) has been
given in tensor notation [1,12], and reduces to Eq. (2.16) when:

T), =0. (2.18)

However, Eq. (2.18) is inconsistent with the fundamental operation of the
commutator of covariant derivatives on the four vector, Eq. (2.7). So in the ECE
literature the torsion is always considered self-consistently. From the fundamen-
tals [13] of Eq. (2.7) there is no a priori reason for neglecting torsion, and in
fact the torsion tensor is always non-zero if the curvature tensor is non-zero.
This fact precludes the use of the Christoffel symbol, making EH theory self-
inconsistent.

These are the main geometrical advances made during the course of the
development of ECE theory, which is the only self-consistent theory of general
relativity. It has also been pointed out by Crothers [19] that methods of solution
of the EH equation are geometrically incorrect, and must be discarded. It
is thought that these errors have been repeated uncritically for ninety years
because few have the necessary technical ability to understand the geometry
of general relativity in sufficient depth, and that the prestige of Einstein has
precluded or inhibited due criticism.

2.3 The Field and Wave Equations of ECE The-
ory

The wave equation of ECE was the first to be developed historically [1,12], and
methods of derivation of the wave equation were subsequently simplified and
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clarified. The field equations were subsequently developed from the Bianchi
identity discussed in Section 2.2. This section summarizes the main equations
and methods of derivation. More detail of the equations is given in technical
appendices. The field equations are relevant to classical gravitation and electro-
dynamics, and the wave equation to causal and objective quantum mechanics.
Full details of derivations are available in the literature [1,12], the aim of this
section is to summarize the main inferences of ECE theory to date.

The Bianchi identity (2.5) and its Hodge dual (2.9) become the homogeneous
and inhomogeneous field equations of ECE respectively. These field equations
apply to the four fundamental fields of force: gravitational, electromagnetic,
weak and strong and can be used to describe the interaction of the fundamental
fields on the classical level. For example the electromagnetic field is described
by making the fundamental hypothesis:

A=Ay (2.19)

where the shorthand (index-less) notation has been used. Here A represents the
electromagnetic potential form and cA(©) is a primordial quantity with the units
of volts, a quantity which is proportional to the charge, —e, on the electron. The
hypothesis (2.19) implies that:

F=A0T (2.20)

where F' is shorthand notation for the electromagnetic field form. The homo-
geneous ECE field equation of electrodynamics follows from the Bianchi iden-
tity (2.5):

ANF+wAF=AORAq (2.21)

and the inhomogeneous ECE field equation follows from the Hodge dual (2.9)
of the Bianchi identity:

AANF+wANF=A9RAq. (2.22)

Therefore the ECE field equations are duality invariant, a basic symmetry which
means that they transform into each other by means of the Hodge dual [1,12].
The Maxwell Heaviside (MH) field equations of the standard model do not have
this fundamental symmetry and in differential form notation the MH equations
are:

dNF =0 (2.23)
and

ANF =J/e (2.24)

where J denotes the inhomogeneous charge/current density and ¢y is the S. I.
vacuum permittivity. Duality symmetry is broken by the fact that there is no
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homogeneous charge current density (J) in MH theory (the right hand side of
Eq. (2.23) is zero). The absence of J in the standard model is made the basis
for gauge theory as is well known, and also made the basis for the absence of a
magnetic monopole.

The ECE field equations (2.21) and (2.22) are re-arranged as follows in order
to define the homogeneous (J) and inhomogeneous (J) charge current densities
of ECE theory:

ANF =J/eg=ADRAq—wAT) (2.25)
and
ANF =J)eg=ARANqg—wAT). (2.26)

Both equations are generally covariant because they originate in the Bianchi
identity. The interaction of electromagnetism with gravitation occurs when-
ever J is non-zero. In MH theory such an interaction cannot be described,
because MH theory is developed in Minkowski space-time. The latter has no
curvature and in general relativity cannot describe gravitation at all. For all
practical purposes in the laboratory there is no interaction of electromagnetism
and gravitation, so Eq. (2.25) reduces to:

dAF =0. (2.27)

Therefore ECE theory explains in this way why there is no magnetic monopole
observable in the laboratory. The standard model has no physical explanation
for this, and indeed asserts that gauge theory is mathematical in nature. ECE
theory does not use gauge theory, and adopts Faraday’s original point of view
that the potential A is a physically effective entity. There are therefore impor-
tant philosophical differences between ECE and the standard model of classical
electrodynamics, in which the potential is mathematical in nature.

Therefore the structure of the ECE field equations is a simple one based
directly on the Bianchi identity. The structure is seen the most clearly using
the shorthand notation of Eqgs. (2.25) and (2.26) where all indices are omitted.
The notation of classical electrodynamics varies from subject to subject. In
advanced field theory the elegant but concise differential form notation is used,
and also the tensor notation. In electrical engineering the vector notation is
used. In ECE theory all three notations have been developed [1,12] in all detail,
and the ECE field equations developed into a vector form that is identical to the
MH equations. The main differences between ECE and MH is firstly that the
former is written in a four dimensional space-time with curvature and torsion
both present. This is a dynamic space-time whose connection must be more
general than the Christoffel connection. The MH equations, although having
the same vector form as ECE, are written in the Minkowski space-time of special
relativity. This is often referred to as “flat space-time”, whose metric is time
and space independent. Secondly the relation between the field and potential in
ECE includes the connection, whereas in MH the connection is not present. The
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inclusion of the connection has the all important effect of making the equations
of classical electrodynamics resonance equations of the Bernoulli/Euler type.
This property means that it is possible to describe well known phenomena such
as those first observed by Tesla, and to produce circuits that take electric power
from a new source, the Cartan torsion.

The concise tensorial expression of the equations (2.25) and (2.26) is in
general [1,12]

D, F = AORe 1 (2.28)
and
DNFa/Ll/ — A(O)RGM/LV (229)

where the covariant derivative appears on one side and a Ricci type curvature
tensor on the other. It has been shown [1,12] that these reduce in the laboratory,
and for all practical purposes, to:

8, F™ =0 (2.30)
and
O F = AR 1 (2.31)

The index a in these equations comes from the well known [13] tangent space-
time of Cartan geometry. However, it has been shown [1,12] that Egs. (2.30)
and (2.31) can be written in the base manifold as a special case of Eqgs. (2.28)
and (2.29), whereupon we arrive at:

8, Friv =0 (2.32)
and
g Frm = A RE 1 (2.33)

Therefore the electromagnetic field tensor in general relativity (ECE theory)
develops into a three index tensor. In special relativity (MH theory) it is a
two-index tensor as is well known. The equivalents of (2.32) and (2.33) in MH
theory are the tensor equations:

O, FM =0 (2.34)
and

O, F = J" [eg. (2.35)

The meaning of the three-index field tensor has been developed [1,12] in detail.
It originates in the well known [18] three index angular energy/ momentum ten-
sor density, J"*” which is proportional to the three index Cartan torsion tensor.
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It is well known that the electromagnetic field carries angular momentum which
in the Beth effect [20] is experimentally observable Therefore the Cartan torsion
tensor is the expression of this well known angular energy/momentum density
tensor of Minkowski space-time [18] in a more general manifold with curvature
and torsion. The meaning of the vector form of the ECE field equations is
further developed in Section 2.5.

The classical field equations of gravitation in ECE are also based directly on
the Bianchi identity and its Hodge dual. The EH equation, as argued already, is
incompatible with the Bianchi identity in its rigorously correct form, Eq. (2.5),
so during the course of development of ECE theory the well known EH equation
has been developed with the proportionalities:

T = kJre (2.36)
and

R M =kT", 1 (2.37)
which give:

D, J™ =1" . (2.38)

This novel field equation of classical gravitation is based directly on the tensorial
formulations (2.11) and (2.12) of the Bianchi identity. The Newton inverse
square law for example has been derived straightforwardly from Eq. (2.38) in
the limit where the connection goes to zero:

aMJK,ILV # TKM nv (239)
whereupon we obtain:
V.g=kép, (2.40)

an equation which is equivalent to the Newton inverse square law. Here g is the
acceleration due to gravity, k is Einstein’s constant, p,, and is the mass density
in kilograms per cubic meter. Similarly the Coulomb inverse square law can be
obtained straightforwardly [1,12| by considering the same type of limit of the
inhomogeneous ECE field equation:

D, Fr = A RS v (2.41)
The appropriate limit in this case is:

O F™H = A(O)R“M”” (2.42)
and leads to the Coulomb inverse square law:

V-E =p./eo (2.43)
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where p, is the charge density in coulombs per cubic meter. These procedures il-
lustrate one aspect of the unified nature of ECE, because both laws are obtained
from the Bianchi identity. Many other examples of the unification properties of
ECE have been discussed [1,12].

In order to unify the electromagnetic and weak fields in a field equation,
the representation space is chosen to be SU(2) instead of O(3) and the parity
violating nature of the weak field carefully considered. Similarly the electromag-
netic and strong fields are unified with an SU(3) representation space, and we
have already discussed the unification of the electromagnetic and gravitational
fields. Any permutation or combination of fields may be unified, and several
examples have been given [1,12] in various contexts. These are discussed further
in Section 2.7.

The ECE wave equation was developed [1,12] from the tetrad postulate [13]:

Dugy =0 (2.44)
via the identity:

D*(D,q;) :==0. (2.45)
This was re-expressed as the ECE Lemma:

g} = R (2.46)
in which appears the scalar curvature:

R = q0"(T)\ay — windd)- (247)

Here tensor notation is used, wy, being the spin connection and Iy, the general
connection. The Lemma becomes the ECE wave equation using a generalization
to all fields of the Einstein gravitational equation [1,13]:

R = —kT. (2.48)

Here T is an index contracted energy momentum tensor. The main wave equa-
tions of physics were all obtained [1,12] as limits of Eq. (2.46), notably the Proca
and Dirac wave equations. In so doing however the causal realist philosophy of
Einstein and de Broglie was adhered to. This is the original philosophy of wave
mechanics. The Schrédinger and Heisenberg equations were also obtained as
non-relativistic quantum limits of the ECE wave equation, but the Heisenberg
indeterminacy principle was not used in accord with the basic philosophy of
relativity and with recent experimental data [21] which refute the uncertainty
principle by as much as nine orders of magnitude.

2.4 Aharonov Bohm and Phase Effects in ECE
Theory

The well known Aharonov Bohm (AB) effects have been observed using mag-
netic, electric and gravitational fields [1,12] and as shown by ECE theory are
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ubiquitous for ALL electromagnetic and optical effects, including phase effects:
the subject of this section. These must all be explained by general relativity, and
not by the obsolete special relativistic methods of the standard model. There-
fore it is important to define the various AB conditions in ECE theory. In so
doing a unified description of phase effects such as the electromagnetic, Dirac,
Wu Yang and Berry phases may also be developed.

In general, the AB condition is defined in ECE theory by the first Cartan
structure equation (adopting the index-less short-hand notation [1,12]):

T=DANqg:=dNqg+wAq. (2.49)
Using the ECE hypothesis:

A= AOyq (2.50)
this becomes:

F=DNA=dNA+wNA (2.51)

where F' is short-hand for the electromagnetic field form and where A is short-
hand for the electromagnetic potential form. The AB effects in ECE theory
[1,12] were developed with the spin connection term w A A in Eq. (2.51). The
accepted notation [13] of Cartan geometry uses the tangent space-time indices
without the base manifold indices, because the latter are always the same on
both sides of an equation of Cartan geometry. So in the standard notation
Eq. (2.51) is:

F*=dAA" +w A A (2.52)

This denotes that the electromagnetic field is a vector-valued two-form and the
potential is a vector-valued one-form. In the standard model the spin connection
is zero and the standard relation between field and potential is:

F=dAA. (2.53)

In Eq. (2.53), F is a scalar-valued two-form, and A is a scalar valued one-
form [13] The spin connection is zero in Eq. (2.53) because the latter is written in
a Minkowski space-time. In the standard model, classical electrodynamics is still
represented by the MH equations, which are Lorentz covariant, but not generally
covariant. In other words the MH equations are those of special relativity and
not general relativity as required by the philosophy of relativity and objectivity.
The latter demands that every equation of physics should be an equation of
a generally covariant unified field theory. It is well known that the standard
model complies with this only in its gravitational sector: the electro-weak and
strong fields of the standard model are sectors of special relativity only. The
standard model does not comply with general relativity, notably standard model
quantum mechanics is philosophically different from relativity (Einstein Bohr
dialogue). ECE complies rigorously with the philosophy of general relativity in
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all its sectors, and unifies all sectors with geometry as required. In ECE the
spin connection is ALWAYS non-zero because the fundamental space-time being
used is not a flat space-time, it always contains both torsion and curvature in
all sectors of the generally covariant unified field theory [1,12]. Torsion and
curvature are ineluctably inter-related in the Bianchi identity (Section 2.2), and
during the course of development of ECE theory it was shown that there is
only one true Bianchi identity, which always links torsion to curvature and vice
versa. This is an important mathematical advance of ECE theory, another
(Section 2.2) being the development of the Hodge dual of the Bianchi identity.

It has been shown [1,12] that there is a fundamental error in the standard
model explanation of the magnetic AB effect [22]. In differential form notation
the standard explanation is based on the two equations:

F=dNAdNF =0 (2.54)
whose mathematical structure implies:
dA(dNA)=0. (2.55)

It is well known that this structure is invariant under the archetypical gauge
transformation:

A— A+dyx (2.56)
because of the Poincaré Lemma:
dNdy :=0. (2.57)

As explained in paper 56 of the ECE series (www.aias.us), the standard model
uses the mathematical result (2.57) to claim that:

fdxz/sdmx;éo. (2.58)

This claim is incorrect because it does not agree with the Stokes Theorem. The
latter applies [23] in non simply connected spaces. The Poincaré Lemma (2.57)
implies therefore that:

dy= [dAdy:=0 (2.59)
o=

in all types of spaces, including non simply connected spaces and there cannot
be an Aharonov Bohm effect due to the contour integral of dx. The incorrect
claim of the standard model [22] is that non simply connected spaces allow
¢ dx to be non-zero. A counter example to this claim was given in paper 56 of
www.aias.us. in full detail.

The explanation of the Aharonov Bohm (AB) effects in ECE theory is not
based on the mathematical abstractions of gauge theory but on Einstein’s phi-
losophy of relativity and Faraday’s philosophy of the potential as a physically
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effective entity (the electrotonic state). This philosophy of Faraday was also
accepted by Maxwell and his followers. The idea that the potential is a math-
ematical abstraction is based on the perceived redundancy exemplified by Eq.
(2.57), and this idea has been made into the basis of the mathematical gauge
theory of the standard model, developed in the late twentieth century. It ap-
pears in standard model textbooks such as that of Jackson for example [1,24].
The idea of a mathematical potential and a physical field in classical electrody-
namics is contradicted by the well known minimal prescription of field theory
and quantum electrodynamics, where the PHYSICAL momentum eA is added
to the momentum p. The idea of an abstract potential ran into trouble following
the demonstration by Chambers of the first AB effect to be observed, the mag-
netic AB effect. It is well known that Chambers placed a magnetic iron whisker
between the apertures of a Young interferometer and isolated the magnetic field
from interfering electron beams. Therefore, if the potential is mathematical as
claimed in gauge theory, it should have no effect on the electronic interference
pattern. The experimental result showed a shift in the interference pattern,
and so contradicts the standard model, meaning that Faraday was correct: the
potential is a physically effective entity. The same results were later obtained
experimentally in the electric and gravitational AB effects. As argued in this
section, various phase effects also indicate the existence of an electromagnetic
AB effect if interpreted by general relativity, of which ECE theory is an example.
The AB effect in ECE theory is summarized as follows:

f‘ﬁA#O

F=DNA=0,0oNA#0, w20

Figure 2.1: ECE Explanation of the Aharonov Bohm Effect.

It has been shown [1,12]| that the observable phase shift of the Chambers
experiment in ECE theory is:

A¢::%¢ (2.60)

where

@:fA:—LwAA (2.61)

in short-hand or index free notation. In the area between the inner and outer
rings in Fig. 2.1:

F=DAA=0,A+0,w+#0. (2.62)

The electromagnetic field (F') is zero by experimental arrangement. However,
the potential (4) and the spin connection (w) are not zero in general in this same
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region between the inner and outer rings. The phase shift is due therefore to
the contour integral around 4 in Eq. (2.61), as indicated in Fig. 2.1. Therefore
ECE theory gives a simple explanation of the AB effects as being due to a
physical A and a physical w. The latter indicates that the ECE space-time is
not a Minkowski space-time as in the attempted standard model explanation of
the AB effect. In the standard model the equivalent of Fig. 2.1 is:

/f4M=o

F=dNA=0,A#0,$A=0

Figure 2.2: Standard Attempt at Explaining the Aharonov Bohm Effect.

and the contour integral of A is zero. In the standard model the contour integral
of the potential is zero in the area between the inner and outer rings of Fig. 2.2
because:

F=dNA=0,A#0, (2.63)

/SdAAzj{A:o. (2.64)

So when F is zero in the standard model, so is d A A. It is possible therefore
for A to be non-zero in the standard model while F' is zero, but the incorrect
twentieth century idea of a non-physical A means that in the standard model
A must have no physical effect. In the end analysis this is pure obscurity and
has caused great confusion. Such ideas are bad physics and must be discarded
sooner or later. The only clear thing about the attempted standard model
explanation of the magnetic AB effect is that in the area between the two rings
of Fig. 2.2:

/SF:/Sd/\Azj{A:O. (2.65)

So the contour integral of A is zero by the Stokes Theorem and there is no AB
effect contrary to experiment. Therefore in the standard model, when F is zero
the contour integral of A is always zero even though A itself may be non-zero.
In other words Stokes” Theorem implies that when F' or d A A is zero in the
standard model, the contour integral of A must vanish even though A itself may
be non-zero. As we have seen, adding a dx in an assumed non simply connected
space-time does not solve this problem.

In ECE theory the presence of the spin connection ensures that when F' is
zero, d A A is not zero in general and the contour integral of A is not zero,
meaning a phase shift as observed, Eq. (2.61). The way that such an ECE con-
tour integral must be evaluated has been explained carefully [1,12]. Therefore
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the AB effects show that ECE is preferred experimentally over the standard
model. This is one out of many experimental advantages of ECE theory over
the standard model. A table of about thirty such advantages is available on the
www.aias.us website and in the fourth volume of ref. (2.1). As argued already,
the standard model has attempted to obfuscate its way out of the AB paradox
by adding dx to A and claiming that the AB effect is due to a non-zero con-
tour integral of dxy when the contour integral of A is zero. Paper 56 of ECE
(www.aias.us) shows that this claim is incorrect mathematically, and even if it
were correct just leads to obscure ideas, notably that [22] space-time itself must
be non-simply connected. This is typical of bad physics - the obscurantism of
the twentieth century in natural philosophy with its plethora of nigh incompre-
hensible and unprovable ideas. In contrast, the twenty first century ECE theory
explains the AB effect using the older but experimentally provable philosophy of
Faraday, Maxwell and Einstein. Therefore one of the key philosophical advances
of ECE theory is to discard standard model gauge theory as being obscurantist
and meaningless. In so doing, ECE adheres to Baconian philosophy: the theory
is fundamentally changed to successfully and simply explain data that clearly
refute the old theory (in this case the old theory is gauge theory).

For self-consistency there should be an AB effect whenever there is present
a field and its concomitant potential. So an electromagnetic AB effect should
be ubiquitous throughout electrodynamics and optics. This is indeed the case,
as manifested for example [1,12] in various well known phase effects interpreted
according to general relativity (exemplified in turn by ECE theory). Therefore
and in general the electromagnetic AB condition is:

F=dNA4+wANA=0,
(2.66)
A#0,w#0,
and for the gravitational field the AB condition is:
T=dNqg4+wANqg=0,
1 1 (2.67)
q#0,w#0.

This short-hand notation has been translated in full detail [1,12] into three
other notations: differential form, tensor and vector because notation is not
standardized and different subjects use different notations. In the vector nota-
tion of classical electrodynamics [24] and electrical engineering, Eq. (2.66) splits
into two equations. The first defines the magnetic field in terms of the vector
potential and the spin connection vector. This was developed further in paper
74 of ECE theory (www.aias.us) and published in a standard model journal,
Physica B [25]. In paper 74 the context was a balance condition for magnetic
motors, but the same equation is also an AB condition. It is:

B=VxA-wxA=0. (2.68)
For spin torsion [1,12] in gravitation the equivalent equation is:

T=Vxq—wxq=0. (2.69)
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In ECE every kind of magnetic field is defined by:
B=VxA-wxA (2.70)

for self consistency. The spin connection vector is ubiquitous because it is a
property of space-time itself. This is pure relativity of Einstein, but is still
missing from the standard model of electrodynamics. The latter is still based on
the well known vector development due to Heaviside of the original quaternionic
Maxwell equations, and predates the philosophy of relativity.

If an electromagnetic AB effect is being considered the potential in Eq. (2.68)
may be modeled by a plane wave as in paper 74 (www.aias.us). In that case the
AB condition becomes a Beltrami condition:

Vx AW = AW (2.71)
VxA® = xA® (2.72)
VxA® =04® (2.73)

which can be developed in turn into a Helmholtz wave equation:
(V2 + kAWM = 0. (2.74)

Considering the X component for example:

62A(1)
ot k2AY =0 (2.75)

which is an undamped Bernoulli/Euler resonance equation without a driving
force on the right hand side [1,12]. It is also a free space wave equation without
a source. It is however a wave equation in the potential ONLY, there being
no magnetic field present by Eq. (2.68). In other words there is no radiated
electromagnetic field but there is a radiated potential field. This is an example
of an electromagnetic AB effect. In ECE theory the radiated potential without
field may have a physical effect, in this case an electrodynamic or optical effect.

These arguments of ECE theory go to the root of what is meant by a photon
and what is meant by the electromagnetic field. In the standard model there
are two approaches to electromagnetic phenomena. As argued already in this
Section, the electromagnetic field F' is physical but the electromagnetic potential
A is unphysical in the standard model on the classical level, whereas in standard
model quantum electrodynamics the minimal prescription is used with a physical
potential. Also in the standard model there are other concepts such as virtual
photons which occur in Feynman’s version of quantum electrodynamics. During
the course of ECE development however [1,12] the claimed accuracy of the
Feynman type QED has been shown to be an exaggeration by several orders of
magnitude. It is possible to see this through the fact that accuracy of the fine
structure constant is limited by the accuracy of the Planck constant (paper 85
on www.aias.us). The standards laboratory data on fundamental constants were
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shown in this paper to be self-inconsistent. Finally, Feynman’s QED method is
based on what are essentially adjustable parameters, in other words it is based
on obscurantist concepts such as dimensional renormalization, concepts which
cannot be proven experimentally and so distill down to parameters that are
adjusted to give a good fit of theory to experiment. It is also well known that
the series summation used in the Feynman calculus cannot be proven a priori
to converge, and thousands of terms have to be evaluated by computer even for
the simplest of problems such as one electron interacting with one photon. The
situation in quantum chromodynamics is much more complicated and much
worse. In QCD it takes Nobel Prizes to prove renormalization, which is just
an adjustable parameter. In a subject such as chemistry, such methods are
impractical and are never used. They are therefore confined to ultra-specialist
physics and even then are of dubious validity. This is typical of bad science,
to claim that a theory is fundamental when it is not. It is well known [1,12]
that there are many weaknesses in the standard model of electrodynamics, for
example it is still not able to describe the Faraday disk generator of Dec. 26",
1831 whereas ECE has offered a straightforward explanation.

In ECE the field and potential are both physical [1,12] on both the classical
and quantum levels, and in ECE there is no distinction between relativity and
wave mechanics. These ideas of natural philosophy all become aspects of the
same geometry, and in ECE this is the standard differential geometry of Cartan
routinely taught in mathematics. The field, potential and photon are defined by
this geometry. In the standard model there is also a distinction between locality
and non-locality, a distinction which enters into areas such as quantum entan-
glement and one photon Young interferometry, in which one photon appears to
self-interfere. In ECE [1,12] there is no distinction between locality and non-
locality because of the ubiquitous spin connection of general relativity. Thus, in
ECE theory, the AB effects are effects of general relativity, and the labels “lo-
cal” and “non-local” becomes meaningless - all is geometry in four-dimensional
space-time.

Having described the essentials of the AB effects, the various phase effects
developed during the course of the development of ECE theory [1,12] have been
understood by a similar application of the Stokes theorem:

/SF:/SDAA:fAJr/SwAA (2.76)

in which the covariant exterior derivative DA appears. The use of this type
of Stokes Theorem has been exemplified in volume 1 of ref. (1) by integrating
around a helix and by closing the contour in a well defined way. This type of
integration was used in the development in ECE theory of the well known Dirac
and Wu Yang phases, and in a generalization of the well known Berry phase
as for example in the well studied paper 6 of the ECE series (www.aias.us). in
which the origin of the Planck constant was discussed. (The extent to which
the 103 or so individual ECE papers are studied is measured accurately through
the feedback software of www.aias.us, and there can be no doubt that they are
all well studied by a high quality of readership.) In the development of the
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electromagnetic phase with ECE theory [1,12] it has been demonstrated that
the phase is due to the well known B(3) spin field of ECE theory, first inferred in
1992 from the inverse Faraday effect. This generally relativistic development of
the electromagnetic phase is closely related to the AB effects and resolves basic
problems in the standard model electromagnetic phase [1,12]. It has therefore
been shown that the B(3) field is ubiquitous in optics and electrodynamics,
because it derives from the ubiquitous spin connection of space-time itself.

These considerations have also been developed for the topological phases,
such as that of Berry, using for self consistency the same methodology as for the
electromagnetic, Dirac and Wu Yang phases [1,12]. These well known phases
are again understood in ECE theory in terms of Cartan geometry by use of the
Stokes Theorem with DA in place of dA. All phase theory in physics becomes
part of general relativity, and this methodology has been linked to traditional
Lagrangian methods based on the minimization of action.

2.5 Tensor and Vector Laws of Classical Dynam-
ics and Electrodynamics

The tensor law for the homogeneous field equation has been shown [1,12] to be:
O F v = 0. (2.77)

For each x index the structure of the matrix is:

0 cBx c¢By c¢Byz 0 FO1 fp02 po03
ﬁwj _ —CBX 0 —EZ EY _ F:lO NO ﬁlQ F:13
—CBY EZ 0 _EX F20 F21 0 F23
—cBy; —Fy FEx 0 F30 31 32 0
(2.78)

The Gauss law of magnetism in ECE theory has been shown to be obtained
from:

k=v=0 (2.79)
and so:

O FOT0 4 9, F0%0 4 9y 930 — ¢ (2.80)
ie.

V.-B=0 (2.81)
with:

B =Bxt+ Byj+ Bzk (2.82)
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and:
Bx = B By = B%? B, = B"%. (2.83)

These are orbital magnetic field components of the Gauss law of magnetism.
In ECE theory the Faraday law of induction is a spin law of electrodynamics

defined by:
aoﬁrc01 + 82ﬁn21 + agﬁnSl =0
OoF"02 4+ 9, Fr12 £ 9, Fr32 — (0 % (2.84)
aOﬁKOS + alﬁmlii + 621'5/@23 =0

The ECE Faraday law of induction for all practical purposes is [1,12]:

0B

where the spin electric and magnetic components are:

EX _ E332 _ —E323, BX _ _BIIO _ B101,
EY — E113 — _121317 BY — _B220 — 3202, (286)
EZ _ E221 _ _E112, BZ — _B330 — B303.

The ECE Ampére Maxwell law is another spin law [1,12]:

1 0F

VXxB—-——=pupJ 2.87
% c? Ot Ho ( )

where the components have been identified as:

Ex = B9 By = B332
Ey = E*?2 By = B3, (2.88)
EZ _ E303 BZ _ B221.

Therefore in these two spin laws different components appear in ECE theory
of the electric and magnetic fields. In the MH theory of special relativity these
components are not distinguishable.

Finally the Coulomb law has been shown to be [1,12]:

V-E=ple (2.89)

and is an orbital law of electromagnetism as is the Gauss law of magnetism.
In ECE theory these individual spin and orbital components are proportional
to individual components of the three index Cartan torsion tensor and three
index angular energy/momentum density tensor. Therefore ECE theory comes
to the important conclusion that there are orbital and spin components of the
electric field, and orbital and spin components of the magnetic field. The orbital
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Table 2.1: Components of the Laws of Classical Electrodynamics

Law Electric Field Magnetic Field Type
BX — B()(Jl
Gauss By = BY02 orbital
BZ — BOO3
EX — _EOOI
Coulomb Ey = —E002 orbital
EZ — _E003
EX — E332 BX — BlOl
Faraday By = E13 By = B?02 spin
EZ — E221 BZ — BSOS

EX — _E101 BX — 3332
Ampére Maxwell Ey = —FE?02 By = B13 spin
EZ — _E303 BZ — 3221

components occur in the Gauss law of magnetism and Coulomb law and the spin
components in the Faraday law of induction and the Ampére Maxwell law. This
information, given by a generally covariant unified field theory, is not available
in Maxwell Heaviside (MH) theory of the un-unified, special relativistic, field.

Therefore each law develops an internal structure which is summarized in
Table 2.1. There are two orbital laws (Gauss and Coulomb) and two spin
laws (Faraday law of induction and Ampére Maxwell law). In each law the
components of the electric and magnetic fields are proportional to components
of the well known [18] angular energy /momentum density tensor. Therefore
for example the static electric field is distinguished form the radiated electric
field. This is correct experimentally, it is well known that the static electric
field exists between two static or unmoving charges, while the radiated electric
field requires accelerated charges for its existence. By postulate the components
of the electric and magnetic fields are also proportional to components of the
Cartan tensor, a rank three tensor in the base manifold (4-D space-time with
torsion and curvature).

In tensor notation the inhomogeneous ECE field equation in the base mani-
fold has been shown to be, for all practical purposes [1,12]:

1
auqul = —_J" = CA(O)RKHW/. (290)
€0
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The vacuum is defined by:
R M =0 (2.91)

and is Ricci flat by construction. This result is consistent with the fact that
the vacuum solutions of the EH equation are Ricci flat by construction. In
a Ricci flat space-time there is no canonical energy momentum density [1,12]
and so there are no electric and magnetic fields because there is no angular
energy/momentum density. However, as in the theory of the Aharonov Bohm
effects developed in Section 2.4, there may be non-zero potential and spin con-
nection in a Ricci flat vacuum. Similarly, in the latter type of vacuum the Ricci
tensor vanishes but the Christoffel connection and metric of EH theory do not
vanish. Crothers has recently criticized the concept of the Ricci flat vacuum [19]
as contradicting the Einstein equivalence principle. He has also shown that the
mis-named Schwarzschild metric is inconsistent with the concept of a Ricci flat
vacuum and with the geometry of the EH equation. Crothers has also argued
that ideas such as Big Bang, black holes and dark matter are inconsistent with
the EH equation.
The Coulomb law is the case:

v=0 (2.92)

of Eq. (2.90). During the course of development of ECE theory it has been
shown by computer algebra that for all Ricci flat solutions of the EH equation:

RF M =0 (2.93)

but for all other solutions of the EH equation the right hand sides of Eq. (2.90)
are non zero for the Christoffel connection. This result introduces a basic para-
dox in the EH equation as discussed already in this review paper.

The Ampére Maxwell law is the case:

v=12,3 (2.94)
in Eq. (2.90) and in tensor notation the ECE Ampére Maxwell law is:

80};%01 + aQFn21 + aBFN31 — CA(O) (RROOI + RH221 + Rm331)
8OFI<;O2 + aan12 + 83F1132 — CA(O) (RKOOQ + Rn112 + Rn332) (295>
BOFKOS + alFﬁ13 + azFKQS — CA(O) (RHOO?) + Rnll?y + Rm223)

Therefore it is inferred that the time-like index is 0 and the space-like indices
are 1, 2 and 3. The left hand side of Eq. (2.89) is a scalar and so

k=0 (2.96)
is identified with a scalar index. So Eq. (2.89) of the Coulomb law is:

B1FC10 4+ 9, 020 1 9 030 — c4(0)(RO 10 | RO, 20 | RO, 30) (2.97)
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and is the orbital ECE Coulomb law. In vector notation this law is:

v E="L (2.98)
€0

where:

EX — EOlO,Ey —_ EO2O,EZ — EOZ‘}O7

2.99
p= eocA(O)(Rollo + R0,20 ¢ RO330). ( )
The S.I. units of this law are:
AO = JsC'm Y R=m 2%, e =J'Pm L, p=Cm=>. (2.100)
In Eq. (2.90):
cA® = JC = volts,
E =volt m™!,V - E = volt m™2,
(2.101)

cAO R = volt m=2,

pleo = JC'm™? = volt m™2,
thus checking the S. I. units for self consistency. In the Ricci flat vacuum:
V-E=0 (2.102)
which is consistent with:
RO,10 1 RO20 | RO30 _ ¢ (2.103)

for vacuum solutions of the EH equation as argued already. However, for com-
plete internal consistency the Christoffel symbol cannot be used, because it is
not internally consistent with the Bianchi identity as argued already in this
review paper.

It is possible to define a curvature scalar of the Coulomb law as:

Ry == R°"0 + R%,* + R%,;% (2.104)
so that:
V. E-= é — cAO R, (2.105)

and that the charge density of the Coulomb law becomes:
p=cAD¢R (2.106)

in coulombs per cubic meter. In the Cartesian system of coordinates the electric
field components of the Coulomb law are:

Ex = B By = g g, = g3 (2.107)
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and are proportional to these same components of the three index angular energy
momentum density tensor. They are anti-symmetric in their last two indices:

EO0 — _E%%etc, (2.108)

In tensor notation the ECE Ampére Maxwell law is given by Eq. (2.95), i.e.:

(2.109)

O F™H = cA(O)R"“#’“’7
v=123

and in vector notation by:

1 0F

In the Cartesian system:
J=Jxt+Jyg+Jzk (2.111)
where:

A(O) 1 01 1 21 1 31

JX:iMO (RO +R2 +R3 ),
A(O) 2 02 2 12 3 32

JY - 7/}[@ (R 0 + R 1 + R 2 ), (2112)
A0)

JZ — o (R3003 4 R3113 4 R3223),

and self consistently in the vacuum:
IJx =Jy=Jz=0 (2.113)

for Ricci flat space-times. As argued this result has been demonstrated by
computer algebra [1,12]. In the Ampére Maxwell law the electric and magnetic
field components are proportional to spin angular energy momentum density
tensor components of the electromagnetic field as follows:
ERHY — ﬁJNMVy
ew (2.114)
BEW — LJH},LV.
ew
The electric field components of the Coulomb law and the magnetic field compo-
nents of the Gauss law are all orbital angular energy density tensor components
of the electromagnetic field. The angular energy momentum density tensor may
be defined as [18]:

1
JeHy — _§(Tli,uxl/ _ T’il’xﬂ) (2115)
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using the symmetric canonical energy momentum density tensor:

TrEE = TH" (2.116)
and the components of the electric and magnetic fields are components of J**¥
as follows:

2
B0 = © j0% ;i —1 23 (orbital),
ew

- c2 -
EZtO _ 7]110,@' — 17 2)37 (spin), (2117)
ew

B2 _ ijnz B221 _ £J221 B33 — £J331
ew ’ ew ’ ew '
The two index angular energy/momentum tensor of the electromagnetic field
is an integral over the three index density tensor. Ryder gives one example of
such an integral in Minkowski space-time [18]:

MM = / MO @By, (2.118)
Therefore the four laws of electrodynamics in ECE theory are:

V-B =0, (2.119)

B
V x E + 9B =0, (2.120)

ot
V-E=p/e, (2.121)

1 0F

B- - =,J 2.122
V x 2o~ Mot ( )

and therefore have the same vector structure as the familiar MH equations.
However, as argued in this section, the ECE theory gives additional information.
In the four laws the components of the magnetic and electric fields are as follows.
The Gauss law of magnetism in ECE theory is, for all practical purposes (FAPP):

V-B=0 (2.123)

which is an orbital law in which the components of the magnetic field are propor-
tional to orbital components of the angular momentum/energy density tensor
and are:

B = B + B%?%5 B3k, (2.124)

The Faraday law of induction in ECE is a spin law with electric and magnetic
field components as follows:

E = E*% + B35 + E*'k, (2.125)

B = B 4+ B*%5 4 B*%k. (2.126)
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The Coulomb law in ECE is an orbital law with electric field components as
follows:

E = E°% + %Y 4 B9, (2.127)

Finally the Ampére Maxwell law in ECE is a spin law with electric and magnetic
field components as follows:

E = E"Y% + E*2%5 4 B33k, (2.128)
B = B*?i{ + B35 + B**'k. (2.129)

As argued in Section 2.4 of this review paper, the relation between field and
potential is different in ECE theory and contains the spin connection [1,12]. The
various notations for the relation between field and potential in ECE theory are
collected here for convenience. In the index-less notation:

F=dNA+wAA (2.130)
which is based on the first Cartan structure equation:

T=dANq+wAgq. (2.131)
In the standard notation of differential geometry:

F=dA A"+ w® A A (2.132)
In tensor notation from differential geometry:

Fo, = (dAAY) 0+ (W% A A (2.133)
In the base manifold Eq. (2.133) becomes:

Frur = gl AR — 9¥ ARF 4 (W' AN — ) AN (2.134)

In vector notation Eq. (2.134) splits into two equations, one for the electric field
and one for the magnetic field:

A
E=-V¢-— aa—t + ow —wA (2.135)
and
B=VxA-wxA (2.136)

For the orbital electric field component of the Coulomb law Eq. (2.135) has the
following internal structure:

¢ =cA" A= A"+ A%5 + A%k, (2.137)

w=cw, w= (Wi 4+ w7 + k). (2.138)
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This result illustrates that the internal structure of the relation between field and
potential is different for each law of electrodynamics in ECE theory. Therefore
in a GCUFT such as ECE different types of field and potential exist for each
law, and also different types of spin connection.

For the orbital Gauss law of magnetism the internal structure of Eq. (2.136)
is:

A =A%+ A5 4+ A%, (2.139)
w=—(w"i+ w5 + w3 k). (2.140)

For the Ampére Maxwell law, a spin law, the internal structure of Eqgs. (2.135)
and (2.136) are again different, and are defined as follows. The structure of Eq.
(2.135) is:

¢:CAOO:CA01:CAO2:CA037
AX :A01 :All :A21 :A31
AY :A02:A12 :A22 :A32
AZ :AOS :A13 :A23 :ASS

1 1

1 1 11 11
wx = w OZW 1:w 2:w 3

2.141
wy—wo—w221—w22:w223, ( )
wy =Wy = = w8, = w3,

W= cwloo = w!®, = wl®, = cwlog
= aw®) = cw?, = aw?, = w?,
= w®, = w3, = w30, = W,
and the structure of Eq. (2.136) is:
0A; 0Ay
Bx = B¥? = - Ay —wy A
X PY% 7 +wzAy —wyAg,
0Ax 0Ay
By — B3 _ _ Ar —ws A 2.142
Y Y ax +wxAz —wzAXx, ( )
0Ay 0Ax
By, =B#'=-"—"__"=2 Ax —wxAy.
z ax 5% +wyAx —wxAy

Finally the internal structures are again different for the Faraday law of induc-
tion. In arriving at these conclusions the relation between field and potential in
the base manifold is:

FreY = g A®Y — gV A™F + (w"”)\AA” — W AMY, (2.143)
The Hodge dual of this equation is:

ﬁqu _ (8/LAK,V — QY AR + (wriu)\AAu _ wnu)\A)\u))HD (2.144)
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and this is needed to give the results for the homogenous laws. An example of
taking the Hodge dual is given below:

ﬁOOl — (60A01 _ alAOO + (WOO)\A)\I _ wOl)\AAO))HD

(2.145)
_ 82A03 _ 33A02 + (wOQ/\A)‘S _ wOS)\A)Q).

With these rules the overall conclusion is that in a generally covariant unified
field theory (GCUFT) such as ECE the four laws of classical electrodynamics
can be reduced to the same vector form as the MH laws of un-unified special
relativity (nineteenth century), but the four laws are no longer written in a
flat, Minkowski spacetime. They are written in a four dimensional space-time
with torsion and curvature. This procedure reveals the internal structure of the
electric and magnetic fields appearing in each law, for example correctly makes
the distinction between a static and radiated electric field, and a static and
radiated magnetic field. The relation between field and potential also develops
an internal structure which is different for each law, but for each law, the vector
relation can be reduced to:

E=-V¢-— % +pw—wA (2.146)
and
B=VxA-wxA. (2.147)

In a GCUFT, gauge theory is not used because the potential has a physical
effect as in the electrotonic state of Faraday. The ECE theory is developed
entirely in four dimensions, is entirely self-consistent, and reproduces a range
of experimental data [1,12] which the MH theory cannot explain. The ECE
theory is also philosophically consistent with the need to apply the philosophy
of relativity to the whole of physics. The latter becomes a unified field theory
based on geometry. The first attempts by Einstein to develop general relativity
were based on Riemann geometry and restricted to the theory of gravitation.
In the philosophy of relativity, however, the basic idea that physics is geometry
must be used for every equation of physics, and each equation must be part of
the same geometrical framework. This is achieved in a GCUFT such as ECE
theory by using Cartan’s standard differential geometry. This is a self-consistent
geometry that recognizes the existence of space-time torsion in the first Cartan
structure equation, and space-time curvature in the second. It is also recognized
that there is only one Bianchi identity, and that this must always inter-relate
torsion and curvature, both are fundamental to the structure of space-time.

2.6 Spin Connection Resonance
One of the most important consequences of general relativity applied to electro-

dynamics is that the spin connection enters into the relation between the field
and potential as described in Section 2.5. The equations of electrodynamics as
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written in terms of the potential can be reduced to the form of Bernoulli Euler
resonance equations. These have been incorporated during the course of devel-
opment of ECE theory into the Coulomb law, which is the basic law used in
the development of quantum chemistry in for example density functional code.
This process has been illustrated [1,12] with the hydrogen and helium atoms.
The ECE theory has also been used to design or explain circuits which use spin
connection resonance to take power from space-time, notably papers 63 and 94
of the ECE series on www.aias.us. In paper 63, the spin connection was incor-
porated into the Coulomb law and the resulting equation in the scalar potential
shown to have resonance solutions using an Euler transform method. In paper
94 this method was extended and applied systematically to the Bedini motor.
The method is most simply illustrated by considering the vector form of the
Coulomb law deduced in Section 2.5:

V-E =p/e (2.148)

and assuming the absence of a vector potential (absence of a magnetic field).
The electric field is then described by:

E=—(V+we (2.149)
rather than the standard model’s:

E=-V¢. (2.150)
Therefore Eq. (2.149) in (2.148) produces the equation

Vi +w:Vo+ (V- w)p= —eﬁ (2.151)
0

which is capable of giving resonant solutions as described in paper 63. The
equivalent equation in the standard model is the Poisson equation, which is a
limit of Eq. (2.151) when the spin connection is zero. The Poisson equation does
not give resonant solutions. It is known from the work of Tesla for example that
strong resonances in electric power can be obtained with suitable apparatus,
and such resonances cannot be explained using the standard model. A plausible
explanation of Tesla’s well known results is given by the incorporation of the spin
connection into classical electrodynamics. Using spherical polar coordinates and
restricting consideration to the radial component:

0% 209
2, 0O¢ 209
Vg = 52 T o (2.152)
09 P9,
w- Vo= Wr o (V- -w)p= 23, (rewy), (2.153)
so that Eq. (2.151) becomes:
0% 2 do @ 20w\  —p
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In paper 63 a spin connection was chosen of the simplest type compatible with
its dimensions of inverse meters:
1

SR 2.155
= == (2.155)

and thus giving the differential equation:

02¢ 109 1 =P

i e sy 2.156
or?2  ror r? €0 ( )
as a function of . Eq. (2.156) becomes a resonance equation if the driving term

on the right hand side is chosen to be oscillatory, in the simplest instance:
p = p(0) cos(k,). (2.157)

To obtain resonance solutions from Eq. (2.156), an Euler transform [1,12] is
needed as follows:

Kpr = exp(ik,R). (2.158)

This is a standard Euler transform extended to a complex variable. This simple
change of variable transforms Eq. (2.156) into:
0%¢

0 ; i
IR + K2¢ = QReal(eerR cos (e R)) (2.159)
0

which is an undamped oscillator equation as demonstrated in detail in Eq.
(2.63), where the domain of validity of the transformed variable was discussed in
detail. It is seen from feedback software to www.aias.us that paper 63 has been
studied in great detail by a high quality readership, so we may judge that its
impact has been extensive. The concept of spin connection resonance has been
extended to gravitational theory and magnetic motors and the theory published
in standard model journals [25,27]. In paper 63 the simplest possible form of
the spin connection was used, Eq. (2.155) and the resulting Eq. (2.156) was
shown to have resonance solutions using a change of variable. There is therefore
resonance in the variable R. In paper 90 of www.aias.us this method was made
more general by considering the equation

¢ 2 o9 ¢ 20w\ _ —p
+<r+wr)ar+ﬁ<2rwr—|—r B ) = — (2.160)

Oor? r €0

which is a more general form of Eq. (2.156). When the spin connection is
defined as:

4
wy = wir — 4Blog, T — —. (2.161)
T
Eq. (2.160) becomes a simple resonance equation in r itself:
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826
(9 a2

+265- d)

- (2.162)
€0

There is freedom of choice of the spin connection. The latter was unknown in
electrodynamics prior to ECE theory and must ultimately be determined ex-
perimentally. An example of this procedure is given in paper 94, where spin
connection resonance (SCR) theory is applied to a patented device. One of the
papers published in the standard model literature [26] applies SCR to magnetic
motors that are driven by space-time. It is probable that SCR was also dis-
covered and demonstrated by Tesla [28], but empirically before the emergence
of relativity theory. SCR has also been applied to gravitation and published
in the standard model literature [27]. So a gradual loosening of the ties to the
standard model is being observed at present.

In paper 92 of the ECE series (www.aias.us), Eq. (2.160) was further con-
sidered and shown to reduce to an Euler Bernoulli resonance equation of the

general type:
d’x A
o2 + ﬁ —|— Kkix = Acos(kr) (2.163)

in which 3 plays the role of friction coefficient, k¢ is a Hooke’s law wave-number
and in which the right hand side is a cosinal driving term. Eq. (2.160) reduces
to Eq. (2.163) when:

1 1\  Ow,
Cafs- DY agmt (s 1) 2160

Therefore the condition udner which the spin connection gives the simple reso-
nance Eq. (2.163) is defined by:

4
wy = ki —4Blog, T — —. (2.165)
T
Reduction to the standard model Coulomb law occurs when:
8= 1 (2.166)
= .
when
w, = 0,k3 = 0. (2.167)

In general there is no reason to assume that condition (2.166) always holds. The
reason why the standard model Coulomb law is so accurate in the laboratory
is that it is tested off resonance. In this off resonant limit the ECE theory
has been shown [1,12] to give the Standard Coulomb law as required by a vast
amount of accumulated data of two centuries since Coulomb first inferred the
law. In general, ECE theory has been shown to reduce to all the known laws of
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physics, and in addition ECE gives new information. This is a classic hallmark
of a new advance in physics. It is probable that Tesla inferred methods of
tuning the Coulomb law (and other laws) to spin connection resonance. Many
other reports of such surges in power have been made, and it is now known
and accepted by the international community of scientists that they come from
general relativity applied to classical electrodynamics.

Paper 94 of the ECE series is a pioneering paper in which the theory of SCR
is applied to a patented device in order to explain in detail how the patented
device takes energy from space-time. No violation of the laws of conservation
of energy and momentum occurs in ECE theory or in SCR theory.

2.7 Effects of Gravitation on Optics and Spec-
troscopy

In the standard model of electrodynamics the electromagnetic sector is described
by the nineteenth century Maxwell Heaviside (MH) field theory, which in gauge
theory is U(1) invariant and Lorentz covariant in a Minkowski space-time. As
such MH theory cannot describe the effect of gravitation on optics and spec-
troscopy because gravitation requires a non-Minkowski space-time. In ECE
theory on the other hand all sectors are generally covariant, and during the
course of development of ECE theory several effects of gravitation on optics and
spectroscopy have been inferred, notably the effect of gravitation on the Sagnac
effect, RFR and on the polarization of light grazing a white dwarf. An explana-
tion for the well known Faraday disk generator has also been given in terms of
spinning space-time, an explanation which illustrates the fact that the torsion
of space-time produces effects not present in the standard model. Gravitation
is the curvature of space-time and in ECE theory the interaction of torsion and
curvature is determined by Cartan geometry.

The Faraday disk generator has been explained in ECE theory from the basic
assumption that the electromagnetic field is the Cartan torsion within a factor:

Fmech = A(O)ﬂnech (2168)

where cA© is the primordial voltage. The factor A is considered to originate
in the magnet of the Faraday disk generator. The Faraday disk generator con-
sists essentially of a spinning disk placed on a magnet, without the magnet no
induction is observed, i.e. no p.d.f. is generated between the center and rim of
the disk without a magnet being present. The original experiment by Faraday
on 26*" Dec. 1831 consisted of spinning a disk on top of a static magnet, but
an e.m.f. is also observed if both the disk and the magnet are spun about their
common vertical axis. There continues to be no explanation for the Faraday
disk generator in the standard model, because in the latter there is no connec-
tion between the electromagnetic field and mechanical spin, angular momentum
and torsion, while ECE makes this connection in Eq. (2.168). The standard
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model law of induction of Faraday is:

B
VxE+aa—t:0 (2.169)

and spinning the magnetic field about its own axis does not produce a non-
zero curl of the electric field as required. Clearly, a static magnetic field will
not cause induction from Eq. (2.169). So this is a weak point of the standard
model, in which induction is caused in the classical textbook description by
moving a bar magnet inside a coil, causing a current to appear. In ECE it has
been shown [1,12] that the explanation of the Faraday disk generator is simply:

F=F./p,+ Fuen (2.170)
which in vector notation (section 2.5) produces the law of induction:
aBmech

ot

Spinning the disk has the following effect in ECE theory.
In the complex circular basis [1,12] the magnetic flux density in ECE theory
is defined by:

V X Emech + =0. (2.171)

()* _ L _ . K (2) (3)
(2)* _ @« _; K (3) (1)
B =VxA — zA(O)A x A (2.173)
(3)* _ @ _ . K (1) (2)
B“YW"=VxA ZA(O)A x A (2.174)
where
Q

is a wave-number and 2 is an angular frequency in radians per second. When the
disk is stationary the ECE vector potential is [1,12] proportional by fundamental
hypothesis to the tetrad:

A — 40 g0 (2.176)
A®) Z 404 (2.177)
AB) — 4O g3 (2.178)

In the complex circular basis the tetrads are:

1

W) = (3 —ij), 2.179

q \/Q( 7) ( )
1

(2) — i+ij), 2.180

q \/5( 7) ( )

qa® =k, (2.181)
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and have O(3) symmetry as follows:

g x q® =iq®", (2.182)

q® x q) =iq", (2.183)

q® x gV = iqg®*, (2.184)
In the absence of rotation about Z:

VxAY =v x A% =, (2.185)

AB) = A0, (2.186)
In the complex circular basis:

v x EW +9BW /ot =0, (2.187)

V x E® 1+ 9B /ot =0, (2.188)

V x E® 1+ 9B® /ot = 0. (2.189)

Therefore from Eqgs. (2.176) to (2.189) the only field present is:
BO* = BO) = i) x ¢
(2.190)
= B¥k = B.k

which is the static magnetic field of the bar magnet.
Now mechanically rotate the disk at an angular frequency €2 to produce:

o A9 ,
AV = ﬁ(z —i7) exp(iQt), (2.191)
A
A? = W(i + i) exp(—iQt). (2.192)

From Eqgs. (2.176) to (2.192) electric and magnetic fields are induced in a di-
rection transverse to Z, i.e. in the XY plane of the spinning disk as observed
experimentally. However, the Z axis magnetic flux density is unchanged by
physical rotation about the same Z axis. This is again as observed experimen-
tally. The (2) component of the transverse electric field spins around the rim of
the disk and is defined from Eq. (2.151) as:

0
E® = W — _ (at + m) A?, (2.193)
It can be seen from section 2.5 that €2 is a type of spin connection. The latter

is caused by mechanical spin, which in ECE is a spinning of space-time itself.
The real and physical part of the induced EM) is:

Real(EW) = %A(O)Q(i sin Qt — 7 cos ) (2.194)
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and is proportional to the product of A(®) and €, again as observed experimen-
tally. An electromotive force is set up between the center of the disk and the
rotating rim, as first observed experimentally by Faraday. This e. m. f. is
measured experimentally with a voltmeter at rest with respect to the rotating
disk.

The homogeneous law (2.120) of ECE theory is generally covariant [1,12]
by construction, so retains its form in any frame of reference. ECE therefore
produces a simple and complete description of the Faraday disk generator in
terms of the spinning of space-time, and concomitant spin connection. The
latter is therefore demonstrated in classical electrodynamics by the generator.
All known experimental features are explained straightforwardly by ECE theory,
but cannot be explained by MH theory, in which the spin connection is missing
because Minkowski space-time has no connection by construction - it is a “flat”
space-time. It is relatively easy to think of electrodynamics as spinning space-
time if we think of gravitation as curving space-time. This analysis also gives
confidence in the arguments of Section 2.6, where power is obtained from space-
time with spin connection resonance.

The same ECE concept just used to explain the Faraday disk generator has
been used [1,12] to give a simple explanation of the Sagnac effect (ring laser
gyro). Again, the standard model has no satisfactory explanation for the Sagnac
effect [1,12]. Consider the rotation of a beam of light of any polarization around
a circle of area 7r? in the XY plane at an angular frequency w;. The rotation is
a rotation of space-time itself in ECE theory, described by the rotating tetrad:

1 )
qM = ﬁ(i —ij)et et (2.195)

This is rotation around the static platform of the Sagnac interferometer. The
fundamental ECE assumption means that this rotation produces the electro-
magnetic vector potential:

A = 440 (2.196)

for left rotation and:

A0 )
A = T (i +ij)e ! 2.197
W= litid) (2197)
for right rotation. When the platform is at rest a beam going around left-
wise takes the same time to reach its starting point as a beam going around
right-wise. The time delay is zero:

1 1
At =2 ( — ) =0. (2.198)
w1 w1
Egs. (2.196) and (2.197) do not exist in special relativity because in the MH
theory electromagnetism is a nineteenth century entity superimposed on a space-
time that is flat and static and never rotates.
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Now consider the left - wise rotating beam (2.196) and spin the platform
mechanically in the same left-wise direction at an angular frequency 2. The
result is an increase in the angular frequency of the rotating tetrad as follows:

wy — wy + . (2.199)

Similarly consider the left wise rotating beam (2.196) and spin the platform
right-wise. The result is a decrease in the angular frequency of the rotating
tetrad:

w1 — W1 — Q. (2200)

The time delay between a beam circling left-wise with the platform, and one
circling left-wise against the platform is therefore:

1 1
At =2 - 2.201
Tr(o.}l—Q w1—|—Q> ( 0)

which is the Sagnac effect. The angular frequency w; can be calculated from
the experimental result [1,12]:

4Q 470
If
Q< w (2.203)
it is found that
c
wp=_=cnK (2.204)

Q.E.D. Therefore the Sagnac effect is another result of a spin connection, which
in this case can be thought of as the potential (2.196) itself.

Similarly, phase effects such as the Tomita Chao effect were also described
straightforwardly with the same basic concept during the development of ECE
theory.

In order to describe the effects of gravitation on optics and spectroscopy a
dielectric version of the ECE theory was developed and implemented to find
that the polarization of light is changed by light grazing a very massive object
such as a white dwarf, and the dielectric theory was also used to demonstrate
the effect of gravitation on the Sagnac effect [1,12]. The standard model is not
capable of such descriptions without the use of adjustable parameters in such
transient twentieth century artifacts as superstring theory, now being essentially
discarded as being untestable experimentally. ECE is far simpler and is also
capable of describing data such as the Faraday disk generator and the Sagnac
effect straightforwardly. During the course of its development the ECE theory
has also been applied to the interaction of three fields [27] and the effect of
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gravitation on the inverse Faraday effect and its resonance counterpart, known
as radiatively induced fermion resonance (RFR).

The interaction of fields in ECE theory is controlled by Cartan geometry, in
the particular case of the interaction of gravitation and electromagnetism, there
is a very small homogeneous charge current density in the Gauss law and in the
Faraday law of induction. For all practical purpose in the laboratory this is not
observable. However, it has been shown in ECE theory to result in changes of
polarization and other optical properties of light grazing a white dwarf, which
is an object many times heavier than the sun. Such changes of polarization are
not described by the Einstein Hilbert equation.

2.8 Radiative Corrections in ECE Theory

During the course of development of ECE theory the anomalous g factor of the
electron and Lamb shifts in hydrogen and helium have been explained satisfac-
torily in a far simpler manner than the standard model and using the causal and
objective principles of Einsteinian relativity. The usual approach to the radia-
tive corrections in quantum electrodynamics (QED) has been criticized [1,12],
especially its claim to accuracy. The QED method of the standard model re-
lies on assumptions that are not present in Einsteinian relativity, and also on
adjustable parameters. The Feynman method consists of assuming the exis-
tence of virtual particles and on a perturbation method of quantum mechanics
which sums thousands of terms of increasing complexity. There is no proof that
this sum converges. It is also claimed in standard model QED that the accu-
racy of the fine structure constant is reproduced theoretically to high precision.
However the fine structure constant in S.I. units is:

62

“= 4mrehce

(2.205)

and its accuracy is limited by the experimental accuracy of the Planck constant.
There is no way that a theory can produce a higher accuracy than experiment,
and the theoretical value of the g factor of the electron is based on the value
of the fine structure constant. Thus g cannot be known with greater accuracy
than that of the fine structure constant. These surprising inconsistencies in the
standard model data were discussed in detail [1,12] and a brief summary is given
here.

The fundamental constants of physics are agreed upon by treaty and are
given on sites such as that of the National Institute for Standards and Technol-
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ogy (www.nist.gov). This site gives:

g(exptl.) = 2.0023193043718 =+ 0.0000000000075 (2.206)
fi(exptl) = (6.6260693 & 0.0000011) x 10734 Js (2.207)
e(exptl.) = (1.60217653 4 0.00000014) x 10~*°C (2.208)
c(exact) = 2.99792458 x 108ms~! (2.209)
eo(exact) = 8.854187817 x 10~ 2 1C?*m ™! (2.210)
po(exact) = 4m x 107 "Js?C~2m ! (2.211)

with relative standard uncertainties. With a sufficiently precise value of:
7 = 3.141592653590 (2.212)

gives, from these data:

o = 0.007297(34) (2.213)

where the result has been rounded off to the relative standard uncertainty of
the Planck constant h. This is an experimentally determined uncertainty. The
theoretical value of g from ECE theory was found by using Eq. (2.213) in

a2
g=2 (1 + E> (2.214)
and gives:
g(ECE) = 2.002323(49). (2.215)

The experimental value of g is known to a much higher precision than the
experimental value of h, and is:

g(exptl.) = 2.0023193043718 4 0.0000000000075. (2.216)
It is seen that:
g(ECE) — g(exptl.) = 0.000004 (2.217)

which is about the same order of magnitude as the experimental uncertainty of h.
Therefore it was shown that ECE theory gives g as precisely as the experimental
uncertainty in h will allow. The standard model literature was found to be
severely self-inconsistent. For example a much used text by Atkins [29] gives h
as:

h (Atkins) = 6.62818 x 1073*Js (2.218)
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without uncertainty estimates. This is different in the fourth decimal place from
the NIST value given above, a discrepancy of four orders of magnitude. Despite
this, Atkins gives:

a(Atkins) = 0.00729351 (2.219)

which claims to be different from Eq. (2.213) only in the sixth decimal place.
Atkins gives the g factor of the electron as:

g(Atkins) = 2.002319314 (2.220)

which is different from the NIST value in the eighth decimal place, while it is
claimed at NIST that g(exp) from Eq. (2.216) is accurate to the twelfth decimal
place. So there is another discrepancy of four orders of magnitude. Ryder on
the other hand [18] gives:

g(Ryder) = 2.0023193048 (2.221)

which is different from the NIST value in the tenth decimal place, a discrepancy
of two orders of magnitude. One could try to explain these discrepancies by
increasing accuracy of experimental method over the years, but there is no way
in which QED can reproduce g to the tenth decimal place as claimed by Ryder.
This is easily seen from the fact that ¢ is calculated theoretically in QED from
the fine structure constant, whose accuracy is limited by h as we have argued.
There is also no way in which QED can be a fundamental theory as is often
claimed in the standard model literature. This is again easily seen from the fact
that QED has several assumptions extraneous to the theory of relativity [1,12].
Examples are virtual particles, acausality (the electron can do what it likes,
g backwards in time and so on), dimensional regularization, re-normalization
and the hugely elaborate perturbation method known as the Feynman calculus.
It is not known whether the series expansion used in the Feynman calculus
converges. Its thousands of terms are just worked out by computer in the hope
that it converges. In summary:

g(Schwinger) = 2 4+ /7 = 2.002322(8) (2.222)

2
g(ECE) =2 + o/ + 8% = 2.002323(49) (2.223)
glexptl.) = 2.0023193043718 + 0.0000000000075 (2.224)
g(Atkins) = 2.002319314 = (?) (2.225)
g(Ryder) = 2.0023193048 £ (?) (2.226)

and there is little doubt that other textbooks and sources give further different
values of g to add to the confusion in the standard model literature. So where
does this analysis leave the claims of QED? The Wolfram site claims that QED
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gives g using the series
2 3 4
g=2(1+2 —0328 (3) 11181 (3) ~ 1,510 (9)
27 27 T m

(2.227)
o 4393 % 10712)

which is derived from thousands of Feynman diagrams (sic). However, the

numbers in Eq. (2.227) all come from the various assumptions of QED, none

of which are present in Einsteinian relativity. The latter is causal and objective

by construction. An even worse internal inconsistency emerges within the NIST

site itself, because the fine structure constant is claimed to be:

a(NIST) = (7.297352560 4 0.000000024) x 103 (2.228)

both experimentally and theoretically. This cannot be true because Eq. (2.228)
is different in the eighth decimal place from Eq. (2.213), which is calculated
with NIST’s OWN data, Egs. (2.206) to (2.211). So the NIST site is internally
inconsistent to several orders of magnitude, because it is at the same time
claimed that Eq. (2.228) is accurate to the tenth decimal place. From Eq.
(2.207) however it is seen that h at NIST is accurate only to the sixth decimal
place, which limits the accuracy of « to this, i.e. four orders of magnitude less
precise than claimed.

The theoretical claim for the fine structure constant at NIST comes from
QED, which his described as a theory in which an electron emits a virtual
photon, which in turn emits virtual electron positron pairs. The virtual positron
is attracted and the virtual electron is repelled from the real electron. This
process results in a screened charge, a mathematical concept with a limiting
value defined as the limit of zero momentum transfer or infinite distance. At
high energies the fine structure constant drops to 1/128, and so is not a constant
at all. It cannot therefore be claimed to be precise to the relative standard
uncertainty of Eq. (2.228), taken directly from the NIST website itself. There
is therefore no direct way of proving experimentally the existence of virtual
electron positron pairs, or of virtual photons. The experimental claim for the fine
structure constant at NIST comes from the quantum Hall effect combined with
a calculable cross capacitor to measure standard resistance. The von Klitzing
constant:

R, = g = %(sic) (2.229)
is used in this experimental determination. However, this method is again lim-
ited by the experimental accuracy of h. The accuracy of e is only ten times
better than A from NIST’s own data, and R, cannot be more accurate than h.
If o were really as accurate as claimed in Eq. (2.228), both h and e would have
to be this accurate experimentally, and this is obviously not true.

In view of these severe inconsistencies in the standard model and in view of
the many ad hoc and indeed unprovable assumptions of QED, it is considered
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that the so called “precision tests” of QED are of no utility and no meaning.
These include the g factor of the electron, the Lamb shift, the Casimir effect,
positronium, and so forth.

The ECE theory of these radiative corrections therefore set out to reproduce
what is really known experimentally in the simplest way. These methods are of
course those of William of Ockham and Francis Bacon. In the non-relativistic
quantum approximation to ECE theory the Schrédinger equation was modified
as follows [1,12]:

P, «a a? e? (1 1
—%V (27T + 1671'2> V= 4meg (r 4 r(vac)) v (2230)

in which the effect of the vacuum potential is considered to be a shift in the
electron to proton distance for each orbital of an atom or molecule, in the
simplest case atomic hydrogen (H). Computer algebra was used to show that:

r(vac)(2s) r(vac)(2ps,cos0=1) 1 h 1
r+ (r + r(vac)) B r(r + r(vac)) A mer? (2.231)

so that the simple ECE method of Eq. (2.230) gives the correct qualitative
result observed first by Lamb in atomic H. This is known as the Lamb shift.
Computer algebra was used to show that the ECE Lamb shift is:

1 a h\1
AE={(— 2" )2 200353 cm ™! (2.232)
1673/2 ame ) 7

in the approximation in which the angular dependence if the Lamb shift is not

considered.
The potential energy of the unperturbed H atom in wave-numbers is:

__« 2.2
V=2 (2.233)

and the vacuum perturbs this as follows:

o
= 2.234
v r + r(vac) (2:234)

So the change in potential energy due to the vacuum (i.e. the radiative correc-
tion) is positive valued as follows:

1 1
AV=V-V=al-—-—]. (2.235)
r 1+ r(vac)

This equation was obtained by assuming that the Schréodinger equation of H in
the presence of the radiative correction due to the vacuum is, to first order in
o

h? e?
2m

(1 + %) V2 — ¥ =Ey (2.236)

dmegr
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and that this is equivalent to:

Iy G W= E (2.237)
2m 4eg(r + r(vac)) ' '

It was assumed that r(vac) is small enough to justify using the analytically
known unperturbed wave-functions of H (1)) to a good approximation. So:

¥~ 1o (2.238)

and:

9, _  Ammc (1 1
Vo = h (r r+r(vac)> Yo- (2.239)

Using computer algebra this approximation gives [1,12]:

1 1 1 hn1
r+rop(vac)  r+ros(vac) 232 mer?’

(2.240)

The change in potential energy due to the radiative correction of the vacuum is
thus:

a "1
AV = ———— 2.241
273/2 me r? ( )
and the change in total energy is:
r 1 ah)\1
AE = AV =(——pr——)-=0.0353 cm™! 2.242
2n2a (167r3/2 a mc) r an ( )
which is the Lamb shift of atomic H. Here:
r=1.69x10""m (2.243)
From Eq. (240):
ros(vac) — rap(vac) _ 1 ii (2.244)
(r + rop(vac))(r + ros(vac))  2w3/2 mer?
Eq. (238) implies:
T3> rog(vac) ~ rop(vac) (2.245)
so in this approximation Eq. (2.244) becomes:
_ L A 2.246
ros(vac) — rop(vac) = 37373 e (2.246)
ie.
_ L A 2.247
TQS(VaC> — TQP(VaC) = W% ( . )
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where the standard Compton wavelength is:

h
— =2.426 x 107 ?m. (2.248)
mc

Thus we arrive at:
ros(vac) — rop(vac) = 3.48 x 10~ ¥m. (2.249)

This is a plausible result because the classical electron radius is:

1 2
r(classical) = Fﬁo% =2818 x 107 %m (2.250)
and the Bohr radius is:
a=5292 x 10~ m. (2.251)

So the radiative correction perturbs the electron orbitals by about ten times the
classical radius of the electron and by orders less than the Bohr radius. The
ECE theory also shows why the Lamb shift is constant as observed because for
a given orientation:

cosf =1 (2.252)

the shift is determined completely by 1/r within a constant of proportionality
defined by:

__l ah
T 3973/2 g me’

¢ (2.253)

The angular dependence of the Lamb shift in H was also considered [1,12] and
the method extended to the helium atom. Finally, consideration was given to
how radiative corrections may be amplified by spin connection resonance.

Therefore in summary, the accuracy of the fine structure constant is deter-
mined experimentally by that of the Planck constant h. The LEAST accurately
known constant determines the accuracy of the fine structure constant, as should
be well known. There is no way that any theory can determine the fine struc-
ture constant more accurately than it is known experimentally. Therefore ECE
theory sets out to use the experimental accuracy in a. The latter is determined
by the accuracy in h as argued. This was done as simply as possible in accor-
dance with Ockham’s Razor. QED on the other hand is hugely elaborate, and
its claims to be an accurate fundamental theory are unjustifiable. There can be
no experimental justification for the existence of virtual particle pairs because of
the gross internal inconsistencies in data reviewed in this section. Additionally,
there are several ad hoc assumptions in the theory of QED itself.
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2.9 Summary of Advances Made by ECE Theory,
and Criticisms of the Standard Model

In this section a summary is given of the main advances of ECE theory over the
past five years since inception in Spring 2003, and also a summary of implied
criticisms of the current model of physics known as the standard model.

The major advantage of ECE theory is that it relies on the original principles
of the theory and philosophy of relativity, without any extraneous input. This
approach adheres therefore to the Ockham Razor of philosophy, the simpler the
better. It also adheres to the principles of Francis Bacon, that every theory is
tested experimentally, and not against another theory.

1. The inverse Faraday effect. This is described by the spinning of space-time
and the B(3) field (see www.aias.us Omnia Opera) from first principles.
In the standard model the effect cannot be described self consistently and
cannot be described without an ad hoc conjugate product of non-linear
optics. The latter is introduced phenomenologically in the standard model
of non-linear optics, a theory of special relativity. In ECE theory the B(3)
spin field indicates that optics and spectroscopy are parts of a generally
covariant unified field theory (GCUFT).

2. The Aharonov Bohm effects. These are described self consistently in
ECE through the spin connection using the principles of general relativ-
ity. As shown in this review paper, the standard model description of the
Aharonov Bohm (AB) effects is at best controversial and at worst erro-
neous. A satisfactory description of the AB effects in ECE leads to a new
understanding of quantum entanglement and one photon interferometry.

3. The polarization change in light deflected by gravitation. This is not
described in the Einstein Hilbert (EH) equation of the standard model
because it is a purely kinematic equation relying on the gravitational at-
traction between a photon and a mass M, for example the solar mass. In
ECE all the optical effects of gravitation are developed self consistently
from the Bianchi identity of Cartan geometry.

4. The Faraday disk generator. This is described in ECE through the Car-
tan torsion of space-time introduced by mechanical spin, this concept is
missing entirely from the standard model, which still cannot describe the
1831 Faraday disk generator.

5. The Sagnac effect and ring laser gyro. These are described again by the
Cartan torsion of space-time introduced by spinning the platform of the
Sagnac interferometer. The Sagnac effect is very difficult to understand
using Maxwell Heaviside theory, but is easily described in ECE theory.
The latter offers a far simpler description than other available attempts
at explaining the Sagnac effect of 1913.
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10.

11.

12.

13.

. The velocity curve of a spiral galaxy. This is described straightforwardly

and simply in ECE theory by introducing again the concept of constant
space-time torsion. The spiral galaxies main features cannot be described
at all in the standard model. This is because the latter relies on an ad
hoc “dark matter” that originates in the EH equation. The latter is self
inconsistent as argued in this review paper.

. The topological phases such as the Berry phase. These are derived in

ECE from first principles, and are rigorously inter-related. In the stan-
dard model their description is incomplete, and in the case of the electro-
magnetic phase, erroneous.

. The electromagnetic phase. This is described self consistently in terms of

the B(3) spin field of ECE theory using general relativity. In the standard
model the phase is incompletely determined mathematically, and violates
parity in simple effects such as reflection.

. Snell’s law, reflection, refraction, diffraction, interferometry and related

optical effects. These can be described correctly only in a GCUFT such
as ECE. In the standard model the theory of reflection for example, does
not fit with parity inversion symmetry due to the neglect of the B(3) spin
field.

Improvements to the Heisenberg Uncertainty Principle. Various experi-
ments have shown that the principle is incorrect by orders of magnitude,
in ECE theory it is developed with causal and objective general relativity
and the concept of quantum of action density.

The unification of wave mechanics and general relativity. This has been
achieved straightforwardly in ECE theory through the use of Cartan ge-
ometry. In the standard model it is still not possible to make this basic
unification. The Dirac, Proca and other wave equations are limits of the
ECE wave equation, which is derived easily from the tetrad postulate of
Cartan. So ECE allows the description of the effect of gravitation on such
equations, and on such phenomena as the Sagnac effect. This is again not
possible in the standard model.

Description of particle interaction. This description is achieved with simul-
taneous ECE equations without assuming the existence either of virtual
particles or of the Higgs mechanism. The Higgs boson still has not been
verified experimentally, and its energy is not defined theoretically.

The photon mass. The Proca equation is derived easily from Cartan ge-
ometry using the simple hypothesis that the potential is proportional to
the Cartan tetrad. In the standard model the Proca equation is directly
incompatible with gauge invariance, a fundamental self-inconsistency of
the standard model, one of many self - inconsistencies.
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14.

15.

16.

17.

18.

19.

20.

Replacement of the gauge principle. The gauge principle is not tenable
in a GCUFT such as ECE because the potential in ECE is physically
meaningful as in Faraday’s original electrotonic state. Abandonment of
the gauge principle allows a return to the earlier concepts of relativity
without introducing an ad hoc and abstract internal space as in Yang
Mills theory. In ECE theory the tetrad postulate is invariant under the
general coordinate transform, and this is the principle that governs the
potential field in ECE.

Description of the electro-weak field without the Higgs mechanism. This
becomes possible in a relatively straightforward manner by using simulta-
neous ECE equations. The Higgs mechanism is ad hoc, and to date un-
proven experimentally, indeed it is unprovable because an energy cannot
be assigned to the Higgs boson. The Higgs boson, having no well defined
energy, cannot be proven experimentally by particle collision methods,
however powerful the accelerator. No sign of a Higgs boson was found at
LEP, and to date no sign at the CERN heavy hadron collider.

Description of neutrino oscillations. This is a relatively simple exercise
in ECE theory but in the standard model neutrino oscillations remained
deeply controversial for years because of adherence to the assumption that
the neutrino had no mass. In ECE all particles have mass - a fundamental
requirement of relativity.

The generally covariant description of the laws of classical electrodynam-
ics. These laws become laws of general relativity and a unified field the-
ory, they are no longer laws of a Minkowski space-time as in the standard
model. The concept of spin connection and spin connection resonance
make important advances and potentially open up new sources of energy.

Derivation of the quark model from general relativity. This has been
achieved in ECE theory by using an SU(n) representation space in the
wave and field equations. In the standard model the quark theory is one of
special relativity. QCD relies on ad hoc concepts such as re-normalization,
which as argued in section 2.8, are not internally consistent with data. The
situation in QCD is worse than that in QED.

Derivation of the quantum theory of electrodynamics. This is achieved
using the wave equation and the ECE hypothesis, resulting in a generally
covariant version of the Proca equation with non-zero photon mass. In so
doing a minimum particle volume is always present, so there are no point
particles and no need for re-normalization. Feynman’s QED is abandoned
as described in Section 2.8.

The origin of particle spin. This is traced to geometry and particle spins of
all kinds are successfully incorporated into general relativity. This is not
possible with the EH equation, which has been shown to be fundamentally
flawed.
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21.

22.

23.

24.

25.

26.

27.

28.

Development of cosmology. The major advantage of considering the Car-
tan torsion becomes abundantly clear in cosmology, in particular the ex-
planation of the spiral galaxies. Cosmology based on the EH equation has
been shown to be meaningless in several different ways.

No Singularities. This is a flawed concept introduced by incorrect solutions
of the EH equation. The latter is itself inconsistent with the Bianchi
identity. In ECE theory the concept of Big Bang is replaced with the
steady state universe with local oscillations. Similarly there are no black
holes and no dark matter. Applications of experimentally untestable string
theory to these concepts multiplies the heavily criticized obscurantism of
modern physics.

Explanation of the red shift. This is a simple optical effect in ECE theory,
there can be different red shifts in equidistant objects. ECE also offers a
new explanation of the background radiation if indeed it is not an artifact
of the Earth’s atmosphere as some scholars now think.

Spin connection resonance. This concept is made possible in ECE and has
been offered as an explanation of Tesla’s well known giant resonances and
similar reports of over a century of work. The latter cannot be explained
in the standard model yet is potentially a source of major new energy.

Spinning Space-time. This is a key new concept of electrodynamics, akin
to curving space-time in gravitation. ECE has made the major discovery
that the two concepts are linked ineluctably in relativity, and this has led
to the abandonment of the EH equation. A suggested replacement of the
equation has been made in recent work.

Counter gravitation. It has been shown that this is feasible only by using
resonance methods based again on the spin connection and the interaction
of gravitation and electromagnetism. It needs a GCUFT such as ECE to
begin to describe this interaction of the fundamental fields of force.

Gravitational Dynamics. These are developed in ECE in the same way
as electrodynamics. For example it is relatively easy to show that there
is a gravitational equivalent of the Faraday law of induction, as indeed
observed recently. A new approach to the derivation of the acceleration
due to gravity has also been made possible, an approach based on the
rigorous Bianchi identity given by Cartan.

Quantum Entanglement. These well known quantum effects can be un-
derstood using the spin connection of ECE in a similar way to the AB
effects. Similarly the argument can be extended to such phenomena as
one photon Young interferometry. In the standard model they are very
difficult to understand because of the use of a Minkowski space-time with
no connection. In the standard model these are mysterious effects with
many offered explanations, none convincing.
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29.

30.

31.

32.

33.

34.

35.

36.

Superconductivity and related fields. The equations governing the behav-
ior of classes of materials are all derived in ECE from geometry, so there
is an overall self-consistency which is often missing in the standard model.
For example plasma, semiconductors, superconductors, and so forth.

Quantum Field Theory. This is developed in ECE entirely without he use
of string theory or super-symmetry. String theory in particular has been
heavily criticized because it cannot be tested experimentally and makes
no new predictions at all. Such matters as photon mass theory, canonical
quantization, and creation annihilation operator theory are all improved
by ECE theory.

Radiative Corrections. These are understood in a far simpler way in ECE
theory as discussed in Section 2.8. The claims of QED theory have been
shown to be false by several orders of magnitude, and the complacency of
the standard physics community heavily criticized thereby.

Fermion Resonance. New methods of detecting and developing fermion
resonance have been developed and it is shown that such resonance can be
induced without the use of magnets. This method is known as radiatively
induced fermion resonance (RFR). It has been clearly understood to be
due to the B(3) field.

Ubiquitous B(3) Field. It has been shown that the B(3) field is the one
responsible for the general relativistic description of the electromagnetic
phase, so it occurs throughout optics and spectroscopy, in everyday phe-
nomena such as reflection.

Fundamental Advances in Geometry. In the course of developing ECE
theory it has been shown that there is only one Bianchi identity, not two
unrelated identities used in the standard model. It has also been shown
rigorously in many ways that the Bianchi identity has a Hodge dual. These
properties lead to field equations with duality symmetry. Such a symmetry
is not present in the standard model.

Self Consistency of Cartan’s geometry. This has been tested in many
ways, and it has been shown that the tetrad postulate is rigorously self
consistent and fundamental to physics. Numerous tests of self consistency
have been made.

Development of Gravitational Relativity. It has been shown that the cor-
rect description of gravitation requires the Bianchi identity of Cartan,
which links torsion to curvature. The Bianchi identity used by Einstein
has been shown to be incomplete, and using computer algebra, it has been
shown that the EH equation is inconsistent with the use of a Christoffel
connection and symmetric metric. It has also been shown that claimed
solutions of the EH equation are often incorrect mathematically. Finally
it has been shown that the Ricci flat space-time is incompatible with the
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Einsteinian equivalence principle. Therefore the standard model literature
has to be read with considerable caution. Many claims of the standard
model have not stood up to scrutiny, whereas ECE has developed strongly.
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2.10 Appendix 1: Homogeneous Maxwell Heavi-
side Equations

In the first of several technical appendices it is shown how to translate the
homogeneous Maxwell Heaviside (MH) from tensor to vector notation, giving
details that are rarely found in textbooks. In tensor notation the equation is:

9, F" =0 (2.1)
and involves the Hodge dual of the 4 x 4 field tensor, defined as follows:

~ 1
= ielw[wF‘”’. (2.2)

Indices are raised using the Minkowski metric:

v — g F, (23)
where:
1 0 0 0
0O -1 0 0
_ v _
0 0 0 -1

Therefore the Hodge dual is:

0 ¢BY ¢B? B3
—cB! 0 —E3  E?

S
= —cB*  E3 0 -—F! (2:5)
—cB® —-E?* FE! 0
For example:
~ 1
For = 5(601231723 +eo132FP?) = F? (2.6)
and
FOL— 001 — . (2.7)

The homogeneous laws of classical electrodynamics are the Gauss law and
Faraday law of induction. They are obtained as follows by choice of indices.
The Gauss law is obtained by choosing:

v=20 (2.8)
and so
FY + 0, F? 4 05 F* = 0. (2.9)
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In vector notation this is

V-B=0. (2.10)
The Faraday law of induction is obtained by choosing:

v=12,3 (2.11)

and is three component equations:

OoFO' + 0, F2 4+ 9;F3 =0 (2.12)
QF% + 8, F'2 + 95F%2 =0 (2.13)
O F* + 0 F" + 0,F* = 0. (2.14)

These can be condensed into one vector equation, which is

0B

The differential form, tensor and vector notations are summarized as follows:

AANF=0—8,F" =0—-V-B=0 (2.16)
OB
E+-"=0
V x +6t

The homogeneous laws of classical electrodynamics are most elegantly repre-
sented by the differential form notation, but most usefully represented by the
vector notation.
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2.11 Appendix 2: The Inhomogeneous Equations

The inhomogeneous laws are the Coulomb law and the Ampére Maxwell law.
In tensor notation they are condensed into one equation:

1
OuF™ = =" (2.1)

where the charge current density is:

J
JV=1|p, — 2.2
(v7) (22)
and where the partial derivative is:
190 90 0 0
9 == = 2 = 2.3
H (c&t’@X’aY’aZ) (2:3)
The field tensor is:
0 _El _E2 _E3 0 FOI F02 F03
v _ E! 0 —cB3  ¢B? _ FO o F12 pi3
— | E? ¢B® 0 —c¢B' | T | F? F2' (o F?
E3 —c¢B? B! 0 30 g3l g3z
(2.4)

and in S.I. units:

1
EQo = sz (25)

In this notation:
Ex = E'=F'
By = B> = %, (2.6)
E; =E>=F%

and so on. The Coulomb law is obtained from choosing:

v=0 (2.7)
so that:
: 1
OLFY0 4 9, F?0 4 93 F30 = E—JO. (2.8)
0

In vector component notation this is:

0Bx | 9By , 9Bz _ 1
ox oy 0z &
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which in vector notation is:

v.E=2 (2.10)
€0

The Ampére Maxwell law is obtained from choosing

r=123 (2.11)
which gives three equations:
1
aOFOI + 82F21 + 83F31 _ 7J1 (212)
€0
1
OoF 4 0, F'? + 93 F3% = — J? (2.13)
€0
1
DoF " + 0, F'3 + 0, F* = —J°. (2.14)
€0

In vector component notation these are:

10Fx 0Bz 0By\ 1
S +c< v oy ) = —Jx (2.15)
19By dBx 9Bz\ 1
T ot C( 0z ax) =2’ (2.16)
10Ey 8By 0Bx\ 1
The definition of the vector curl is
7 7 k

V xB=|0/0Z 0/0Y 0/0Z (2.18)
Bx By Bz

_(0Bz 9By, (0Bz 9Bx\ ., (0By 0Bx),
“\oay oz )t \Vax "oz )T \ox T oy )™

so it is seen that the three equations (2.15) to (2.17) can be condensed into one
vector equation:
1 0FE
VxB——— =puyJ 2.19
2ot Mo (2.19)
which is the Ampére Maxwell Law. The differential form, tensor and vector
formulations of the inhomogeneous laws of standard model classical electrody-
namics are summarized as follows:

inf=L _gm - v .g-", (2.20)
€0 €0 €0
1 0F
V x B QE—HOJ
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2.12 Appendix 3: Some Examples of Hodge Du-
als in Minkowski Space-Time

In Minkowski space-time the Hodge dual of a rank two anti-symmetric tensor
(two-form) in four dimensions is defined by:

~ 1 -
F[Ll/ = ie,ul/pUFp . (21)

For example, the B(3) field is defined by:

0 0 0 0
» 0 0 —eB® 0

=10 ® o o (2.2)

[0 0 0 0 |
so its Hodge dual is:

0 0 0 ¢B® ]

~ 0 00 0

=109 00 o (2.3)
| —¢cB® 0 0 0 |

It can be seen that the Hodge dual of the B(3) field does not imply the existence
of an E(3) field, it is a re-arrangement of matrix elements. There appears to
be no experimental evidence for the existence of a radiated E(3) field. In other
words there is no electric equivalent of the inverse Faraday effect, and there is
no electric equivalent of the Faraday effect.

The radiated B(3) field is generated by the spin connection, the static mag-
netic field of the standard model is defined without the spin connection as
follows:

B=VxA. (2.4)

In tensor form the static magnetic field is:

0 0 0 0
0 —cBy ¢Byx 0
whose Hodge dual is:
0 cBx ¢By c¢By
v _ —cBx 0 0 (2.6)

0
—cBy 0 0 0
—cBy 0 0 0
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Again, the Hodge dual does not generate an electric field. In ECE theory the
magnetic field in vector notation always includes the spin connection vector as
follows:

B=VxA-wxA (2.7)

and this is true for all types of magnetic field.
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2.13 Appendix 4: Standard Tensorial Formula-
tion of the Homogeneous Maxwell Heaviside
Field Equations

The standard tensorial formulation developed in this appendix is:
8, F" = 9"F,, =0 (2.1)

and is needed as a baseline for the development of ECE theory. The field tensor
is defined as:

0 c¢B! ¢B? ¢B3
—cB! 0 —FE3 E?

=1 g2 s 0 R (2:2)
—cB® —E? FE! 0
where, in standard covariant - contravariant notation and in S.I. units:
10 0 0 0
S e S 2.
O (c@t’@X’&Y’@Z)’ (2:3)
10 0 0 0
b= e, =, ——=— 2.4
? (c@t’ 0xX' oYy’ 8Z>7 (24)
= (ct, XY, Z), (2.5)
x, = (ct,—X,-Y,-7). (2.6)

The metric and inverse metric tensors in Minkowski space-time are equal, and
are given by:

1 0 0 0
G = 9" = 8 Bl _01 8 (2.7)
0 o 0 -1
Indices are raised and lowered with the metric, for example:
ﬁuu = GYup Gvo Fro (2.8)
where
goo = 1,911 = g22 = g33 = —1 (2.9)
and so on. Therefore:
ﬁ01 = 9goo 911F01 = _ﬁm, ﬁ02 = _ﬁ027ﬁ03 = —F" (2.10)
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and so on. Therefore:

0 CBX CBY CBZ i
ﬁ'l“’ _ 7CBE 0 *EZ Ey
—CBY EZ 0 _EX ’
—CBZ _EY EX 0 i
0 7CBX 7CBY 7CBZ i
ﬁ o CBX 0 _EZ Ey
v CBY EZ 0 —EX
CBZ —Ey EX 0 1

(2.11)

If the field tensor is defined with raised indices then the Gauss law is given by:

NFY 4 9 F?0 + 03 F30 =0
ie.:
-V-B=0
and the Faraday law of induction is given by
O Fr + 0, F2L + 9,3 = 0
BoF" + 9, F'2 4 05F% =
OoF" + 01 F' + 0, F* = 0
ie.
0B

EFE+—=0.
V x +8t

In almost all textbooks the Gauss law is written as:
V- -B =0,

but the above is the rigorously correct result.
Similarly if the field tensor is written with lowered indices,

O"F,, =0

the rigorously correct result is:

~V-B=0
0B
_<VXE+at>_O

The minus signs are always omitted in textbook material.
If the field tensor is defined with indices raised:
JI/
O FM = —
€0
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where:

The totally anti-symmetric unit tensor in four-dimensions has elements:

0123 _ _ 1280 _ 2301 _ _ 3012 _ g
(l023 _ 2130 _ 3201 _ _ 0312 _ _q
(1032 _ 2103 _ 3210 _ _ 0321  _ g
(1302 _ 2013 _ 3120 _ _ 0231 _ _q

So for example:

1 ~ ~
FO1 = (60123F n 60132F32) — Fys = —Ex
1 ~ ~
F02 5 (60231F 4 O2BE ) — Fy = —Ey
1 ~ ~
F03 = (60312F n €0321F21) —Fly=—E,
1 ~
F23 5 (62301F 4 62310F10) — Fy = —cBy
1 ~
P13 = <51302F L8 OF20) — _Fyy = cBy
1 9~
P2 = (elzdoF 1 61203F03) — Fys = —cBy
Therefore:
0 —Ex by —Lz
v — EX 0 —CBZ CBY o
o EY CBZ 0 —CBX o

EZ —CBy CBX 0

The charge current density is:

J
JU: <p,c) .

The Coulomb law is:

OFY 4 0, F 4 gy = Lo _ L
€0 €0

which in vector notation is:

v.E=L
€0
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(2.23)

(2.24)

_E3
cB?
—cB!

(2.25)

(2.26)

(2.27)

(2.28)
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The Ampére Maxwell law is:
60F01 + 82F21 + 83F31 = J1/€0
80F02 + 81F12 + 83F32 = J2/€0

80F03 +81F13 +82F23 = J3/€0

ie.:
_10Bx | (0Bz 9By\ _ 1,
c ot oY 07 ) & F
1 0Fy dBx 0Bz\ 1
_cm’”<az_ax)_@h
10E, 8By 9Bx\ 1
_cat+”<ax"ay)‘%mh
which is:
1 OFE
V X B — 0725 = /J,Q J

Therefore the standard adopted is:

1
O F* = %JV — V- -E=p/e
1 0F

VxB- =% =y dJ.
% c2 Ot Ho

(2.29)
(2.30)
(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

To be precisely correct therefore, the tensorial formulation of the four laws of

electrodynamics is:

1
O F" = —Jv
€0
—0"F, =0
where:
0 -—-E' -—-E? _—E°
El 0 —cB?®  ¢B?
Fr =
E? ¢B? 0 —cB!
E3 —¢B? (B! 0
and
0 —cB! —¢B? —¢B?
Fuv _ cB! 0 —FE3 E?
o cB? E3 0 —FE!
—cB? —FE? El 0
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In free space:

0, F" =0, (2.41)
*3ﬂﬁ;w —0. (2.42)
The free space equations are duality invariant under:
F* — F,, (2.43)
ie.:
Ex < cBx,Ey < cBy,Ez < cBy. (2.44)

The Hodge dual transform is:
v 1 vpo -
Fry = 56” P9 Fper (2.45)

and can be summarized as:

-0'F,,=0 9,F"=0

V-B=0 V-E=0
oB < > 1 oE
—+VXE=0 VXB-——=
az" % ¢ ot

Figure 2.3: Homogeneous ECE Field Equation.

The presence of matter and charge-current density breaks the duality sym-
metry, or duality invariance.

2.14 Appendix 5: Illustrating the Meaning of the
Connection with Rotation in a Plane

Consider the clockwise rotation in a plane of a vector V! to V? as in Fig. 2.1.
This rotation is carried out by moving the vector and keeping the frame of ref-
erence fixed. This process is equivalent to keeping the vector fixed and rotating
the frame of reference anti-clockwise through an equal angle . In Cartesian
coordinates (Fig. 2.1):

Vi=Vii4+ Vg (2.1)

V? =V23i+VZj (2.2)
where:

Vi =1v2, (2.3)

V= (Vi *+ V3 )2, (2.4)

Nl

V= (V22 + 17 )8, (2.5)
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V2

X

Figure 2.4: Rotation of a Vector in a Plane.
This is a rotation in which the frame is fixed, i.e. the Cartesian unit vectors ¢
and j do not change. The rotation could equally well be represented by:

V! =Vyii + Wiy, (2.6)

V2= Vyxis + Wi, (2.7)

and in this case the vector is fixed and the frame rotated anti-clockwise. We
now have:

V= V2] = (V% + 1) (2:8)
because:
R (2.9)
J1°J1=J2-32=1
The invariance under rotation of the complete vector field is true in both cases:

a) V2=V + W =VZ&+12?=v?*

b) V=V +V3=V* (2.10)
The rotation can also be represented by:
Vi cosf sinf 0 V2
V¢ | = | —sinf cosf 0 Vi (2.11)
vV} 0 0 1 V2
ie.:
Vy = VZcos+ Visinf (2.12)
Vy = —VZsin + V3% cos 6 (2.13)
Vi =V3. (2.14)

These equations are usually interpreted as the vector rotated clockwise with
fixed frame. However they are also true for a fixed vector and frame rotated
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anti-clockwise. So this is an example of the frame itself moving. Therefore a
connection can be defined because the connection determines how the frame
itself moves. The general rule for covariant derivative is:

D, VF =9,V +TH, VA (2.15)

This equation means that D, acting on V* is the four derivative J, plus the
term I'* )\VVA. The three index symbol is referred to as “the connection”, and
describes the movement of the frame itself. The latter produces, for a given v:

Ut =1V (2.16)

It is seen that Eq. (2.11) is an example of Eq. (2.16) in three dimensions, X, Y,
and Z. So for a rotation of the frame anti-clockwise in three dimensions about
the Z axis the matrix is the rotation matrix:

cosf sinf O
', = | —sinf cosf 0 |. (2.17)
0 0 1

Thus:
I, =cosf, T, =sinf, Ty =0,
% = —sinf, %, = cosh, %, =0, ;. (2.18)
) =0,1%=0T%=1
for each v. Summation over repeated indices is used in Eq. (2.16) so:
Ul =T vi41rhLv2 ThvE
U? =T% V! 4+ T2,V + T2, V3 (2.19)
U3 —_ F31V1 + F32v2 + F33V37

for each v. These equations (2.19) are the same as Eqgs. (2.12) to (2.14).
The covariant derivative of Eq. (2.15) in this case is therefore:

D,V# = (d+T",), V™ (2.20)
For example:

D,V =(@+1Y), v+, V2
D, V' = (0 +cosf), V! + (sinf),V? (2.21)
D,V =0,V + (cos0), V! + (sin6),V?

Thus:

Yy, = (cos®),, T, = (sinf),. (2.22)
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These connections must have the units of inverse meters and must operate in
the same way as the four derivative 0,. So it is reasonable to assume:

I}, = %cos@ d,, T = %sin@ Oy (2.23)
and

D,V = %((1 + cos0)0, V! +5in00,V?) (2.24)
If there is no frame rotation:

0=0 (2.25)
and

D,V =9,V (2.26)

This method regards the connection as an operator. It is well known that the
set is a basis set in Riemann geometry. Others possibilities consistent with the
correct dimensions of the connection are

€050 (sing), = S0 (2.27)

r

(cos®), =
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Te=d Ng®+w®y NgP

Y

a _ a a a ,b a b
T;/,V_auqu_ayqu+wubqu_wubqu

'

D,g;,=0, Links Cartan and
Tetrad Postulate Riemann Geometry

'

9,45=q5T ), —qbwl,
auqﬁ, = Q?\Fi\u_QﬁWSb

TZ,V = qg\(rﬁy_ FI)/\)J)
=457,

0%

Torsion Tensor of Riemann Geometry

Flowchart 2.1: First Cartan Structure Equation.
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DAT:=RAg#0
A A A
Rt Ry + R

vpp
. A A TOo A TOo
=0,1,= 0,1, + T, Iy, = T, T

w vp Vo pp

+0,Ih— 0, +1"A fu—T),T%

A )\ o )\ o
+gprw/ a pr+ FPUFW FWFW
£

!

T/\ _ 1’*)\ 1’*/\

0% Vi

i

T'=dNg"+w'y N

!

T=DANg

Flowchart 2.2: The Bianchi Identity.

74



CHAPTER 2. A REVIEW OF EINSTEIN CARTAN EVANS (ECE)...

DAT:=R /g

DA AT) =D AR ANq)

v

DAT*=R% Ng"

v

dNT%=RY NgP — % AT

—®» dAT=0,F.App.
dNT%=qg" NRY —w® NTP #
# RNg=wANT
BPTZV + 8yTﬁ# + aqufp
a a a
= R+ R+ Ry Sums of two-forms
—wg Th —wl Tt — 0l Tt on botil sides
ouT v =R4 - “ubfb/w ~¢— Hodge dual on both sides
aﬂFNa;u/ — A(O)(ﬁau;w _ waTbMV)
a Fam — 0, F.Ap.p. —®| Free electromagnetic field
B V-B=0,
9, F™"=0 B V><E+aalf 0

Flowchart 2.3: Homogeneous ECE Field Equation.
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DAT:=Rng

D A(DAT):=D A(RNg)

'

DAT® : =R ngb

No Sources for fields,

Y

aMFa;W — A(O)(R au/w _ waTb/w)

'

unphysical
9,7, +9,7%, +9,7, V.E=0,
- R R R VxB=L%Z,
_RZ/J«V+RZP#+RZVP c? ot
T T T G =0(FH
- wszZD - wﬁbTZu — waTfp pv ( )
~ d,F"™" =0
v _ v by Iz ’
aﬂT““ _Rau,u —waT s Rﬁpuu: 0
A

aMFa;w — A(O)(R a'u,ul/)EH

Ricci flat vaccum

'

0, F " = AO(R™ 1),

'

V-E=pse,
VXB——CE%I;::MOJ

Flowchart 2.4: Inhomogeneous ECE Field Equation.
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Homogeneous

Y

THUY — K v
DMT R .

v

DuTa;w — Rau;w

\

a a a a a a
DPTW + DVTW + DMTW = RpW+RW+RM,,p

'

DANT:=gAR

Ta Ta Ta _ pa Da Da
DPTW + D,,TW + D/,,Tl,p = RW, + R,W + RWP

'

DuTaul/ — Rau/“/

Y

KV — K [V
D, R")

v

In Homogeneous

Flowchart 2.5: The Basic Field Equations.
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No interaction
between e/m
and gravitation

V-B=0
VxE+a—B=0
ot

i

9, Fri = 0

i

auﬁ Y = A(O)(E K/LW - wﬁﬂbTbW)

i

TRV _ DK IV
D,T"" =R";

'

(T » %
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'

KUY KV K b
0, F = AOR" 1 - TP )

'

aluqutl/ = A(O)(Rﬁlulw)grav.

'

V.-E=0,
VxB—%QE:O,
¢ ot

for a Ricci flat vacuum
where (R" /") gray =0

Flowchart 2.6: Approximations to the Basic Field Equations.
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— o A
[D,, DIV’ =R’, V"~ T\, D,V

v

DAT:=RnNgq

'

(DY, D"|pV? = RP 7 V7 — D, VP

v
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'

D \ypV*=R:, V- T) D,V
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w

KUY — K [V
D, R",

v

Einstein Hilbert equation is self-inconsistent

Flowchart 2.7: Hodge Dual of the Bianchi Identity.
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Bianchi Identity [—®

DAT:=qgAR

Cartan geometry

'

Hodge dual —~ pAT.=gAR
Geometry of the
KUV o K Qv < ]

DI =R gravitational field

EH theory, Christoffel Symbol Implies
q/\R=O, T=O FZI/=FSN FZVil—‘;u
THEWY = () RNM,LLV 0
Contradiction
No Big Bang,
black holes,
or dark matter

Flowchart 2.8: Self Inconsistency of General Relativity.
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D A R =0, basis of the EH
“Second Bianchi Identity”
Rnrng=0,
8w=8yu  [<&—| Riccicyclic equationor —»= I, =17,
“First Bianchi Identity” ¢
f T,,=0
T =0, arbitary
assumption of EH theory ¢
f DHTH,;U/ =0
DAT:=Rngq
D, D]V | —» . o
D, DIV The true Bianchi identity
DAT:=R A q
D,, D ypV*° ’
Dy Dulam Hodge dual transform
; A
Incompatible with Irretrievable
the Christoffel |<&— D T :=R" " —®{ contradiction is
symbol ; EH theory
R 1M #0
Al — K
Computer Algebra for FZI/ _ rﬁu

Flowchart 2.9: IrretrievableFlaws in the Geometry of the Einstein Hilbert Field
Theory.
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principle (Crothers 2007)
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Flowchart 2.10: Irretrievable Contradiction in the Ricci Flat Condition.
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Chapter 3

Fundamental Errors in the
General Theory of Relativity

by
Stephen J. Crothers!,

Alpha Institute for Advance Study (AIAS)
(www. aias.us, www.atomicprecision.com,)

3.1 Introduction

The so-called ‘Schwarzschild solution’ is not Schwarzschild’s solution, but a cor-
ruption of the Schwarzschild/Droste solutions. In the so-called ‘Schwarzschild
solution’ the quantity m is alleged to be the mass of the source of a gravitational
field and the quantity r is alleged to be able to go down to zero (although no
valid proof of this claim has ever been advanced), so that there are two alleged
‘singularities’, one at r = 2m and another at r = 0. It is routinely asserted
that » = 2m is a ‘coordinate’ or ‘removable’ singularity which denotes the so-
called ‘Schwarzschild radius’ (event horizon) and that a ‘physical’ singularity is
at r = 0. The quantity r in the ‘Schwarzschild solution’ has never been rightly
identified by the physicists, who, although proposing many and varied concepts
for what r therein denotes, effectively treat it as a radial distance from the
claimed source of the gravitational field at the ‘origin of coordinates’. The con-
sequence of this is that the intrinsic geometry of the metric manifold has been
violated. It is easily proven that the said quantity r is in fact the inverse square
root of the Gaussian curvature of the spherically symmetric geodesic surface in
the spatial section of the ‘Schwarzschild solution’ and so does not in itself define

le-mail: thenarmis@gmail.com
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any distance whatsoever in that manifold. Thus the ‘Schwarzschild radius’ is
not a distance of any sort. With the correct identification of the associated
Gaussian curvature it is also easily proven that there is only one singularity
associated with all Schwarzschild metrics, of which there is an infinite number
that are equivalent. Thus, the standard removal of the singularity at » = 2m is
erroneous, as the alleged singularity at » = 0 does not exist, very simply demon-
strated herein. This has major implications for the localisation of gravitational
energy, i.e. gravitational waves.

It is demonstrated herein that Special Relativity forbids infinite density and
in consequence of this General Relativity necessarily forbids infinite density,
and so the infinitely dense point-mass singularity of the alleged black hole is
forbidden by the Theory of Relativity. It is also shown that neither Einstein’s
Principle of Equivalence not his Laws of Special Relativity can manifest in
a spacetime that by construction contains no matter, and therefore Ric = 0
violates the requirement that both the said Principle and Special Relativity
manifest in Einstein’s gravitational field. The immediate implication of this
is that the total gravitational energy of Einstein’s gravitational field is always
zero, so that the energy-momentum tensor and the Einstein tensor must vanish
identically. Attempts to preserve the usual conservation of energy and momen-
tum by means of Einstein’s pseudo-tensor are fatally flawed owing to the fact
that the pseudo-tensor implies the existence of a first-order intrinsic differen-
tial invariant, dependent solely upon the components of the metric tensor and
their first derivatives, an invariant which however does not exist, proven by
the pure mathematicians G. Ricci-Curbastro and T. Levi-Civita, in 1900. Al-
though it is standard method to utilise the Kretschmann scalar to justify infinite
Schwarzschild spacetime curvature at the point-mass singularity, it is demon-
strated that the Kretschmann scalar is not an independent curvature invariant,
being in fact a function of the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section, and therefore constrained by the limita-
tions set on the said Gaussian curvature by the geometric ground-form of the
line-element itself. Since it is easily proven that the said Gaussian curvature
cannot become unbounded in Schwarzschild spacetime, the Kretschmann scalar
is necessarily finite everywhere in the Schwarzschild manifold.

3.2 Schwarzschild spacetime

It is reported almost invariably in the literature that Schwarzschild’s solution
for Ric=R,,=0is (using c=1, G=1),

-1
2 2
ds? = (1 _ m) di? — (1 _ m) dr? — r? (d92 + sin? 9dg02) , (3.1)
r r

wherein it is asserted by inspection that r» can go down to zero in some way,
producing an infinitely dense point-mass singularity there, with an event horizon

86



CHAPTER 3. FUNDAMENTAL ERRORS IN THE GENERAL...

at the ‘Schwarzschild radius’ at r = 2m: a black hole. Contrast this metric with
that actually obtained by K. Schwarzschild in 1915 (published January 1916),

ds? = (1- Z)a* — (1- %)_1 dR? — R2 (d6* +sin® 0d®),  (3.2)

R:R(r):(r3+a3)%, 0<7<oo,

wherein « is an undetermined constant. There is only one singularity in Schwarz-
schild’s solution, at 7 =0, to which his solution is constructed. Contrary to the
usual claims made by the astrophysical scientists, Schwarzschild did not set
a=2m where m is mass; he did not breathe a single word about the bizarre
object that is called a black hole; he did not allege the so-called ‘Schwarzschild
radius’; he did not claim that there is an ‘event horizon’ (by any other name);
and his solution clearly forbids the black hole because when Schwarzschild’s
r=0, his R=c«, and so there is no possibility for his R to be less than «,
let alone take the value R=0. All this can be easily verified by simply read-
ing Schwarzschild’s original paper [1], in which he constructs his solution so
that the singularity occurs at the “origin” of coordinates. Thus, Eq. (3.1) for
0 < r < 2m is inconsistent with Schwarzschild’s true solution, Eq. (3.2). It is
also inconsistent with the intrinsic geometry of the line-element, whereas Eq.
(3.2) is geometrically consistent, as demonstrated herein. Thus, Eq. (3.1) is
meaningless for 0 < r < 2m.

In the usual interpretation of Hilbert’s [2—4] version, Eq. (3.1), of Schwarz-
schild’s solution, the quantity r therein has mever been properly identified.
It has been variously and vaguely called a “distance” [5, 6], “the radius” [6—
19,78,79], the “radius of a 2-sphere” [20], the “ coordinate radius” [21], the “radial
coordinate” [22-25,78,79], the “radial space coordinate” [26], the “areal radius”
[21, 24, 27, 28], the “reduced circumference” [25], and even “a gauge choice: it
defines the coordinate r” [29]. In the particular case of r=2m =2GM/c? it is
almost invariably referred to as the “Schwarzschild radius” or the “gravitational
radius”’. However, none of these various and vague concepts of what r is are
correct because the irrefutable geometrical fact is that r, in the spatial section of
Hilbert’s version of the Schwarzschild/Droste line-element, is the inverse square
root of the Gaussian curvature of a spherically symmetric geodesic surface in the
spatial section [30-32], and as such it does not of itself determine the geodesic
radial distance from the centre of spherical symmetry located at an arbitrary
point in the related pseudo-Riemannian metric manifold. It does not of itself
determine any distance at all in the spherically symmetric metric manifold. It
is the radius of Gaussian curvature merely by virtue of its formal geometric
relationship to the Gaussian curvature. It must also be emphasized that a
geometry is completely determined by the form of its line-element [33].

Since r in Eq. (3.1) can be replaced by any analytic function R.(r) [4,
30, 32, 34| without disturbing spherical symmetry and without violation of the
field equations R, =0, which is very easily verified, satisfaction of the field
equations is a necessary but insufficient condition for a solution for Einstein’s
static vacuum ‘gravitational’ field. Moreover, the admissible form of R_(r) must
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be determined in such a way that an infinite number of equivalent metrics is
generated thereby [32,34]. In addition, the identification of the centre of spher-
ical symmetry, origin of coordinates and the properties of points must also be
clarified in relation to the non-Euclidean geometry of Einstein’s gravitational
field. In relation to Eq. (3.1) it has been routinely presumed that geomet-
ric points in the spatial section (which is non-Euclidean) must have the very
same properties of points in the spatial section (Euclidean) of Minkowski space-
time. However, it is easily proven that the non-Euclidean geometric points in
the spatial section of Schwarzschild spacetime do not possess the same charac-
teristics of the Euclidean geometric points in the spatial section of Minkowski
spacetime [32,35]. This should not be surprising, since the indefinite metric
of Einstein’s Theory of Relativity admits of other geometrical oddities, such
as null vectors, i.e. non-zero vectors that have zero magnitude and which are
orthogonal to themselves [36].

3.3 Spherical Symmetry

Recall that the squared differential element of arc of a curve in a surface is given
by the first fundamental quadratic form for a surface,

ds? = E du® + 2F du dv + G dv?,

wherein v and v are curvilinear coordinates. If either v or v is constant the re-
sulting line-elements are called parametric curves in the surface. The differential
element of surface area is given by,

dA = ‘\/EG— 2 dudv‘ .

An expression which depends only on E, F'; G and their first and second deriva-
tives is called a bending invariant. It is an intrinsic (or absolute) property of a
surface. The Gaussian (or Total) curvature of a surface is an important intrinsic
property of a surface.

The ‘Theorema Egregium’ of Gauss

The Gaussian curvature K at any point P of a surface depends only
on the values at P of the coefficients in the First Fundamental Form
and their first and second derivatives. [37-39]

And so,
“The Gaussian curvature of a surface is a bending invariant.” [38]

The plane has a constant Gaussian curvature of K = 0. “A surface of positive
constant Gaussian curvature is called a spherical surface.” [39]

Now a line-element, or squared differential element of arc-length, in spherical
coordinates, for 3-dimensional Euclidean space is,

ds* = dr? +r? (d6* + sin® 0dp?) (3.3)
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0<r<oo.

The scalar r can be construed, verified by calculation, as the magnitude of
the radius vector 7 from the origin of the coordinate system, the said origin
coincident with the centre of the associated sphere. All the components of the
metric tensor are well-defined and related geometrical quantities are fixed by
the form of the line-element. Indeed, the radius R, of the associated sphere
(6 =const., p=const.) is given by,

Rp:/ dr =r,
0

the length of the geodesic C,, (a parametric curve; r= const., §=m/2) in an
associated surface is given by,

27
C, = r/o do = 27,

the area A, of an associated spherically symmetric surface (r= const.) is,

™ 2T
2 : 2
A,=r /0 sm@d@/o dp = 4mre,

and the volume V, of the sphere is,

T T 2m 4
v, :/ rzdr/ sin9d9/ dy = §7T’I“3.
0 0 0

Now the point at the centre of spherical symmetry for any problem at hand
need not be coincident with the origin of the coordinate system. For example,
the equation of a sphere of radius p centered at the point C located at the
extremity of the fixed vector 7, in Euclidean 3-space, is given by

(F_ Fo) : (F_ Fo) = p2.

If 7 and 7, are collinear, the vector notation can be dropped, and this expression
becomes,
|T’ - 7’0‘ =P

where r=|7] and r,= |F,|, and the common direction of ¥ and 7, becomes
entirely immaterial. This scalar expression for a shift of the centre of spherical
symmetry away from the origin of the coordinate system plays a significant role
in the equivalent line-elements for Schwarzschild spacetime.

Consider now the generalisation of Eq. (3.3) to a spherically symmetric
metric manifold, by the line-element,

ds® = dR} + R (d6” + sin® 0dp®) = ¥ (R,) dR2 + RZ (d6° + sin® 0d?) , (3.4)
R.=R.(r)
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R.(0) < R,(r) < oo,

where both ¥(R,) and R.(r) are a priori unknown analytic functions. Since
neither ¥(R,) nor R (r) are known, Eq. (3.4) may or may not be well-defined at
R_(0): one cannot know until ¥(R,) and R,(r) are somehow specified. With this
proviso, there is a one-to-one point-wise correspondence between the manifolds
described by metrics (3) and (4), i.e. a mapping between the auxiliary Euclidean
manifold described by metric (3) and the generalised non-Euclidean manifold
described by metric (4), as the differential geometers have explained [30]. If R,
is constant, metric (4) reduces to a 2-dimensional spherically symmetric geodesic
surface described by the first fundamental quadratic form,

ds* = R2 (d6? + sin® 0dy?) . (3.5)

If r is constant, Eq. (3.3) reduces to the 2-dimensional spherically symmetric
surface described by the first fundamental quadratic form,

ds* = r? (d6* + sin® 0dp?) . (3.6)

Although R, and r are constants in equations (5) and (6) respectively, they
share a definite geometric identity in their respective surfaces: but it is not
that of being a radial quantity, or of a distance.

A surface is a manifold in its own right. It need not be considered in relation
to an embedding space. Therefore, quantities appearing in its line-element must
be identified in relation to the surface, not to any embedding space it might be
in:

“And in any case, if the metric form of a surface is known for a
certain system of intrinsic coordinates, then all the results concern-
ing the intrinsic geometry of this surface can be obtained without
appealing to the embedding space.” [40]

Note that eqs. (3) and (4) have the same metrical form and that egs. (5)
and (6) have the same metrical form. Metrics of the same form share the
same fundamental relations between the components of their respective metric
tensors. For example, consider Eq. (3.4) in relation to Eq. (3.3). For Eq. (3.4),
the radial geodesic distance (i.e. the proper radius) from the point at the centre
of spherical symmetry (6 = const., p = const.) is,

R, R.(r) i )
Rp = / dRp = / \I’(RC(T))CZRC(T) = / \I/(RC(T))MCZT,
’ ) 0 dr

R_(0

the length of the geodesic C), (a parametric curve; R.(r) = const., 0 =m/2 ) in
an associated surface is given by,

21
C, = R,(r) / dp=2mR,(r),
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the area A, of an associated spherically symmetric geodesic surface (R.(r)) = const.)
is,

™ 2m
_p2 : _ 2
A, = Rc(r)/o sin 9d9/0 dp =47 RZ(r),

and the volume V), of the geodesic sphere is,

R, ™ 2m R, (r)
V, = /0 R%(r) dRp/0 sin 0d@ ; dp = 47 VU (R, (r))R2(r)dR,

R.(0)

" dR,
e / V¥ (R, (r))Rz(r)TC:") dr.
0
Remarkably, in relation to metric (1), Celotti, Miller and Sciama [11] make
the following false assertion:

“The ‘mean density’ p of a black hole (its mass M divided by %m“g’)
is proportional to 1/M?”

where 7, is the so-called “Schwarzschild radius”. The volume they adduce for a
black hole cannot be obtained from metric (1): it is a volume associated with
the Euclidean 3-space described by metric (3).

Now in the case of the 2-dimensional metric manifold given by Eq. (3.5)
the Riemannian curvature associated with Eq. (3.4) (which depends upon both
position and direction) reduces to the Gaussian curvature K (which depends
only upon position), and is given by [30,38,39,41-45],

K = R1212

e (3.7)

where R, 515 is a component of the Riemann tensor of the 1st kind and g =
911922 = 9pg 9y, (because the metric tensor of Eq. (3.5) is diagonal). Gaussian
curvature is an intrinsic geometric property of a surface (Theorema Egregium?);
independent of any embedding space.

Now recall from elementary differential geometry and tensor analysis that

R#VPO' = glt’)’Rjyupa
ors, ori
Rz = sz - a;; + T30k — I Tk
1

i -1 — M
“ 7 oz
; 1 0g.;

T = ——— 79 . . 23
77 2g;; Oxt’ (i #J) (3.8)

2j.e. Gauss’ Most Excellent Theorem.
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and all other I‘ék vanish. In the above, 4,5, k=1,2, ' =0, 2> = . Applying
expressions (7) and (8) to expression metric (5) gives,

1

K= Rz (3.9)
so that R,(r) is the inverse square root of the Gaussian curvature, i.e. the ra-
dius of Gaussian curvature, and hence, in Eq. (3.6) the quantity r therein is
the radius of Gaussian curvature because this Gaussian curvature is intrinsic to
all geometric surfaces having the form of Eq. (3.5) [30], and a geometry is com-
pletely determined by the form of its line-element [33]. Note that according to
Egs. (3.3), (3.6) and (3.7), the radius calculated for (3) gives the same value as
the associated radius of Gaussian curvature of a spherically symmetric surface
embedded in the space described by Eq. (3.3). Thus, the Gaussian curvature
(and hence the radius of Gaussian curvature) of the spherically symmetric sur-
face embedded in the space of (3) can be associated with the radius calculated
from Eq. (3.3). This is a consequence of the Euclidean nature of the space
described by metric (3), which also describes the spatial section of Minkowski
spacetime. However, this is not a general relationship. The inverse square root
of the Gaussian curvature (the radius of Gaussian curvature) is not a distance
at all in Einstein’s gravitational manifold but in fact determines the Gaussian
curvature of the spherically symmetric geodesic surface through any point in
the spatial section of the gravitational manifold, as proven by expression (9).
Thus, the quantity r in Eq. (3.1) is the inverse square root of the Gaussian
curvature (i.e. the radius of Gaussian curvature) of a spherically symmetric
geodesic surface in the spatial section, not the radial geodesic distance from the
centre of spherical symmetry of the spatial section, or any other distance.

The platitudinous nature of the concepts “reduced circumference” and “areal
radius” is now plainly evident - neither concept correctly identifies the geometric
nature of the quantity r in metric (1). The geodesic C,, in the spherically
symmetric geodesic surface in the spatial section of Eq. (3.1) is a function
of the curvilinear coordinate ¢ and the surface area A, is a function of the
curvilinear coordinates 6 and ¢ where, in both cases, r is a constant. However,
r therein has a clear and definite geometrical meaning: it is the inverse square
root of the Gaussian curvature of the spherically symmetric geodesic surface in
the spatial section. The Gaussian curvature K is a positive constant bending
invariant of the surface, independent of the values of § and . Thus, neither C
nor A, or the infinite variations of them by means of the integrated values of 0
and ¢, rightly identify what r is in line-element (1). To illustrate further, when
0 = constant, the arc-length in the spherically symmetric geodesic surface is
given by:

@
s=s(p) = r/ sinfdp =rsinf e, 0<¢ <2,
0
where r = constant. This is the equation of a straight line, of gradient ds/dy =

rsinf. If 0 = const. = %ﬂ' then s = s(¢) = rp, which is the equation of a
straight line of gradient ds/dy = r. The maximum arc-length of the geodesic
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0 = const. = i is therefore s(2w) = 27r = C,. Similarly the surface area is:

0 re
A:A((p,ﬁ):r2/ / sin@ df dp = r?¢ (1 — cos ),
0o Jo

0<p<2r, 0<0<m r=-constant.

The maximum area (i.e. the area of the entire surface) is A (27, 7) = 471> = A,
Clearly, neither s nor A are functions of r, because r is a constant, not a variable.
And since r appears in each expression (and so having the same value in each
expression), neither s nor A rightly identify the geometrical significance of r
in the 1st fundamental form for the spherically symmetric geodesic surface,
ds? = r? (d92 + sin? 0 d<p2), because r is not a distance in the surface and is
not the “radius” of the surface. The geometrical significance of r is intrinsic to
the surface and is determined from the components of the metric tensor and
their derivatives (Gauss’ Theorema Egregium): it is the inverse square root of
the Gaussian curvature K of the spherically symmetric surface so described (the
constant is K = 1/r?). Thus, C, and A, are merely platitudinous expressions
containing the constant r, and so the “reduced circumference” r =C, /27 and the

“areal radius” r=+/Ap/4m do not identify the geometric nature of r in either
metric (6) or metric (1), the former appearing in the latter. The claims by the
astrophysical scientists that the “areal radius” and the “reduced circumference”
each define [21,25,48] (in two different ways) the constant r in Eq. (3.1) are
entirely false. The “reduced circumference” and the “areal radius” are in fact
one and the same, namely the inverse square root of the Gaussian curvature of
the spherically symmetric geodesic surface in the spatial section of Eq. (3.1), as
proven above. No proponent of black holes is aware of this simple geometrical
fact, which completely subverts all claims made for black holes being predicted
by General Relativity.

3.4 Derivation of Schwarzschild spacetime

The usual derivation begins with the following metric for Minkowski spacetime
(using c=1),
ds* = dt* — dr* — r® (d6? + sin® 0dyp?) , (3.10)

0<r<oo,
and proposes a generalisation thereof as, or equivalent to,
ds® = F(r)dt* — G(r)dr® — R*(r) (d6” + sin® 0dp?) (3.11)

where F, G > 0 and r is that which appears in the metric for Minkowski space-
time, making r in Eq. (3.10) a parameter for the components of the metric
tensor of Eq. (3.11). The functions F(r), G(r), R(r) are to be determined such

that the signature of metric (10) is maintained in metric (11), at (+,—, —, —).
The substitution r* = R(r) is then usually made, to get,
ds? = W(r*)dt? — M (r*)dr** — r*? (d6? + sin® Ody?) (3.11b)
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Then the * is simply dropped, and with that it is just assumed that 0 <r < oo
can be carried over from Eq. (3.10), to get [5,8,9,21-23,26,30,33,34,36,47-55,79],

ds®> = e dt? — ePdr? — 12 (d6? + sin® 0dyp?) (3.12)
0<r<oo,

the exponential functions being introduced for subsequent ease of mathematical
manipulations. It is then required that e*(”) > 0 and e?(") > 0 be determined
so as to satisfy R, =0.

Now note that in going from Eq. (3.11b) to Eq. (3.12), it is merely assumed
that R(0)=0, making 0 < r* < oo (and hence in Eq. (3.12), 0 < r < o0),
since * = R(r): but this cannot be known since R(r) is a priori unknown [2,3].
One simply cannot treat r* in Eq. (3.11b), and hence r in Egs. (3.12) and
(3.1), as the r in Eq. (3.10); contrary to the practice of the astrophysical
scientists and their mathematician collaborators. Also note that Eq. (3.12) not
only retains the signature —2, but also retains the signature (+,—, —, —),
because e* > 0 and e¢? > 0 by construction. Thus, neither e* nor e’ can
change sign [5,48,55,79]. This is a requirement since there is no possibility
for Minkowski spacetime (eq. 10) to change signature from (+,—, —, —) to, for
example, (—, 4+, —, —).

The Standard Analysis then obtains the solution given by Eq. (3.1), wherein
the constant m is claimed to be the mass generating the alleged associated
gravitational field. Then by mere inspection of Eq. (3.1) the Standard Analysis
asserts that there are two singularities, one at r=2m and one at r=0. It is
claimed that r=2m is a removable coordinate singularity, and that r= 0 a
physical singularity. It is also asserted that r =2m gives the event horizon (the
‘Schwarzschild radius’) of a black hole, from which the ‘escape velocity’ is that of
light (in vacuo), and that » =0 is the position of the infinitely dense point-mass
singularity of the black hole, produced by irresistible gravitational collapse.

However, these claims cannot be true. First, the construction of Eq. (3.12)
to obtain Eq. (3.1) in satisfaction of R, =0 is such that neither e* nor e can
change sign, because e* > 0 and ¢” > 0. Therefore the claim that r in metric (1)
can take values less than 2m is false; a contradiction by the very construction of
the metric (12) leading to metric (1). Furthermore, since neither e* nor e can
ever be zero, the claim that » =2m is a removable coordinate singularity is also
false. In addition, the true nature of r in both Egs. (3.12) and (3.1) is entirely
overlooked, and the geometric relations between the components of the metric
tensor, fixed by the form of the line-element, are not applied, in consequence of
which the Standard Analysis fatally falters.

In going from Eq. (3.11) to Eq. (3.12) the Standard Analysis has failed to
realise that in Eq. (3.11) all the components of the metric tensor are functions of
r by virtue of the fact that all the components of the metric tensor are functions
of R(r). Indeed, to illuminate this, consider the metric,

ds* = B(R)dR? + R?*(d#* + sin® 0dy?),
B(R) > 0.
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This is the most general expression for the metric of a three-dimensional spher-
ically symmetric metric-space [30]. Now if R is a function of some parameter o,
then the metric in terms of o is,

2
ds® = B(R(o)) (ff) do? + (o) (d6? + sin® 9d?),
ag

B(R(0)) = B(o) > 0.

Relabelling the parameter o with r gives precisely the generalisation of the
spatial section of Minkowski spacetime. Now Eq. (3.11) is given in terms of the
parameter r of Minkowski spacetime, not in terms of the function R(r). In Eq.
(3.11), set G(r) = N(R(r)) (dR/dr)?, then Eq. (3.11) becomes,

2
ds* = F(R(r))dt* — N(R(r)) (CflR> dr? — R*(r) (d6* + sin® 0dp?®) , (3.11c)
r
or simply

ds® = F(R)dt* — N(R)dR* — R? (d6* + sin” 0dy?) (3.11d)

wherein R = R(r). Similarly, working backwards from Eq. (3.11b), using
r* = R(r), Eq. (3.11b) becomes,

ds® = W(R(r))dt* — M(R(r))dR*(r) — R*(r) (d6” + sin® 0dp?),  (3.11e)
or simply,
ds* = W(R)dt> — M(R)dR* — R? (d6* + sin® 0dp?)

wherein R = R(r); and in terms of the parameter r of Minkowski spacetime, this
becomes,

2
ds* = W(r)dt* — M(r) (ﬁ) dr® — R*(r) (d6* + sin® 0dy?) . (3.11f)

Writing W (r) = F(r) and G(r) = M(r) (dR/dr)? gives,
ds® = F(r)dt* — G(r)dr® — R*(r) (d6” + sin® 0dyp?)

which is Eq. (3.11). So Eq. (3.11) is a disguised form of Eq. (3.11d), and
so there is no need at all for the ‘transformations’ applied by the astrophysical
scientists to get their Eq. (3.12), from which they get their Eq. (3.1). In other
words, what the astrophysical scientists call r in their Eq. (3.1) is actually
R(r), for which they have not given any definite admissible form in terms of
the parameter r, and they incorrectly treat their R(r), labelled r in Eqs. (3.12)
and (3.1), as the r in Eq. (3.10), manifest in the miscarrying over of the range
0 <r < oo from Eq. (3.10).
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Nonetheless, R(r) is still an a priori unknown function, and so it cannot be
arbitrarily asserted that R(0) = 0; contrary to the assertions of the astrophysical
scientists. It is now quite plain that the ‘transformations’ used by the Standard
Analysis in going from Eq. (3.11) to Eq. (3.12) are rather pointless, since all
the relations are contained in Eq. (3.11) already, and by its pointless procedure
the Standard Analysis has confused matters and thereby introduced a major
error concerning the range on the quantity = in its expression (12) and hence
in its expression (1). One can of course, solve Eq. (3.11d), subject to R, =0,
in terms of R(r), without determining the admissible form of R(r). However,
the range of R(r) must be ascertained by means of boundary conditions fixed
by the very form of the line-element in which it appears. And if it is required
that the parameter r appear explicitly in the solution, by means of a mapping
between the manifolds described by Egs. (3.10) and (3.11), then the admissible
form of R(r) must also be ascertained, in which case r in Minkowski space is a
parameter, and Minkowski space a parametric space, for the related quantities
in Schwarzschild space. To highlight further, rewrite Eq. (3.11) as,

ds* = A(R,)dt* — B(R,) dR2 — R? (d6? + sin® 0dy?) (3.13)
where A(R,), B (R,), R, (r) > 0. The solution for R, =0 then takes the form,

—1
ds? = (1 + ;) dt? — (1 + g) dR? — R? (d0 + sin® 0dy?) ,

(¢ C

R. =R, (T)’
where k is a constant. There are two cases to consider; k > 0 and k£ < 0. In
conformity with the astrophysical scientists take k < 0, and so set Kk = —q,

a > 0. Then the solution takes the form,

—1
ds® = (1 — g) dt* — <1 - g) dR? — R? (d0? +sin® 0dy®),  (3.14)

C (&

Rc = Rc(’f’),

where o > 0 is a constant. It remains to determine the admissible form of R, (),
which, from Section II, is the inverse square root of the Gaussian curvature of
a spherically symmetric geodesic surface in the spatial section of the manifold
associated with Eq. (3.14), owing to the metrical form of Eq. (3.14). From
Section IT herein the proper radius associated with metric (14) is,

Rp:/ﬁ%= Ro(R.=a)+am|VR.+ VB =a] +k  (315)
RC

where k is a constant. Now for some r,,, R, (r,) =0. Then by (15) it is required
that R, (r,) =a and k= — aln/a, so

R,(r)=+R.(R, —a)+aln

\/Ri*fva RCO‘] : (3.16)
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R, = R_(r).

It is thus also determined that the Gaussian curvature of the spherically sym-
metric geodesic surface of the spatial section ranges not from oo to 0, as it does
for Euclidean 3-space, but from a2 to 0. This is an inevitable consequence of
the peculiar non-Euclidean geometry described by metric (14).

Schwarzschild’s true solution, Eq. (3.2), must be a particular case of the
general expression sought for R,(r). Brillouin’s solution [2,35] must also be a
particular case, viz.,

—1
ds2:<1— a )dt2—<1— a ) dr? — (r+ a)® (d6? + sin® 0dy?) ,

r+ao r+ao
(3.17)
0<r<oo,
and Droste’s solution [46] must as well be a particular solution, viz.,
—1
ds? = (1= 2)at? = (1= ) dr® 2 (@0 + sin? 0d?)
a <1 < 00. (3.18)

All these solutions must be particular cases in an infinite set of equivalent metrics
[34]. The only admissible form for R, (r) is [32],

1
K (r)

R.(r) = (Ir—r,|" +a™)" =

reR, neRt, r#r, (3.19)

where r, and n are entirely arbitrary constants. So the solution for R, =0 is,

—1
ds? = (1 - }‘;) dt* — <1 - g) dR? — R? (462 + sin? 0dyp?) ,

C C

1
K(r)
reR, neRT, r#r,. (3.20)

Then if r, =0, r > r,, n=1, Brillouin’s solution Eq. (3.17) results. If r, =0,
r > r,, n=3, then Schwarzschild’s actual solution Eq. (3.2) results. If r, =a,
r > r,, n=1, then Droste’s solution Eq. (3.18) results, which is the correct
solution in the particular metric of Eq. (3.1). In addition the required infinite
set of equivalent metrics is thereby obtained, all of which are asymptotically
Minkowski spacetime. Furthermore, if the constant « is set to zero, Egs. (3.20)
reduces to Minkowski spacetime, and if in addition r, is set to zero, then the
usual Minkowski metric of Eq. (3.10) is obtained. The significance of the term
|r —r,| was given in Section II: it is a shift of the location of the centre of
spherical symmetry in the spatial section of the auxiliary manifold away from the

R (r) = (r =" +a")" =
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origin of coordinates of the auxiliary manifold, along a radial line, to a point at
distance r, from the origin of coordinates. The point r, in the auxiliary manifold
is mapped into the point R, (r,) = 0 in Schwarzschild space, irrespective of the
choice of the parametric point r, in the auxiliary manifold. Minkowski spacetime
is the auxiliary manifold for Schwarzschild spacetime. Strictly speaking, the
parameter r of the auxiliary manifold need not be incorporated into metric
(20), in which case the metric is defined only on o < R, < co. I have retained
the quantity r to fully illustrate its role as a parameter and the part played by
Minkowski spacetime as an auxiliary manifold.

It is clear from expressions (20) that there is only one singularity, at the
arbitrary constant r,, where R, (r,) = a V7, Vnand R,(r,) =0V r, ¥ n,
and that all components of the metric tensor are affected by the constant a.
Hence, the “removal” of the singularity at r=2m in Eq. (3.1) is fallacious be-
cause it is clear from expressions (20), in accordance with the intrinsic geometry
of the line-element as given in Section II, and the generalisation at Eq. (3.13),
that there is no singularity at » =0 in Eq. (3.1) and so 0 < r < 2m therein is
meaningless [1-5,32,41,42,46,57,62|. The Standard claims for Eq. (3.1) violate
the geometry fixed by the form of its line-element and contradict the generalisa-
tions at Egs. (3.11) and (3.12) from which it has been obtained by the Standard
method. There is therefore no black hole associated with Eq. (3.1) since there
is no black hole associated with Eq. (3.2) and none with Eq. (3.20), of which
Schwarzschild’s actual solution, Eq. (3.2), Brillouin’s solution, Eq. (3.17), and
Droste’s solution, Eq. (3.18), are just particular equivalent cases.

In the case of k > 0 the proper radius of the line-element is,

R, :/\/% = VR, (R, + r) — xln {\/RC + R, +K} +E,
RC
RC = RC(T)7

where £ is a constant. Now for some r,, R, (r,) =0, so it is required that
R_(r,) =0 and k=r1In/k. The proper radius is then,

R, (r) = VR.(R.+ k)= rln \/R;C“Lfvﬁ R tr

R, = R.(r).

The admissible form of R_(r) must now be determined. According to Ein-
stein, the metric must be asymptotically Minkowski spacetime. Since k>0 by
hypothesis, the application of the (spurious) argument for Newtonian approxi-
mation used by the astrophysical scientists cannot be applied here. There are
no other boundary conditions that provide any means for determining the value
of k, and so it remains indeterminable. The only form that meets the condition
R, (r,) =0 and the requirement of asymptotic Minkowski spacetime is,

)

Rc(r) = ‘T _T0| = ﬁa
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reR,

where r,, is entirely arbitrary. Then R, (r,) =0V r, and R, (r,) =0V r,, and so,

if explicit reference to the auxiliary manifold of Minkowski spacetime is not de-
sired, R,(r) becomes superfluous and can be simply replaced by R, (r) = |r — r,| =p,
0 < p<oo. Thus, points in the spatial section of this spacetime have the very
same properties of points in the spatial section of Minkowski spacetime. The
line-element is again singular at only one point; p=0 (i.e. in the case of explicit
inclusion of the auxiliary manifold, only at the point 7= r,). The signature of
this metric is always (4, —, —, —). Clearly there is no possibility for a black hole

in this case either.

The usual form of Eq. (3.1) in isotropic coordinates is,

2

1—1) m\4
ds? = (72’“2&2 —(1+ =) [dr®+7r*(d0® +sin® 0dp?)]
(1 + %) ( 27“)

wherein it is again alleged that r can go down to zero. This expression has the
very same metrical form as Eq. (3.13) and so shares the very same geometrical
character. Now the coefficient of dt? is zero when 7 =m/2, which, according to
the astrophysical scientists, marks the ‘radius’ or ‘event horizon’ of a black hole,
and where m is the alleged point-mass of the black hole singularity located at
r=0, just as in Eq. (3.1). This further amplifies the fact that the quantity r
appearing in both Eq. (3.1) and its isotropic coordinate form is not a distance in
the manifold described by these line-elements. Applying the intrinsic geometric
relations detailed in Section II above it is clear that the inverse square root
of the Gaussian curvature of a spherically symmetric geodesic surface in the
spatial section of the isotropic coordinate line-element is given by,

and the proper radius is given by,

2r m?
R,(r) =7+ mln (m) -

Hence, R.(m/2) =2m, and R,(m/2) =0, which are scalar invariants necessarily
consistent with Eq. (3.20). Furthermore, applying the same geometrical analysis
leading to Eq. (3.20), the generalised solution in isotropic coordinates is [57],

2
1 @ 4
ds? = Mdﬁ = (1+ 1) [an? +n? (d6° +sin® 0i?)]
v

1
n

h=nh(r)= [|r—ro\n—|—(%)n} )
re®R, neRt, r#r,
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wherein 7, and n are entirely arbitrary constants. Then,

and so
R.(r,) = a, Rp(ro) =0, Vr,Vn,

which are scalar invariants, in accordance with Eq. (3.20). Clearly in these
isotropic coordinate expressions r does not in itself denote any distance in the
manifold, just as it does not in itself denote any distance in Eq. (3.20) of which
Egs. (3.1) and (3.2) are particular cases. It is a parameter for the Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section
and for the proper radius (i.e. the radial geodesic distance from the point at
the centre of spherical symmetry of the spatial section). The ‘interior’ of the
alleged Schwarzschild black hole does not form part of the solution space of the
Schwarzschild manifold [2,4,5,32,41,42,57,61-63|.

In the same fashion it is easily proven [32,61] that the general expression for
the Kerr-Newman geometry is given by,

A in26 2
ds” = 5 (dt —asin® 0dp?)” - SH/; (B + a?) dp — adt)” — -dR? — p?ap?
1 a a? a?
R=R) = (r=rol"+ 87, §=g\ 7 — (@ Fa?os?d), a™+q’ < 7,

2L
a=", p’=R?*+4d%cos®’0, A=R?—aR+q¢*+d°
a

re®, neRt, r#r,.

The Kruskal-Szekeres coordinates, the Eddington-Finkelstein coordinates,
and the Regge-Wheeler coordinates do not take into account the role of Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section of
the Schwarzschild manifold [64], and so they thereby violate the geometric form
of the line-element, making them invalid.

The foregoing amplifies the inadmissibility of the introduction of the New-
tonian potential into Schwarzschild spacetime. The Newtonian potential is a
two-body concept; it is defined as the work done per unit mass against the
gravitational field. There is no meaning to a Newtonian potential for a single
mass in an otherwise empty Universe. Newton’s theory of gravitation is defined
in terms of the interaction of two masses in a space for which the ‘Principle of
Superposition’ applies. In Newton’s theory there is no limit set to the number
of masses that can be piled up in space, although the analytical relations for
the gravitational interactions of many bodies upon one another quickly become
intractable. In Einstein’s theory matter cannot be piled up in a given spacetime
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because the matter itself determines the structure of the spacetime containing
the matter. It is clearly impossible for Schwarzschild spacetime, which is al-
leged by the astrophysical scientists to contain one mass in an otherwise totally
empty Universe, to reduce to or otherwise contain an expression that is defined
in terms of the a priori interaction of two masses. This is illustrated even further
by writing Eq. (3.1) in terms of ¢ and G explicitly,

2 2 -t
ds? = <c2 _ C?n) di?2 — 2 (02 — C;m) dr? — r? (d92 + sin? 9d<p2) .

The term 2Gm/r is the square of the Newtonian escape velocity from a mass
m. And so the astrophysical scientists assert that when the “escape velocity” is
that of light in vacuum, there is an event horizon (“Schwarzschild radius”) and
hence a black hole. But escape velocity is a concept that involves two bodies
- one body escapes from another body. Even though one mass appears in the
expression for escape velocity, it cannot be determined without recourse to a
fundamental two-body gravitational interaction. Recall that Newton’s Universal
Law of Gravitation is,
mM

F =-G 2

g

)

where G is the gravitational constant and r is the distance between the centre
of mass of m and the centre of mass of M. A centre of mass is an infinitely
dense point-mass, but it is not a physical object; merely a mathematical artifice.
Newton’s gravitation is clearly defined in terms of the interaction of two bodies.
Newton’s gravitational potential ® is defined as,

T F M
® = lim / ——Ldr =-G—,
which is the work done per unit mass in the gravitational field due to masses
M and m. This is a two-body concept. The potential energy P of a mass m in
the gravitational field due to masses M and m is therefore given by,

mM

)

P=md=-G

r

which is clearly a two-body concept.
Similarly, the velocity required by a mass m to escape from the gravitational
field due to masses M and m is determined by,

Separating variables and integrating gives,

dr
72’

0 Ty
/ muvdv = lim —GmM
v T

f~>oo R
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whence

where R is the radius of the mass M. Thus, escape velocity necessarily involves
two bodies: m escapes from M. In terms of the conservation of kinetic and
potential energies,

K, +P =K, +P;

whence,

Then as r F— 00, v —0, and the escape velocity of m from M is,

_ [2GM
v = 7R .

Once again, the relation is derived from a two-body gravitational interaction.

The consequence of all this for black holes and their associated gravitational
waves is that there can be no gravitational waves generated by black holes
because the latter are fictitious.

3.5 The prohibition of point-mass singularities

The black hole is alleged to contain an infinitely dense point-mass singularity,
produced by irresistible gravitational collapse (see for example [17,24, 77|, for
the typical claim). According to Hawking [80]:

“The work that Roger Penrose and I did between 1965 and 1970
showed that, according to general relativity, there must be a singu-
larity of infinite density, within the black hole.”

The singularity of the alleged Big Bang cosmology is, according to many
proponents of the Big Bang, also infinitely dense. Yet according to Special
Relativity, infinite densities are forbidden because their existence implies that
a material object can acquire the speed of light ¢ in vacuo (or equivalently,
the existence of infinite energies), thereby violating the very basis of Special
Relativity. Since General Relativity cannot violate Special Relativity, General
Relativity must therefore also forbid infinite densities. Point-mass singularities
are alleged to be infinitely dense objects. Therefore, point-mass singularities
are forbidden by the Theory of Relativity.

Let a cuboid rest-mass m have sides of length L;,. Let m have a relative
speed v < c¢ in the direction of one of three mutually orthogonal Cartesian axes
attached to an observer of rest-mass M. According to the observer M, the
moving mass m is
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and so v — ¢ = D — oo. Since, according to Special Relativity, no material
object can acquire the speed ¢ (this would require an infinite energy), infinite
densities are forbidden by Special Relativity, and so point-mass singularities
are forbidden. Since General Relativity cannot violate Special Relativity, it too
must thereby forbid infinite densities and hence forbid point-mass singularities.
It does not matter how it is alleged that a point-mass singularity is generated by
General Relativity because the infinitely dense point-mass cannot be reconciled
with Special Relativity. Point-charges too are therefore forbidden by the Theory
of Relativity since there can be no charge without mass.

It is nowadays routinely claimed that many black holes have been found. The
signatures of the black hole are (a) an infinitely dense ‘point-mass’ singularity
and (b) an event horizon. Nobody has ever found an infinitely dense ‘point-
mass’ singularity and nobody has ever found an event horizon, so nobody has
ever assuredly found a black hole. It takes an infinite amount of observer time
to verify a black hole event horizon [24,28,36,48,54,56,71]. Nobody has been
around and nobody will be around for an infinite amount of time and so no
observer can ever verify the presence of an event horizon, and hence a black
hole, in principle, and so the notion is irrelevant to physics. All reports of black
holes being found are patently false; the product of wishful thinking.

and the volume V thereof is

Thus, the density D is

3.6 Laplace’s alleged black hole

It has been claimed by the astrophysical scientists that a black hole has an escape
velocity ¢ (or > ¢, the speed of light in vacuo) [6,12-14,16,18,19,24,28,76,78,80—
82]. Chandrasekhar [24] remarked,

“Let me be more precise as to what one means by a black hole. One
says that a black hole is formed when the gravitational forces on the
surface become so strong that light cannot escape from it.

... A trapped surface is one from which light cannot escape to infin-
ity.”
According to Hawking,

“Fventually when a star has shrunk to a certain critical radius, the
gravitational field at the surface becomes so strong that the light cones
are bent inward so much that the light can no longer escape. Accord-
ing to the theory of relativity, nothing can travel faster than light.
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Thus, if light cannot escape, neither can anything else. Everything
is dragged back by the gravitational field. So one has a set of events,
a region of space-time from which it is not possible to escape to reach
a distant observer. Its boundary is called the event horizon. It coin-
cides with the paths of the light rays that just fail to escape from the
black hole.”

However, according to the alleged properties of a black hole, nothing at all

can even leave the black hole. In the very same paper Chandrasekhar made the
following quite typical contradictory assertion propounded by the astrophysical
scientists:

“The problem we now consider is that of the gravitational collapse of
a body to a volume so small that a trapped surface forms around it;
as we have stated, from such a surface no light can emerge.”

Hughes [28] reiterates,

“Things can go into the horizon (from r > 2M to r < 2M ), but they
cannot get out; once inside, all causal trajectories (timelike or null)
take us inexorably into the classical singularity at r=0.

“The defining property of black holes is their event horizon. Rather
than a true surface, black holes have a ‘one-way membrane’ through
which stuff can go in but cannot come out.”

Taylor and Wheeler [25] assert,

“.. Einstein predicts that nothing, not even light, can be successfully
launched outward from the horizon ... and that light launched out-
ward EXACTLY at the horizon will never increase its radial position
by so much as a millimeter.”

In the Dictionary of Geophysics, Astrophysics and Astronomy [78], one
the following assertions:

“black hole A region of spacetime from which the escape velocity
exceeds the velocity of light. In Newtonian gravity the escape velocity
from the gravitational pull of a spherical star of mass M and radius

R s
[2GM
Vesc = Y
R

where G is Newton’s constant. Adding mass to the star (increasing
M), or compressing the star (reducing R) increases vese.. When the
escape velocity exceeds the speed of light ¢, even light cannot escape,
and the star becomes a black hole. The required radius Ry follows
from setting vese equal to c:

2GM

c2

RBH =
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“In General Relativity for spherical black holes (Schwarzschild
black holes), exactly the same expression Rpy holds for the surface
of a black hole. The surface of a black hole at Ryy is a null surface,
consisting of those photon trajectories (null rays) which just do not
escape to infinity. This surface is also called the black hole horizon.”

Now if its escape velocity is really that of light in vacuo, then by definition
of escape velocity, light would escape from a black hole, and therefore be seen
by all observers. If the escape velocity of the black hole is greater than that
of light in vacuo, then light could emerge but not escape, and so there would
always be a class of observers that could see it. Not only that, if the black hole
had an escape velocity, then material objects with an initial velocity less than
the alleged escape velocity, could leave the black hole, and therefore be seen by
a class of observers, but not escape (just go out, come to a stop and then fall
back), even if the escape velocity is > ¢. Escape velocity does not mean that
objects cannot leave; it only means they cannot escape if they have an initial
velocity less than the escape velocity. So on the one hand it is claimed that
black holes have an escape velocity ¢, but on the other hand that nothing, not
even light, can even leave the black hole. The claims are contradictory - nothing
but a meaningless play on the words “escape velocity” [67,68]. Furthermore, as
demonstrated in Section III, escape velocity is a two-body concept, whereas
the black hole is derived not from a two-body gravitational interaction, but from
a one-body concept. The black hole has no escape velocity.

It is also routinely asserted that the theoretical Michell-Laplace (M-L) dark
body of Newton’s theory, which has an escape velocity > ¢, is a kind of black
hole [6,11,14,24,78,80] or that Newton’s theory somehow predicts “the radius
of a black hole” [25]. Hawking remarks,

“On this assumption a Cambridge don, John Michell, wrote a paper
in 1783 in the Philosophical Transactions of the Royal Society of
London. In it, he pointed out that a star that was sufficiently massive
and compact would have such a strong gravitational field that light
could not escape. Any light emitted from the surface of the star
would be dragged back by the star’s gravitational attraction before
it could get very far. Michell suggested that there might be a large
number of stars like this. Although we would not be able to see them
because light from them would not reach us, we could still feel their
gravitational attraction. Such objects are what we now call black
holes, because that is what they are — black voids in space.”

But the M-L dark body is not a black hole. The M-L dark body possesses
an escape velocity, whereas the black hole has no escape velocity; objects can
leave the M-L dark body, but nothing can leave the black hole; it does not
require irresistible gravitational collapse, whereas the black hole does; it has no
infinitely dense point-mass singularity, whereas the black hole does; it has no
event horizon, whereas the black hole does; there is always a class of observers
that can see the M-L dark body [67,68], but there is no class of observers that can
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see the black hole; the M-L dark body can persist in a space which contains other
matter and interact with that matter, but the spacetime of the “Schwarzschild”
black hole (and variants thereof) is devoid of matter by construction and so it
cannot interact with anything. Thus the M-L dark body does not possess the
characteristics of the alleged black hole and so it is not a black hole.

3.7 Black hole interactions and gravitational col-
lapse

The literature abounds with claims that black holes can interact in such sit-
uations as binary systems, mergers, collisions, and with surrounding matter
generally. According to Chandrasekhar [24], for example, who also cites S.
Hawking,

“From what I have said, collapse of the kind I have described must be
of frequent occurrence in the Galazxy; and black-holes must be present
in numbers comparable to, if not exceeding, those of the pulsars.
While the black-holes will not be visible to external observers, they
can nevertheless interact with one another and with the outside world
through their external fields.

“In considering the energy that could be released by interactions with
black holes, a theorem of Hawking is useful. Hawking’s theorem
states that in the interactions involving black holes, the total
surface area of the boundaries of the black holes can never
decrease; it can at best remain unchanged (if the conditions are
stationary).

“Another example illustrating Hawking’s theorem (and considered by
him) is the following. Imagine two spherical (Schwarzschild) black
holes, each of mass %M, coalescing to form a single black hole; and
let the black hole that is eventually left be, again, spherical and have
a mass M. Then Hawking’s theorem requires that

2
167M° > 167 lz (;M) ] — 87 M2
or

M > M/V2.

Hence the mazimum amount of energy that can be released in such
a coalescence is

M (1 - 1/&) 2 = 0.293M 2
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Hawking [80] says,

“Also, suppose two black holes collided and merged together to form
a single black hole. Then the area of the event horizon of the final
black hole would be greater than the sum of the areas of the event
horizons of the original black holes.”

According to Schutz [48],

113

Hawking’s area theorem: in any physical process involving a
horizon, the area of the horizon cannot decrease in time. ... This
fundamental theorem has the result that, while two black holes can
collide and coalesce, a single black hole can never bifurcate sponta-
neously into two smaller ones.

“Black holes produced by supernovae would be much harder to observe
unless they were part of a binary system which survived the explosion
and in which the other star was not so highly evolved.”

Townsend [56] also arbitrarily applies the ‘Principle of Superposition’ to obtain
charged black hole (Reissner-Nordstrom) interactions as follows:

“The extreme RN in isotropic coordinates is
ds* = V72dt* + V2 (dp* + p*dQ?)

where u
V=1+—
P

This is a special case of the multi black hole solution

ds®> =V 724t + V2%dz - d7

where dT - dZ is the Fuclidean 3-metric and V is any solution of
V2V =0. In particular

N
V=1+> M;
1=1

T—T,

yields the metric for N extreme black holes of masses M, at positions
;.

Now Einstein’s field equations are non-linear, so the ‘Principle of Superpo-
sition’ does not apply [51,67,79]. Therefore, before one can talk of black hole
binary systems and the like it must first be proven that the two-body system is
theoretically well-defined by General Relativity. This can be done in only two
ways:
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(a) Derivation of an exact solution to Einstein’s field equations for the two-
body configuration of matter; or

(b) Proof of an existence theorem.

There are no known solutions to Einstein’s field equations for the interaction of
two (or more) masses (charged or not), so option (a) has never been fulfilled.
No existence theorem has ever been proven, by which Einstein’s field equations
can even be said to admit of latent solutions for such configurations of matter,
and so option (b) has never been fulfilled. The “Schwarzschild” black hole is
allegedly obtained from a line-element satisfying Ric =0. For the sake of argu-
ment, assuming that black holes are predicted by General Relativity as alleged
in relation to metric (1), since Ric=0 is a statement that there is no matter in
the Universe, one cannot simply insert a second black hole into the spacetime
of Ric=0 of a given black hole so that the resulting two black holes (each ob-
tained separately from Ric=0) mutually persist in and mutually interact in a
mutual spacetime that by construction contains no matter! One cannot
simply assert by an analogy with Newton’s theory that two black holes can be
components of binary systems, collide or merge [51,67,68], because the ‘Prin-
ciple of Superposition’ does not apply in Einstein’s theory. Moreover, General
Relativity has to date been unable to account for the simple experimental fact
that two fixed bodies will approach one another upon release. Thus, black hole
binaries, collisions, mergers, black holes from supernovae, and other black hole
interactions are all invalid concepts.

Much of the justification for the notion of irresistible gravitational collapse
into an infinitely dense point-mass singularity, and hence the formation of a
black hole, is given to the analysis due to Oppenheimer and Snyder [69]. Hughes
[28] relates it as follows;

“In an idealized but illustrative calculation, Oppenheimer and Snyder

. showed in 1939 that a black hole in fact does form in the collapse
of ordinary matter. They considered a ‘star’ constructed out of a
pressureless ‘dustball’. By Birkhof’s Theorem, the entire exterior of
this dustball is given by the Schwarzschild metric ... . Due to the self-
gravity of this ‘star’, it immediately begins to collapse. FEach mass
element of the pressureless star follows a geodesic trajectory toward
the star’s center; as the collapse proceeds, the star’s density increases
and more of the spacetime is described by the Schwarzschild metric.
Eventually, the surface passes through r=2M. At this point, the
Schwarzschild exterior includes an event horizon: A black hole has
formed. Meanwhile, the matter which formerly constituted the star
continues collapsing to ever smaller radii. In short order, all of the
original matter reaches r =0 and is compressed (classically!) into a
singularity®.

44Since all of the matter is squashed into a point of zero size, this classical
singularity must be modified in a a complete, quantum description. How-
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ever, since all the singular nastiness is hidden behind an event horizon
where it is causally disconnected from us, we need not worry about it (at
least for astrophysical black holes).”

Note that the ‘Principle of Superposition’ has again been arbitrarily applied by
Oppenheimer and Snyder, from the outset. They first assume a relativistic
universe in which there are multiple mass elements present a priori, where the
‘Principle of Superposition’ however, does not apply, and despite there being
no solution or existence theorem for such configurations of matter in General
Relativity. Then all these mass elements “collapse” into a central point (zero
volume; infinite density). Such a collapse has however not been given any specific
general relativistic mechanism in this argument; it is simply asserted that the
“collapse” is due to self-gravity. But the “collapse” cannot be due to Newtonian
gravitation, given the resulting black hole, which does not occur in Newton’s
theory of gravitation. And a Newtonian universe cannot “collapse” into a non-
Newtonian universe. Moreover, the black hole so formed is in an empty universe,
since the “Schwarzschild black hole” relates to Ric=0, a spacetime that by
construction contains no matter. Nonetheless, Oppenheimer and Snyder permit,
within the context of General Relativity, the presence of and the gravitational
interaction of many mass elements, which coalesce and collapse into a point of
zero volume to form an infinitely dense point-mass singularity, when there is no
demonstrated general relativistic mechanism by which any of this can occur.

Furthermore, nobody has ever observed a celestial body undergo irresistible
gravitational collapse and there is no laboratory evidence whatsoever for such
a phenomenon.

3.8 Further consequences for gravitational waves

The question of the localisation of gravitational energy is related to the validity
of the field equations R ,, =0, for according to Einstein, matter is the cause of
the gravitational field and the causative matter is described in his theory by a
mathematical object called the energy-momentum tensor, which is coupled to
geometry (i.e. spacetime) by his field equations, so that matter causes spacetime
curvature (his gravitational field). Einstein’s field equations,

@

. couple the gravitational field (contained in the curvature of space-
time) with its sources.” [36]

“Since gravitation is determined by the matter present, the same
must then be postulated for geometry, too. The geometry of space
is not given a priori, but is only determined by matter.” [53]

“Again, just as the electric field, for its part, depends upon the charges
and is instrumental in producing mechanical interaction between the
charges, so we must assume here that the metrical field (or, in
mathematical language, the tensor with components g,; ) is related
to the material filling the world.” [5]
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we have, in following the ideas set out just above, to discover
the invariant law of gravitation, according to which matter
determines the components I'j, of the gravitational field,
and which replaces the Newtonian law of attraction in FEinstein’s
Theory.” [5]

“Thus the equations of the gravitational field also contain the equa-
tions for the matter (material particles and electromagnetic fields)
which produces this field.” [51]

“Clearly, the mass density, or equivalently, energy density o(Z,t)
must play the role as a source. However, it is the 00 component of a
tensor T, (x), the mass-energy-momentum distribution of matter.
So, this tensor must act as the source of the gravitational field.” [10]

“In general relativity, the stress-energy or energy-momentum tensor
T acts as the source of the gravitational field. It is related to
the Einstein tensor and hence to the curvature of spacetime via the
Finstein equation”. [79]

Qualitatively Einstein’s field equations are:
Spacetime geometry = -k X causative matter (i.e. material sources)

where causative matter is described by the energy-momentum tensor and « is a
constant. The spacetime geometry is described by a mathematical object called
Einstein’s tensor, Guw (u,v = 0,1,2,3) and the energy-momentum tensor is
T),,. So Einstein’s full field equations are>:

1
Guw=R,, — §R9W = —kKT,,. (3.21)

Einstein asserted that his ‘Principle of Equivalence’ and his laws of Special
Relativity must hold in a sufficiently small region of his gravitational field. Here
is what Einstein [52] himself said in 1954, the year before his death:

“Let now K be an inertial system. Masses which are sufficiently far
from each other and from other bodies are then, with respect to K,
free from acceleration. We shall also refer these masses to a system
of co-ordinates K’,uniformly accelerated with respect to K. Relatively
to K’ all the masses have equal and parallel accelerations; with re-
spect to K’ they behave just as if a gravitational field were present and
K’ were unaccelerated. QOuverlooking for the present the question as
to the ‘cause’ of such a gravitational field, which will occupy us later,
there is nothing to prevent our concewing this gravitational field as
real, that is, the conception that K’ is ‘at rest’ and a gravitational
field is present we may consider as equivalent to the conception that

3The so-called “cosmological constant” is not included.
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only K is an ‘allowable’ system of co-ordinates and no gravitational
field is present. The assumption of the complete physical equiva-
lence of the systems of coordinates, K and K’, we call the ‘principle
of equivalence’; this principle is evidently intimately connected with
the law of the equality between the inert and the gravitational mass,
and signifies an extension of the principle of relativity to co-ordinate
systems which are in non-uniform motion relatively to each other.
In fact, through this conception we arrive at the unity of the nature
of inertia and gravitation. For, according to our way of looking at it,
the same masses may appear to be either under the action of inertia
alone (with respect to K) or under the combined action of inertia
and gravitation (with respect to K’).

“Stated more exactly, there are finite regions, where, with respect to
a suitably chosen space of reference, material particles move freely
without acceleration, and in which the laws of special relativity, which
have been developed above, hold with remarkable accuracy.”

In their textbook, Foster and Nightingale [36] succinctly state the ‘Principle
of Equivalence’ thus:

“We may incorporate these ideas into the principle of equivalence,
which is this: In a freely falling (nonrotating) laboratory occupying
a small region of spacetime, the laws of physics are the laws of special
relativity.”

According to Pauli [53],

“We can think of the physical realization of the local coordinate sys-
tem K, in terms of a freely floating, sufficiently small, box which is
not subjected to any external forces apart from gravity, and which is

falling under the influence of the latter. ... “It is evidently natural
to assume that the special theory of relativity should remain valid in
K .)7

o
Taylor and Wheeler state in their book [25],
“General Relativity requires more than one free-float frame.”
In the Dictionary of Geophysics, Astrophysics and Astronomy [78],

“Near every event in spacetime, in a sufficiently small neighborhood,
in every freely falling reference frame all phenomena (including grav-
itational ones) are exactly as they are in the absence of external
gravitational sources.”

Note that the ‘Principle of Equivalence’ involves the a priori presence of
multiple arbitrarily large finite masses. Similarly, the laws of Special Relativity
involve the a priori presence of at least two arbitrarily large finite masses; for
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otherwise relative motion between two bodies cannot manifest. The postulates
of Special Relativity are themselves couched in terms of inertial systems, which
are in turn defined in terms of mass via Newton’s First Law of motion.

In the space of Newton’s theory of gravitation, one can simply put in as
many masses as one pleases. Although solving for the gravitational interaction
of these masses rapidly becomes beyond our capacity, there is nothing to prevent
us inserting masses conceptually. This is essentially the ‘Principle of Superpo-
sition’. However, one cannot do this in General Relativity, because Einstein’s
field equations are non-linear. In General Relativity, each and every configura-
tion of matter must be described by a corresponding energy-momentum tensor
and the field equations solved separately for each and every such configuration,
because matter and geometry are coupled, as Eq. (3.21) describes. Not so in
Newton’s theory where geometry is independent of matter. The ‘Principle of
Superposition’ does not apply in General Relativity:

“In a gravitational field, the distribution and motion of the matter
producing it cannot at all be assigned arbitrarily — on the contrary
it must be determined (by solving the field equations for given ini-
tial conditions) simultaneously with the field produced by the same
matter.” [51]

“An important characteristic of gravity within the framework of gen-
eral relativity is that the theory is nonlinear. Mathematically, this
means that if g,, and vy, are two solutions of the field equations,
then ag,, + by,, (where a, b are scalars) may not be a solution.
This fact manifests itself physically in two ways. First, since a lin-
ear combination may not be a solution, we cannot take the overall
gravitational field of the two bodies to be the summation of the indi-
vidual gravitational fields of each body.” [79]

Now Einstein and the relevant physicists assert that the gravitational field
“outside” a mass contains no matter, and so they assert that 7}, =0, and that
there is only one mass in the whole Universe with this particular problem state-
ment. But setting the energy-momentum tensor to zero means that there is no
matter present by which the gravitational field can be caused! Nonetheless, it
is so claimed, and it is also claimed that the field equations then reduce to the
much simpler form,

R,, =0. (3.22)

nuv

So this is a clear statement that spacetime is devoid of matter.

“Black holes were first discovered as purely mathematical solutions
of Einstein’s field equations. This solution, the Schwarzschild black
hole, is a nonlinear solution of the Einstein equations of General
Relativity. It contains no matter, and exists forever in an asymptot-
ically flat space-time.” [78]
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However, since this is a spacetime that by construction contains no matter,
Einstein’s ‘Principle of Equivalence’ and his laws of Special Relativity cannot
manifest, thus violating the physical requirements of the gravitational field that
Einstein himself laid down. It has never been proven that Einstein’s ‘Principle
of Equivalence’ and his laws of Special Relativity, both of which are defined
in terms of the a priori presence of multiple arbitrary large finite masses, can
manifest in a spacetime that by construction contains no matter. Indeed, it is a
contradiction; so R, = 0 fails. Now Eq. (3.1) relates to Eq. (3.22). However,
there is allegedly mass present, denoted by m in Eq. (3.1). This mass is not
described by an energy-momentum tensor. That m is actually responsible for
the alleged gravitational field associated with Eq. (3.1) is confirmed by the fact
that if m =0, Eq. (3.1) reduces to Minkowski spacetime, and hence no gravita-
tional field. So if not for the presence of the alleged mass m in Eq. (3.1) there is
no gravitational field. But this contradicts Einstein’s relation between geometry
and matter, since m is introduced into Eq. (3.1) post hoc, not via an energy-
momentum tensor describing the matter causing the associated gravitational
field. The components of the metric tensor are functions of only one another,
and reduce to functions of only one component of the metric tensor. None of the
components of the metric tensor contain matter, because the energy-momentum
tensor is zero. There is no transformation of matter in Minkowski spacetime
into Schwarzschild spacetime, and so the laws of Special Relativity are not trans-
formed into a gravitational field by Ric = 0. The transformation is merely from
a pseudo-Euclidean geometry containing no matter into a pseudo-Riemannian
(non-Euclidean) geometry containing no matter. Matter is introduced into the
spacetime of Ric = 0 by means of a vicious circle, as follows. It is stated at the
outset that Ric = 0 describes spacetime “outside a body”. The words “outside
a body” introduce matter, contrary to the energy-momentum tensor, 7}, =0,
that describes the causative matter as being absent. There is no matter involved
in the transformation of Minkowski spacetime into Schwarzschild spacetime via
Ric=0, since the energy-momentum tensor is zero, making the components of
the resulting metric tensor functions solely of one another, and reducible to
functions of just one component of the metric tensor. To satisfy the initial
claim that Ric = 0 describes spacetime “outside a body”, so that the resulting
spacetime is caused by the alleged mass present, the alleged causative mass is
inserted into the resulting metric ad hoc, by means of a contrived analogy with
Newton’s theory, thus closing the vicious circle. Here is how Chandrasekhar [24]
presents the vicious circle:

“That such a contingency can arise was surmised already by Laplace
in 1798. Laplace argued as follows. For a particle to escape from
the surface of a spherical body of mass M and radius R, it must be
projected with a velocity v such that %1}2 > GM/R; and it cannot
escape if v2 < 2GM/R. On the basis of this last inequality, Laplace
concluded that if R < 2GM/c®> =R, (say) where ¢ denotes the ve-
locity of light, then light will not be able to escape from such a body
and we will not be able to see it!
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“By a curious coincidence, the limit R, discovered by Laplace is ex-
actly the same that general relativity gives for the occurrence of the
trapped surface around a spherical mass.”

But it is not surprising that general relativity gives the same R, “discovered by
Laplace” because the Newtonian expression for escape velocity is deliberately
inserted post hoc by the astrophysical scientists, into the so-called “Schwarzschild
solution” in order to make it so. Newton’s escape velocity does not drop out
of any of the calculations to Schwarzschild spacetime. Furthermore, although
Ric=0 is claimed to describe spacetime “outside a body”, the resulting metric
(1) is nonetheless used to describe the interior of a black hole, since the black
hole begins at the alleged “event horizon”, not at its infinitely dense point-mass
singularity (said to be at 7 =0 in Eq. (3.1)).

In the case of a totally empty Universe, what would be the relevant energy-
momentum tensor? It must be 7}, =0. Indeed, it is also claimed that space-
times can be intrinsically curved, i.e. that there are gravitational fields that
have no material cause. An example is de Sitter’s empty spherical Universe,
based upon the following field equations [33,34]:

R, =)g,, (3.23)

where X is the so-called ‘cosmological constant’. In the case of metric (1) the
field equations are given by expression (22). On the one hand de Sitter’s empty
world is devoid of matter (7},, =0) and so has no material cause for the alleged
associated gravitational field. On the other hand it is claimed that the spacetime
described by Eq. (3.22) has a material cause, post hoc as m in metric (1), even
though 7, =0 there as well: a contradiction. This is amplified by the so-called
“Schwarzschild-de Sitter” line-element,

2m A 2m A L\
ds® = <1 _am 3r2> dt* — (1 _am 3r2> dr? — 12 (d92 + sin? Gdgoz) ,

r r

(3.24)

which is the standard solution for Eq. (3.23). Once again, m is identified post

hoc as mass at the centre of spherical symmetry of the manifold, said to be at

r=0. The completely empty universe of de Sitter [33,34] can be obtained by
setting m =0 in Eq. (3.24) to yield,

-1
ds? = (1 - ;ﬁ) dt* — (1 - ;\7“2) dr? —r? (d6? + sin® 0dp?),  (3.25)

Also, if A=0, Eq. (3.23) reduces to Eq. (3.22) and Eq. (3.24) reduces to Eq.
(3.1). If both A=0 and m=0, Egs. (3.24) and (3.25) reduce to Minkowski
spacetime. Now in Eq. (3.23) the term Ag,, is not an energy-momentum ten-
sor, since according to the astrophysical scientists, expression (25) describes a
world devoid of matter [33,34]. The universe described by Eq. (3.25), which
also satisfies Eq. (3.23), is completely empty and so its curvature has no ma-
terial cause; in Eq. (3.23), just as in Eq. (3.22), T, =0. So Eq. (3.25) is

n%
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alleged to describe a gravitational field that has no material cause. Further-
more, although in Eq. (3.22), T, =0, its usual solution, Eq. (3.1), is said to
contain a (post hoc) material cause, denoted by m therein. Thus for Eq. (3.1)
it is claimed that 7}, =0 supports a material cause of a gravitational field, but
at the same time, for Eq. (3.25), 7}, =0 is also claimed to preclude material
cause of a gravitational field. So T},, =0 is claimed to include and to exclude
material cause. This is not possible. The contradiction is due to the post hoc
introduction of mass, as m, in Eq. (3.1), by means of the Newtonian expression
for gravitational potential. Furthermore, there is no experimental evidence to
support the claim that a gravitational field can be generated without a material
cause. Material cause is codified theoretically in Eq. (3.21).

Since R,,, =0 cannot describe Einstein’s gravitational field, Einstein’s field
equations cannot reduce to R,,,, =0 when T}, =0. In other words, if T, =0 (i.e.
there is no matter present) then there is no gravitational field. Consequently
Einstein’s field equations must take the form [58,59],

G/U/
K

+T,, =0. (3.26)

The G,/ are the components of a gravitational energy tensor. Thus the total
energy of Einstein’s gravitational field is always zero; the G,/ and the T,
must vanish identically; there is no possibility for the localization of gravita-
tional energy (i.e. there are no Einstein gravitational waves). This also means
that Einstein’s gravitational field violates the experimentally well-established
usual conservation of energy and momentum [53]. Since there is no experimen-
tal evidence that the usual conservation of energy and momentum is invalid,
Einstein’s General Theory of Relativity violates the experimental evidence, and
so it is invalid.

In an attempt to circumvent the foregoing conservation problem, Einstein
invented his gravitational pseudo-tensor, the components of which he says are
‘the “energy components” of the gravitational field’ [60]. His invention had a
two-fold purpose (a) to bring his theory into line with the usual conservation
of energy and momentum, (b) to enable him to get gravitational waves that
propagate with speed c. First, Einstein’s gravitational pseudo-tensor is not
a tensor, and is therefore not in keeping with his theory that all equations be
tensorial. Second, he constructed his pseudo-tensor in such a way that it behaves
like a tensor in one particular situation, that in which he could get gravitational
waves with speed c¢. Now Einstein’s pseudo-tensor is claimed to represent the
energy and momentum of the gravitational field and it is routinely applied in
relation to the localisation of gravitational energy, the conservation of energy
and the flow of energy and momentum.

Dirac [54] pointed out that,

“It is not possible to obtain an expression for the energy of the grav-
itational field satisfying both the conditions: (i) when added to other
forms of energy the total energy is conserved, and (ii) the energy
within a definite (three dimensional) region at a certain time is in-
dependent of the coordinate system. Thus, in general, gravitational
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energy cannot be localized. The best we can do is to use the pseudo-
tensor, which satisfies condition (i) but not condition (ii). It gives us
approzimate information about gravitational energy, which in some
special cases can be accurate.”

On gravitational waves Dirac [54] remarked,

“Let us consider the energy of these waves. Owing to the pseudo-
tensor not being a real tensor, we do not get, in general, a clear
result independent of the coordinate system. But there is one special
case in which we do get a clear result; namely, when the waves are
all moving in the same direction.”

About the propagation of gravitational waves Eddington [34] remarked (gl“, =
6;u/ + huu)’
0h 0%h 0%h 0%h

N2 nv v nv 0
b

ot? O0x? Oy? 022

“

. showing that the deviations of the gravitational potentials are
propagated as waves with unit velocity, i.e. the velocity of light. But
it must be remembered that this representation of the propagation,
though always permissible, is not unique. ... All the coordinate-
systems differ from Galilean coordinates by small quantities of the
first order. The potentials g,, pertain not only to the gravitational
influence which is objective reality, but also to the coordinate-system
which we select arbitrarily. We can ‘propagate’ coordinate-changes
with the speed of thought, and these may be mized up at will with the
more dilatory propagation discussed above. There does not seem to
be any way of distinguishing a physical and a conventional part in
the changes of the g,,,,.

“The statement that in the relativity theory gravitational waves are
propagated with the speed of light has, I believe, been based entirely
upon the foregoing investigation; but it will be seen that it is only
true in a very conventional sense. If coordinates are chosen so as
to satisfy a certain condition which has no very clear geometrical
importance, the speed is that of light; if the coordinates are slightly
different the speed is altogether different from that of light. The
result stands or falls by the choice of coordinates and, so far as can
be judged, the coordinates here used were purposely introduced in
order to obtain the simplification which results from representing the
propagation as occurring with the speed of light. The argument thus
follows a vicious circle.”

Now Einstein’s pseudo-tensor, /—¢g t#, is defined by [23,33,34,53,54,58,60],

1 OL
V=g th = 3 <5ffL - 897 gif’) , (3.27)
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wherein L is given by
L=—g* (rgmrgV - Fgﬁrgﬁ) . (3.28)

According to Einstein [60] his pseudo-tensor “expresses the law of conservation
of momentum and of energy for the gravitational field.”

In a remarkable paper published in 1917, T. Levi-Civita [58] provided a clear
and rigorous proof that Einstein’s pseudo-tensor is meaningless, and therefore
any argument relying upon it is fallacious. I repeat Levi-Civita’s proof. Con-
tracting Eq. (3.27) produces a linear invariant, thus

1 oL
Vg th == (4L — R 3.29

9t 2( 8952”’“) (3.29)
Since L is, according to Eq. (3.28), quadratic and homogeneous with respect
to the Riemann-Christoffel symbols, and therefore also with respect to g7/, one
can apply Euler’s theorem to obtain (also see [34]),

oL
i

Substituting expression (30) into expression (29) yields the linear invariant at
L. This is a first-order, intrinsic differential invariant that depends only on
the components of the metric tensor and their first derivatives (see expression
(28) for L). However, the mathematicians G. Ricci-Curbastro and T. Levi-
Civita [65] proved, in 1900, that such invariants do not exist. This is sufficient
to render Einstein’s pseudo-tensor entirely meaningless, and hence all arguments
relying on it false. Einstein’s conception of the conservation of energy in the
gravitational field is erroneous.

Linearisation of Einstein’s field equations and associated perturbations have
been popular. “The existence of exact solutions corresponding to a solution to
the linearised equations must be investigated before perturbation analysis can be
applied with any reliability” [21]. Unfortunately, the astrophysical scientists have
not properly investigated. Indeed, linearisation of the field equations is inadmis-
sible, even though the astrophysical scientists write down linearised equations
and proceed as though they are valid, because linearisation of the field equa-
tions implies the existence of a tensor which, except for the trivial case of being
precisely zero, does not exist; proven by Hermann Weyl [66] in 1944.

3.9 Other Violations

In writing Eq. (3.1) the Standard Model incorrectly asserts that only the com-
ponents gy, and g;; are modified by R, =0. However, it is plain by expressions
(20) that this is false. All components of the metric tensor are modified by the
constant « appearing in Eqgs. (3.20), of which metric (3.1) is but a particular
case.
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The Standard Model asserts in relation to metric (1) that a ‘true’ singular-
ity must occur where the Riemann tensor scalar curvature invariant (i.e. the
Kretschmann scalar) is unbounded [21,23,50]. However, it has never been proven
that Einstein’s field equations require such a curvature condition to be fulfilled:
in fact, it is not required by General Relativity. Since the Kretschmann scalar is
finite at 7 = 2m in metric (1), it is also claimed that r = 2m marks a “coordinate
singularity” or ‘removable singularity”. However, these assertions violate the
intrinsic geometry of the manifold described by metric (1). The Kretschmann
scalar depends upon all the components of the metric tensor and all the com-
ponents of the metric tensor are functions of the Gaussian curvature of the
spherically symmetric geodesic surface in the spatial section, owing to the form
of the line-element. The Kretschmann scalar is not therefore an independent
curvature invariant. Einstein’s gravitational field is manifest in the curvature
of spacetime, a curvature induced by the presence of matter. It should not
therefore be unexpected that the Gaussian curvature of a spherically symmetric
geodesic surface in the spatial section of the gravitational manifold might also
be modified from that of ordinary Euclidean space, and this is indeed the case
for Eq. (3.1). Metric (20) gives the modification of the Gaussian curvature
fixed by the intrinsic geometry of the line-element and the required boundary
conditions specified by Einstein and the astrophysical scientists, in consequence
of which the Kretschmann scalar is constrained by the Gaussian curvature of
the spherically symmetric geodesic surface in the spatial section. Recall that
the Kretschmann scalar f is,

f=R,4,sR*°.
Using metric (20) gives,
E el e
then
flr) =3 ¥r,Vn,

which is a scalar invariant that corresponds to the scalar invariants R, (r,) =0,
R, (r,) =a, K (r,) =a~2. The usual assumption that the Kretschmann scalar
must be unbounded (undefined) at a singularity in Schwarzschild spacetime
is just that, and has no valid physical or mathematical basis. It is evident
from the line-element that the Kretschmann scalar is finite everywhere. This is
reaffirmed by the Riemannian (or Sectional) curvature K of the spatial section
of Schwarzschild spacetime, given by

K - —5Wis1s — §Wigg sin? 0 + aRe (Re — ) Wygg
* RIWigps + REWigp5 sin® 0 + Risin® 0 (Re — &) Wagyy

1
n

Rc = (l’F - ro|n + an)
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where 4 4
v v’

Wijkl :‘ Vi Vi

Uk Ut
‘Vk Vl

and <U i> and <Vi> are two arbitrary non-zero contravariant vectors at any point
in the space. Thus, in general the Riemannian curvature is dependent upon both
position and direction (i.e. the directions of the contravariant vectors). Now

Ks (ro) = _ﬁ - 92
which is entirely independent of the contravariant vectors and is half the nega-
tive of the associated Gaussian curvature of the spherically symmetric geodesic
surface in the spatial section. This is a scalar invariant that corresponds to
R.(r,) = aV¥r, Vn and R,(r,) =0 Vr, Vn.

Doughty [70] has shown that the radial geodesic acceleration a of a point in
a manifold described by a line-element with the form of Eq. (3.13) is given by,

VvV —911 (*911) ‘900,1|

a =
2900
Using metric (20) once again gives,
!
a=— .
RE (r)/R.(r) —a
Now,
lim R, (r) =0, lim R, (r) =a,

and so

r—orf=a—00 VYr,VYn

According to metric (20) there is no possibility for R, < a.

In the case of Eq. (3.1), for which r,=a=2m, n=1, r > «, the acceleration
is,

2m

i —2m
which is infinite at 7 =2m. But the usual unproven (and invalid) assumption
that 7 in Eq. (3.1) can go down to zero means that there is an infinite acceler-
ation at r =2m where, according to the Standard Model, there is no matter!
However, r can’t take the values 0<r <r,=2m in Eq. (3.1), as Eq. (3.20)
shows, by virtue of the nature of the Gaussian curvature of spherically sym-
metric geodesic surfaces in the spatial section associated with the gravitational
manifold, and the intrinsic geometry of the line-element.

The proponents of the Standard Model admit that if 0 < r < 2m in Eq. (3.1),
the roles of ¢ and r are interchanged. But this violates their construction at Eq.
(3.12), which has the fixed signature (4, —, —, —), and is therefore inadmissible.

a =
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To further illustrate this violation, when 2m < r < oo the signature of Eq. (3.1)
is (+,—,—,—); but if 0 < r < 2m in Eq. (3.1), then

2m\ . . 2m\ .
goo = | 1 — e negative, and g;; =—|1— o is positive.

So the signature of metric (1) changes to (—, +,—,—). Thus the roles of ¢ and
r are interchanged. According to Misner, Thorne and Wheeler, who use the
spacetime signature (—, +, +, +),

“The most obvious pathology at r=2M 1is the reversal there of the
roles of t and r as timelike and spacelike coordinates. In the region
r > 2M, the t direction, 0/0t, is timelike (g, < 0) and the r
direction, 0/0r, is spacelike (g,, > 0); but in the region r < 2M,
0/0t, is spacelike (g,, > 0) and 9/0r, is timelike (g,., < 0).

“What does it mean for r to ‘change in character from a spacelike
coordinate to a timelike one’? The explorer in his jet-powered space-
ship prior to arrival at r =2M always has the option to turn on his
jets and change his motion from decreasing r (infall) to increasing
r (escape). Quite the contrary in the situation when he has once
allowed himself to fall inside r=2M. Then the further decrease of
r represents the passage of time. No command that the traveler can
give to his jet engine will turn back time. That unseen power of the
world which drags everyone forward willy-nilly from age twenty to
forty and from forty to eighty also drags the rocket in from time co-
ordinate r =2M to the later time coordinate r =0. No human act of
will, no engine, no rocket, no force (see exercise 31.3) can make time
stand still. As surely as cells die, as surely as the traveler’s watch
ticks away ‘the unforgiving minutes’, with equal certainty, and with
never one halt along the way, r drops from 2M to 0.

“At r=2M, where r and t exchange roles as space and time coor-
dinates, g,, vanishes while g,, is infinite.”

Chandrasekhar [24] has expounded the same claim as follows,

"There is no alternative to the matter collapsing to an infinite density
at a singularity once a point of no-return is passed. The reason is
that once the event horizon is passed, all time-like trajectories must
necessarily get to the singularity: “all the King’s horses and all the
King’s men” cannot prevent it.’

Carroll [50] also says,

“This 1s worth stressing; not only can you not escape back to region
I, you cannot even stop yourself from moving in the direction of
decreasing r, since this is simply the timelike direction. (This could
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have been seen in our original coordinate system; for r < 2GM, t
becomes spacelike and r becomes timelike.) Thus you can no more
stop moving toward the singularity than you can stop getting older.”

Vladmimirov, Mitskiévich and Horsky [71] assert,

“For r < 2GM/c?, however, the component g,, becomes negative,
and g,,, positive, so that in this domain, the role of time-like co-
ordinate is played by r, whereas that of space-like coordinate by t.
Thus in this domain, the gravitational field depends significantly on
time (1) and does not depend on the coordinate t.

To amplify this, set t =7* and r =¢*, and so for 0 < r < 2m, Eq. (3.1) becomes,

2 om\ !
ds? — (1 B ti”) dr*? — (1 _ tT) A2 2 (d02 + sin2 0d<p2) ’

0<t" < 2m.

It now becomes quite clear that this is a time-dependent metric since all the
components of the metric tensor are functions of the timelike ¢*, and so this
metric bears no relationship to the original time-independent problem
to be solved [35,46]. In other words, this metric is a non-static solution to
a static problem: contra hyp! Thus, in Eq. (3.1), 0 < r < 2m is meaningless,
as Egs. (3.20) demonstrate.

Furthermore, if the signature of “Schwarzschild” spacetime is permitted to
change from (+,—,—,—) to (—,+, —, —) in the fashion claimed for black holes,
then there must be for the latter signature a corresponding generalisation of the
Minkowski metric, taking the fundamental form

ds* = —e*dt* + e’dr? — R? (d6* + sin® 0dyp?) ,

where A, 8 and R are all unknown real-valued functions of only the real variable
r, and where e* >0 and e’ >0. But this is impossible because the Minkowski
spacetime metric has the fixed signature (+, —, —, —), since the spatial section of
Minkowski spacetime is a positive definite quadratic form; and so the foregoing
generalised metric is not a generalistion of Minkowski spacetime at all.

Also of importance is the fact that Hagihara [72] proved, in 1931, that all
geodesics that do not run into the boundary of the “Schwarzschild” metric at
r=2m (i.e. at R,(r,=2m)=0) are complete.

Nobody has ever found a black hole anywhere because nobody has found an
infinitely dense point-mass singularity and nobody has found an event horizon.

“Unambiguous observational evidence for the existence of astrophys-
ical black holes has not yet been established. [28]

All claims for detection of black holes are patently false.
It has recently been admitted by astronomers [73] at the Max Planck Insti-
tute for Extraterrestrial Physics that,
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(a) Nobody has ever found a black hole, despite the numerous claims for their
discovery;

(b) The infinitely dense point-mass singularity of the alleged black hole is
nonsense;

(¢) The alleged black hole has no escape velocity, despite the claims of the
astrophysical scientists;

(d) They were until very recently informed, unaware of Schwarzschild’s actual
solution.

The LIGO project and its international counterparts have not detected grav-
itational waves [74]. They are destined to detect nothing. Furthermore, the
Lense-Thirring or ‘frame dragging’ effect was not detected by the Gravity Probe
B and NASA has terminated further funding of that project [75].

3.10 Three-dimensional spherically symmetric met-
ric manifolds - first principles

To complete the purely mathematical foundations of this paper, the differential
geometry expounded in the foregoing is now developed from first principles.

Following the method suggested by Palatini, and developed by Levi-Civita
[30], denote ordinary Euclidean 3-space by E3. Let M3 be a 3-dimensional
metric manifold. Let there be a one-to-one correspondence between all points
of E3 and M?3. Let the point O € E? and the corresponding point in M? be O’.
Then a point transformation T of E? into itself gives rise to a corresponding
point transformation of M3 into itself.

A rigid motion in a metric manifold is a motion that leaves the metric dae'?
unchanged. Thus, a rigid motion changes geodesics into geodesics. The metric
manifold M? possesses spherical symmetry around any one of its points O’ if
each of the oo® rigid rotations in E? around the corresponding arbitrary point
O determines a rigid motion in M?.

The coefficients of df'2 of M3 constitute a metric tensor and are naturally
assumed to be regular in the region around every point in M?, except possibly
at an arbitrary point, the centre of spherical symmetry O’ € M3.

Let a ray i emanate from an arbitrary point O € E3. There is then a
corresponding geodesic i’ € M? issuing from the corresponding point O’ € M?.
Let P be any point on i other than O. There corresponds a point P’ on i’ € M?
different to O'. Let ¢’ be a geodesic in M? that is tangential to i’ at P’.

Taking i as the axis of oco! rotations in E3, there corresponds oc! rigid
motions in M? that leaves only all the points on i’ unchanged. If ¢’ is distinct
from 4/, then the oo! rigid rotations in E? about i would cause ¢’ to occupy
an infinity of positions in M3 wherein ¢’ has for each position the property of
being tangential to i’ at P’ in the same direction, which is impossible. Hence,
g’ coincides with 7’
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Thus, given a spherically symmetric surface ¥ in E3 with centre of symmetry
at some arbitrary point O € E32, there corresponds a spherically symmetric
geodesic surface ¥’ in M with centre of symmetry at the corresponding point
O' e M3.

Let Q be a point in ¥ € E? and @’ the corresponding point in ¥’ € M?3. Let
do? be a generic line element in ¥ issuing from Q. The corresponding generic
line element do’? € ¥’ issues from the point Q’. Let X be described in the usual
spherical-polar coordinates 7,6, . Then

do? = r2(dh? + sin? fdp?), (3.1.1)

r=10Q|.

Clearly, if r, 0, ¢ are known, @ is determined and hence also @’ in ¥’. Therefore,
# and ¢ can be considered to be curvilinear coordinates for ' in ¥’ and the line
element do’ € ¥’ will also be represented by a quadratic form similar to (3.1.1).
To determine do’, consider two elementary arcs of equal length, do; and do, in
>, drawn from the point @ in different directions. Then the homologous arcs
in ¥’ will be do} and dof, drawn in different directions from the corresponding
point Q’. Now do; and do, can be obtained from one another by a rotation
about the axis OQ in E3, and so do; and do?, can be obtained from one another
by a rigid motion in M3, and are therefore also of equal length, since the metric
is unchanged by such a motion. It therefore follows that the ratio ”(% is the same
for the two different directions irrespective of df and dy, and so the foregoing
ratio is a function of position, i.e. of r,6,p. But @ is an arbitrary point in X,

and so % mlust have the same ratio for any corresponding points @ and Q’.
Therefore, % is a function of r alone, thus
do’
= _H
do (),
and so )
do? = H?(r)do? = H?(r)r*(d6? + sin® 0dp?), (3.1.2)

where H(r) is a priori unknown. For convenience set R. = R.(r) = H(r)r, so
that (3.1.2) becomes

do'? = R2(d§? + sin® 0dy?), (3.1.3)

where R, is a quantity associated with M3. Comparing (3.1.3) with (3.1.1)
it is apparent that R. is to be rightly interpreted in terms of the Gaussian

curvature K at the point @Q’, i.e. in terms of the relation K = Ri since the

Gaussian curvature of (3.1.1) is K = . This is an intrinsic property of all line
elements of the form (3.1.3) [30]. Accordingly, R., the inverse square root of
the Gaussian curvature, can be regarded as the radius of Gaussian curvature.
Therefore, in (3.1.1) the radius of Gaussian curvature is R, = r. Moreover,
owing to spherical symmetry, all points in the corresponding surfaces ¥ and
Y have constant Gaussian curvature relevant to their respective manifolds and
centres of symmetry, so that all points in the respective surfaces are umbilics.
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Let the element of radial distance from O € E? be dr. Clearly, the radial
lines issuing from O cut the surface ¥ orthogonally. Combining this with (3.1.1)
by the theorem of Pythagoras gives the line element in E?

de? = dr? + r2(d6? + sin® 6d?). (3.1.4)

Let the corresponding radial geodesic from the point O’ € M? be dR,. Clearly
the radial geodesics issuing from O’ cut the geodesic surface ¥’ orthogonally.
Combining this with (3.1.3) by the theorem of Pythagoras gives the line element
in M? as,
2 2 2 2 2 2
dl = = dR; + RZ(df + sin” 0dp?), (3.1.5)

where dR, is, by spherical symmetry, also a function only of R.. Set dR, =

v/ B(R:)dR,, so that (3.1.5) becomes
df? = B(R,)dR? + R%(d§? + sin® 0dp?), (3.1.6)

where B(R,) is an a priori unknown function.

Expression (3.1.6) is the most general for a metric manifold M3 having
spherical symmetry about some arbitrary point O’ € M3,

Considering (3.1.4), the distance R, = |OQ)| from the point at the centre of
spherical symmetry O to a point @ € X, is given by

Rp:/ dr =r = R..
0

Call R, the proper radius. Consequently, in the case of E3, R, and R. are
identical, and so the Gaussian curvature of the spherically symmetric geodesic
surface containing any point in E* can be associated with R, the radial distance
between the centre of spherical symmetry at the point O € E? and the point
Q@ € X. Thus, in this case, K = %ﬁ = R%% = %2 However, this is not a general

relation, since according to (3.1.5) and (3.1.6), in the case of M?, the radial
geodesic distance from the centre of spherical symmetry at the point O’ € M3
is not the same as the radius of Gaussian curvature of the associated spherically
symmetric geodesic surface, but is given by

R, R.(r) . .
Rp = /0 dRp = B(RC(T)) dRC(T') = A B(RC(T)) %’:)dr,

RC(O)

where R.(0) is a priori unknown owing to the fact that R.(r) is a priori un-
known. One cannot simply assume that because 0 < r < oo in (3.1.4) that it
must follow that in (3.1.5) and (3.1.6) 0 < R.(r) < oo. In other words, one
cannot simply assume that R.(0) = 0. Furthermore, it is evident from (3.1.5)
and (3.1.6) that R, determines the radial geodesic distance from the centre of
spherical symmetry at the arbitrary point O’ in M3 (and correspondingly so
from O in E?) to another point in M3. Clearly, R. does not in general render
the radial geodesic length from the point at the centre of spherical symmetry to
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some other point in a metric manifold. Only in the particular case of E® does
R, render both the radius of Gaussian curvature of an associated spherically
symmetric surface and the radial distance from the point at the centre of spher-
ical symmetry, owing to the fact that R, and R, are identical in that special
case.

It should also be noted that in writing expressions (3.1.4) and (3.1.5) it is
implicit that O € E? is defined as being located at the origin of the coordinate
system of (3.1.4), i.e. O is located where r = 0, and by correspondence O’
is defined as being located at the origin of the coordinate system of (3.1.5)
and of (3.1.6); O’ € M3 is located where R,=0. Furthermore, since it is
well known that a geometry is completely determined by the form of the line
element describing it [33], expressions (3.1.4), (3.1.5) and (3.1.6) share the very
same fundamental geometry because they are line elements of the same metrical
groundform.

Expression (3.1.6) plays an important role in Einstein’s alleged gravitational
field.

3.11 Conclusions

“Schwarzschild’s solution” is not Schwarzschild’s solution. Schwarzschild’s ac-
tual solution forbids black holes. The quantity ‘v’ appearing in the so-called
“Schwarzschild solution” is not a distance of any kind in the associated mani-
fold - it is the inverse square root of the Gaussian curvature of the spherically
symmetric geodesic surface in the spatial section. This simple fact completely
subverts all claims for black holes.

The generalisation of Minkowski spacetime to Schwarzschild spacetime, via
Ric = 0, a spacetime that by construction contains no matter, is not a gener-
alisation of Special Relativity. Neither Einstein’s ‘Principle of Equivalence’ nor
his laws of Special Relativity can manifest in a spacetime that by construction
contains no matter.

Despite claims for discovery of black holes, nobody has ever found a black
hole; no infinitely dense point-mass singularity and no event horizon have ever
been found. There is no physical evidence for the existence of infinitely dense
point-masses. The black hole is fictitious. The international search for black
holes is destined to find none.

The Michell-Laplace dark body is not a black hole. Newton’s theory of
gravitation does not predict black holes.

Curved spacetimes without material cause violate the physical principles of
General Relativity. There is no experimental evidence supporting the notion of
gravitational fields generated without material cause.

No celestial body has ever been observed to undergo irresistible gravitational
collapse. There is no laboratory evidence for irresistible gravitational collapse.
Infinitely dense point-mass singularities howsoever formed cannot be reconciled
with Special Relativity, i.e. they violate Special Relativity, and therefore violate
General Relativity.
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The Riemann tensor scalar curvature invariant (the Kretschmann scalar) is
not an independent curvature invariant - it is a function of the intrinsic Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section.

General Relativity cannot account for the simple experimental fact that
two fixed bodies will approach one another upon release. There are no known
solutions to Einstein’s field equations for two or more masses and there is no
existence theorem by which it can even be asserted that his field equations
contain latent solutions for such configurations of matter. All claims for black
hole interactions are invalid.

Einstein’s gravitational waves are fictitious; Einstein’s gravitational energy
cannot be localised; so the international search for Einstein’s gravitational waves
is destined to detect nothing. No gravitational waves have been detected. Ein-
stein’s pseudo-tensor is meaningless and linearisation of Einstein’s field equa-
tions inadmissible. And the Lense-Thirring effect was not detected by the Grav-
ity Probe B.

Einstein’s field equations violate the experimentally well-established usual
conservation of energy and momentum, and therefore violate the experimental
evidence.

Dedication

I dedicate this paper to my late brother,

Paul Raymond Crothers

12th May 1968 — 25th December 2008.
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4.1 Introduction

In chapter two it was shown that solutions of the Einstein field equation violate
the Hodge dual of the Bianchi identity of Cartan geometry. In tensor notation
the dual identity may be expressed as:

D, T"* = R" » (4.1)

which means that the covariant derivative of the torsion tensor T"*” is the
curvature tensor R* #”. In this chapter, various classes of exact solutions of the
Einstein field equation are tested numerically against equation (4.1), by directly
evaluating the curvature tensor. It is found that the Einstein field equation fails
the test of Eq. (4.1) because the Einstein field equation is based on a geometry
that neglects torsion as discussed in Chapter 2 of this book. In Chapter 3,

Crothers shows that the class of vacuum solutions of the Einstein field equation
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2e-mail: horsteck@aol.com
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has no physical meaning, because that class of solutions is for the null Einstein
tensor of Riemann geometry:

1
G;u} = Ruu - iR uv = 0. (42)

In Eq. (4.2), the canonical energy momentum density 7),, does not appear, so
Eq. (4.2) is one of pure geometry with no physical meaning. It is shown in this
chapter that all known solutions of the Einstein field equation:

Gy =k Thy (4.3)

violate Eq. (4.1), and therefore violate fundamental geometry. Here k is the
Einstein constant, R, is the Ricci tensor, R is the Ricci scalar and g,, is
the symmetric metric. These quantities all assume that there is no space-time
torsion, an arbitrary, untenable assumption. The Einstein field equation is not
physically meaningful under any circumstances - a fiasco for twentieth century
gravitational physics. The ECE gravitational equations [1]- [12] on the other
hand rigorously obey Eq. (4.1) and must be used to develop new cosmologies.
All solutions of the Einstein field equation assume the Christoffel or sym-
metric connection. The use of the symmetric connection means that the torsion
tensor vanishes [13]. Therefore for all solutions of the Einstein field equation:

T = (4.4)
in Eq. (4.1). It is shown in this chapter that in general:
R* M #0 (4.5)

for the same solutions of the Einstein field equation that produce Eq. (4.4).
So the fundamental geometry of Eq. (4.1) is violated, and the Einstein field
equation is mathematically incorrect. The one exception to this result is the
class of vacuum solutions, i.e. the purely geometrical solutions of Eq. (4.2).
These solutions produce:

R =0 (4.6)

so that Eq. (4.1) is obeyed fortuitously. However, the class of vacuum solutions
by definition assumes that the curvature is zero. Therefore in this case Eq.
(4.1) is merely the result of this assumption. Vacuum solutions of the Einstein
field equation by definition assume that there is no canonical energy /momentum
density present. This concept is analogous to assuming that a field can propa-
gate without a source for that field, a logical self-contradiction. The process of
solving Eq. (4.2) without 7),,, to give the vacuum solutions, is not consistent
with the assumption that the solutions of Eq. (4.2) involve mass M, because
mass M is part of T}, which has already been assumed to be zero. It cannot
be first assumed zero and then assumed non-zero. Unfortunately this is the
self-inconsistent and meaningless procedure adopted in standard gravitational
physics, and it has been criticized by Crothers in chapter 3 of this book.
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4.2 Numerical procedure

The procedure adopted was to begin with line elements that are known [14] to
be solutions of the Einstein field equation (4.3). There are numerous solutions
now known of Eq. (4.3) and are usually classified [14] into groups. For each
class of solutions the metric matrix was constructed from the line element. In
some classes the metric has off diagonal elements, but in the majority of cases
the metric is diagonal. This was used as input parameters for numerical code
(see paper 93 of www.aias.us) based on Maxima. The code was rigorously tested
with known analytical results and passed this test. The code was then used to
evaluate the Christoffel symbols for each line element. It was found that the code
correctly reproduced all analytically known Christoffel symbols. The Christoffel
symbols were then used to compute all the elements of the Riemann tensor for
each line element. Again it was found that the code correctly gave analytically
known Riemann elements. The next step was to compute elements of the Ricci
tensor from the Riemann tensor elements, and finally to compute the Ricci scalar
and Einstein tensor. It was again found that the code correctly reproduced
analytically known Ricci tensor elements (for example those in ref [13]).

It is therefore considered that the code is fully accurate and reliable. It
was then used to compute the curvature tensor on the right hand side of Eq.
(4.1) for selected line elements known to be exact solutions of the Einstein field
equation [14]. In general the curvature tensor with raised last two indices is
defined by:

Rnuop — gaozgpo'Rl-iHaﬁ (47)

where g*” are inverse metric elements from the known line elements which are
the starting point of the computation. Finally the curvature tensor R" " is
defined by summation over repeated indices of the tensor computed in Eq. (4.7):

RF M = RO + R*W 4 R5,2 4 RA3V. (4.8)
The tensor in Eq. (4.8) was evaluated for:

k=0, 1, 2, 3. (4.9)
The results for

k=0 (4.10)
were denoted "charge density", and the results for:

k=1, 2, 3 (4.11)

were denoted as elements of the "current density". The reason for this is that
they appear as such in the inhomogeneous ECE electro-dynamical equations as
explained in chapter 2. For each class of solutions of selected line elements the
charge and current densities were evaluated numerically using Maxima. The
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line element was also tested with the Ricci cyclic equation, which for torsion
free situations is:

R +R

RUVo

KO U + Rnu(r,u =0 (412)

and also tested for metric compatibility:
Dyugup = 0. (4.13)

Egs. (4.12) and (4.13) are fundamental requirements which must be satisfied
by any line element that claims to be correct, even in the restricted context of
torsion-less geometry as used in the Einstein field equation. Line elements that
failed the tests of Egs. (4.12) and (4.13) are mathematically incorrect, and must
be discarded. Several well known line elements failed these tests, another fiasco
for standard gravitational physics.

Finally the results were graphed and displayed. The computed Christoffel,
Riemann, Ricci, Einstein, charge and current density elements and so on can
become very intricate, so the computer was used to prepare them in tabular
form without any transcription by hand or typesetter. This ensured maximum
accuracy.

4.3 Results and discussion

The results are classed into groups as is the custom in standard gravitational
physics. The results are given in tabular and graphical format for each class
of solutions, and graphed. This procedure was first adopted in paper 93 of
www.aias.us and is extended to many known solutions of the Einstein field
equation in this chapter. The result is a disaster of standard gravitational
physics, because it is shown clearly by computer that the Einstein field equation
is mathematically incorrect. This incorrectness is due to the neglect of torsion,
and in retrospect it ought to be obvious that an equation that arbitrarily neglects
torsion must be incorrect. The Einstein field equation is therefore historically
similar to phlogiston and so on.

The fundamental origin of space-time torsion and curvature was briefly dis-
cussed in chapter 2, and is presented in a text such as that of Carroll [13]. The
origin is as follows:

[D,,D,V? =R, V° —T" D\VP’. (4.14)

ouv uv

The commutator of covariant derivatives acting on the vector produces the tor-
sion tensor:

A A A
T, =1, -T, (4.15)
and the curvature tensor:
A A
Rfy = 0,10, =01}, + I‘ZAI‘M — FﬁAFW. (4.16)
This result is true irrespective of any assumption on the connection, and ir-

respective even of the metric compatibility condition. This is well known and
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available in a first principles text [13]. The use of a symmetric connection elim-
inates the torsion tensor:

A A
I, =T, (4.17)
and this assumption was used by Einstein in the derivation of the famous field
equation. However, this assumption is arbitrary, it is a restriction on a general

geometry. The latter is expressed by Cartan through his two well known [1]- [13]
structure equations. The first of these defines the Cartan torsion form:

T =dAg*+wy Ag° (4.18)

where T is the Cartan torsion, ¢ is the Cartan tetrad, w®, is the spin con-
nection form, and dA is the exterior derivative. The second structure equation
defines the Cartan curvature form:

Rab == d /\ wab + wac /\ wcb. (4.19)
The Bianchi identity:
ANT® +w AT := R% A ¢° (4.20)

follows from the two Cartan structure equations, as is well known. The dual
identity:

AANT® +w% AT := R% A ¢ (4.21)

is an example [1]- [12] of the original identity (4.20), as has been proven recently
in several ways. Eq. (4.1) is an example of the dual identity (4.21).

There have been at least two major blunders in the development of standard
gravitational physics. These are fundamental errors of geometry. The first is
the incorrect elimination of torsion by using a symmetric connection, the second
is the use of restricted Bianchi identities instead of the rigorously correct (4.20)
and (4.21). The restricted Bianchi identities are known in standard gravitational
physics as the first and second Bianchi identities. These are respectively:

R ,+R, +R =0 (4.22)

ppv wvp vpp
and:

D,R",,, + D,R",,, + D,R",  =0. (4.23)

However, these incorrectly omit torsion and in consequence are not true iden-
tities. The equation (4.22) was in fact first derived by Ricci and Levi Civita
and is true if and only if the torsion is zero and the connection and metric are
symmetric. This has been shown in detail in refs. [1] - [12] and is also shown in
ref. [13] for example. Upon translating from the language of differential forms
(Eq. (4.20)) to the language of tensors, the true identity that should be used
instead of Eq. (4.22) is [1] - [12]:

R, +R,,+ R, =

Avp Apv App

puv uvp vpp T
oIy, =0T, + 1,10, —T),T, (424)
+0,I, = 9,15, +,I9, —T7,I'7, '
+0,, — 0,0, + 1,10, —T,I9,#0

137



4.3. RESULTS AND DISCUSSION

in which the connection is not necessarily symmetric and in which the torsion
tensor is not zero. Eq. (4.24) is a rigorously correct mathematical identity,
the true Bianchi identity. The curvature tensors appearing in this identity are
defined by:
A A A A A
R, =0.1,,=0.1,,+ 1,17, —T,,1I (4.25)

pot vp vos pp

and so on in cyclic permutation. However, these curvature tensors are NOT
defined in general by a symmetric connection, i.e. the curvature and torsion
tensors co-exist as indicated by the very fundamental result (4.14). Tt is incorrect
to claim, as in standard gravitational physics, that the torsion must be zero.
Eq. (4.14) is a basic result of geometry, and exists in Riemann geometry as well
as in Cartan geometry. The latter is a re-expression of Riemann geometry as is
well known [13]. Therefore it is incorrect to claim, as is often done in standard
physics, that the Einstein equation is somehow independent of Cartan geometry.
This is the same as claiming that the Einstein field equation is independent of
geometry, reductio ad absurdum.
The geometry of the Einstein field equation is found by using:

T=0 (4.26)

in Eqgs. (4.18) to (4.21), and as developed in detail [1] - [12] is the geometry:
dAg" =q¢® Aw?, (4.27)
Rab A qb =0. (428)

Eq. (4.28) is Eq. (4.22) in the notation of differential geometry. Differential
forms and tensors are related by the tetrad, as is well known from any good
basic textbook [13]|. For example the torsion tensor is defined from the torsion
form by:

T, =4, T, (4.29)
and the curvature tensor is defined from the curvature form by:
Rm,uuo = qz qz Rabug' (430)

The way in which Riemann and Cartan geometry inter-relate has been demon-
strated recently [1] - [12] in comprehensive detail, not easily found elsewhere. It
is incorrect therefore to claim that Cartan and Riemann geometry are somehow
"independent". As shown by Egs. (4.26) to (4.28), the Einstein field equation
cannot be independent of Cartan geometry.

In the latter geometry there are no restrictions in general on the connection,
because the torsion is in general non-zero. The torsion form is defined by:

T*=DANq"

4.31
=dAq¢*+wy Ag° ( )

and the torsion tensor is defined by:
e, =T -1, (4.32)
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The latter equation may be obtained from the former using the definition:
T, =g T, (4.33)
and the tetrad postulate [1]- [13]:
D,q = 0. (4.34)

As may be seen from Eq. (4.14), the torsion tensor (4.32) is the direct result of
the commutator of covariant derivatives acting on the vector. In the early days
of general relativity, it was assumed just for the sake of ease of calculation that
the connection is symmetric:

re, =TI%, (4.35)

which means from Eq. (4.32) that the torsion is assumed to vanish. This
assumption is arbitrary, and the computer results of this chapter show that
the assumption leads to a violation of the dual identity. So the assumption
of vanishing torsion is not only restrictive, it is fundamentally incorrect. This
means that all inferences based on the Einstein field equation must be discarded
as obsolete.

As shown in a textbook such as ref. [13], the assumption of symmetric metric
leads in turn to the usual

1
FZ:} = §gap (a,ugup + al/g/),u. - 3pgw) . (4.36)

However it is almost never stated in standard physics that this definition depends
on assuming that the metric is symmetric:

uv = Gvp (437)
and also depends on the assumption of metric compatibility:
D,gu, =0. (4.38)

On the other hand, the fundamental Eq. (4.14) makes no such assumptions.
Also, the Cartan structure equations make no such assumptions, they depend
only on the tetrad postulate:

Dyugy =0 (4.39)

which is the very fundamental requirement that a vector field be independent of
its coordinate system. For example a vector field in three dimensional Euclidean
space is the same vector field if expressed in the Cartesian system, or any other
valid system of coordinates such as the spherical polar or cylindrical polar. The
symmetric metric tensor as usually used in standard physics is defined in any
good textbook [13] as:

G = 4% @5 Mab (4.40)
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where 745 is the Minkowski metric. Eq. (4.40) is only a special case of a more
general tensor product:

g =q5 q (4.41)
of two tetrads [13]. It is this special case that is used in Einsteinian gravitational
theory.

It has also been shown in detail [1]- [12] that the second Cartan structure
equation:

Rab = .D A\ wab

(4.42)
=dAwh +w AW,

translates into the definition (4.25) of the curvature tensor by use of the tetrad
postulate and the definition:

RY,,, =a; q R, (4.43)

I

The two Cartan structure equations are therefore equivalent to the tensor equa-
tion (4.14). The Bianchi identity:

DAT®=R%A¢ (4.44)
and its dual identity:
DAT*=RYA¢ (4.45)

are therefore the results of the two Cartan structure equations and of the tensor
Eq. (4.14). It has been indicated already that the tensorial expression of Eq.
(4.44) is Eq. (4.24). Similarly, the tensorial expression of Eq. (4.45) is the
rigorous identity:

R, R, + R, =

puv Hvp vpp T
(BMF,),‘p - al’rl\m + Fﬁargp - FéUFZP)HD (4.46)
+ (al’l—‘;\/J - aPFl)/\# + 1—‘,’}01—‘2# o FI);UFgH)HD
+(0,T, — 0T, + 10,10, =), 19,),, , #0
in which appear the definitions:
R, = (0.}, - 0,00, +T3,17, —T),19), (4.47)

and so on in cyclic permutation [1]- [12]. These results have been proven in all
detail in several ECE papers. It has also been proven that the so called second
Bianchi identity of standard physics, Eq. (4.23), should be:

DA(DAT*) :=DA(R% A" (4.48)

which again includes the torsion.
The Einstein field equation (4.3) was obtained from Eq. (4.23) [1]- [13],
which in the language of differential geometry is:

DAR% =0, (4.49)
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an equation in which the torsion is missing incorrectly. The torsionless Bianchi
identity (4.23) may be re-expressed [1]- [13] as:

D'G,, = 0. (4.50)
The covariant Noether Theorem is:

DrT,, =0. (4.51)
and it was assumed in 1915 by Einstein that:

D'G, =k DFT,,. (4.52)

The Einstein field equation (4.3) is a further assumption from Eq. (4.52).

The Maxima code uses Eq. (4.36) to compute the Christoffel connection
elements, and uses Eq. (4.25) to compute the Riemann tensor elements. The
Ricci tensor elements are computed from the standard Ricci index contraction:

R =R, (4.53)
and the Ricci scalar is defined by:
R=g¢g""R,,. (4.54)

All these quantities are computed by the code.

4.4 Exact solutions of the Einstein Field Equa-
tion

Recently the many known exact solutions of the Einstein field equation (4.3)
have been collected in a volume [14]. There are several classes of solutions
in this volume, and in this chapter examples of the classes of solutions have
been tested against the fundamental dual identity (4.1). It is found that all
solutions violate the dual identity or are otherwise physically meaningless. The
volume is typical of twentieth century standard physics in being abstract and
mathematical, losing touch with Baconian physics. For the sake of testing it is
sufficient to chose a few examples from the volume, representative of each class.
The results of the evaluation of these line elements are given in the Tables
and Graphs of this chapter. Each solution in the book assumes the Christoffel
symbol, so each solution incorrectly neglects torsion. The computer algebra
shows that this assumption leads to the following violation of eq. (4.1):

THM =0, R, 40 (4.55)

for each solution in which there is finite energy momentum density. The only
exception is the class of solutions described by:

1
G = Ryw = 3R g = 0. (4.56)
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In this case:
TR =, R”‘#‘“’ =0 (4.57)

as shown in the Tables. However, the assumption (4.56) precludes the existence
of matter, and is merely a geometrical exercise (see chapter 3) again carried
out in the early days of general relativity merely for the sake of ease of hand
calculation.

The fact that the Einstein field equation is incorrect is a major disaster
for standard physics. A glance at the Tables in this chapter shows that the
calculation of the Christoffel symbols and Riemann tensor elements is in general
an intricately complicated process, essentially impossible by hand for any but
the simplest line elements. The key result of the work reported in refs. [1] to [12]
is the dual identity, eq. (4.1). Standard physics for the past ninety years has
not recognized the existence of this identity, and prior to the emergence of the
computer algebra such as Maxima, hand calculations were essentially impossible
because of their great complexity. The major problem is that the Einstein field
equation has been accepted uncritically. The various claims as to its precision
are in fact incorrect. As shown in chapter 2, the correct equations of physics
must always contain spacetime torsion as a central ingredient.
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4.4.1 Minkowski metric with shifted radial coordinate

This form of the spherically symmetric line element shows that Minowski space
is invariant against a shift in the r coordinate.

Coordinates
t
< T
o )
¥
Metric
-1 0 0 0
10 1 0 0
I =10 0 (ro—r)° 0
0 0 0 (ro — ) sin® 0
Contravariant Metric
-1 0 0 0
» 0 1 0 0
= 1
g 0 0 o) 0
0 0 L

(r—710)? sin2 9

Christoffel Connection

11122 = —(r—ro)
I =—(r—rg) sin®¥
1
I, =
12 T—To
11221 = F212
%5 = —cos ¥ sind
1
I3, =
1 r—"To
cos ¥
I3y, =
27 ginv
11331 =13
r 32 — r 23
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Metric Compatibility
o.k.

Riemann Tensor

all elements zero

Ricci Tensor
all elements zero
Ricci Scalar
Rse=0
Bianchi identity (Ricci cyclic equation R"[/Lw] =0)

o.k.

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%")
p=0

Current Density Class 1 (-R’,"/)

Ji=0
Jo=0
J3 =0
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Current Density Class 2 (—Ri#"j)

Ji=0
Jo=0
Js3 =0

Ji=0
Jo=0
Js =0

4.4.2 Schwarzschild metric

This the so-called Schwarzschild metric. The interpretation of the parameters
(M: mass, G: Newton’s constant of gravitation, c: velocity of light) was added
later. The Schwarzschild metric is a true vacuum metric, i.e. Ricci and Einstein
tensors vahish.

Coordinates
t
< r
o 9
2
Metric
2CM 0 0 0
B 0 2o 0 0
v 0 0" 20
0 0 r2 sin? ¥
Contravariant Metric
__Ar 0 0 0
2GM-—c2r R
g/»“/ _ 0 _2G ]Cvgzc T 0 0
0 0 % 0
1
0 0 0 r2 sin? 9
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Christoffel Connection

o o GM
T 2GM —c2r)
I‘010:F001
1 GM (2GM—027°)
1_‘OO:_ A3
o GM
B 2GM —c2r)
2GM —c2r
F122: - 2
1 sin? 9 (QGMfczr)
[y = 2
1
%, =-
12 =
1ﬂ221 :F212
I, = —cos ¥ sin ¥
1
3, ==
137
3 cost
B sing
I‘331 :F313
F332:F323

Metric Compatibility

o.k.
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Riemann Tensor

RO _ 2GM

101 r2 (2GM —c?r)
Rouo =—-Ryn

GM

0
R 502 2y
R0220 = _Rozoz

o sin®9GM
R 303 — _T
30330 = _R0303

1 2G M (QGM—CQT)
R 001 — — A pd
R1010 = _R1001

GM

1
R919 =— 2
R1221 = _R1212
Rl SwIGM

313 = 2
R1331 = R1313

9 GM (2 GM — ¢ r)
R 002 — At
R%050 = =Rz
2 _ GM

U2 2 (2G M — 2r)
32121 =—R"%q
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2sin?9G M

Ry = "—p—r

323 27
32332 = _R2323

3 GM (QGM -2 7")
R 003 — Al
Ry30 = —R703
R GM

H3 = 2 (2GM —c%r)
R3131 =—R’3

) 2G M
R3223 - 027"
R3., = —R

232 223

Ricci Tensor
all elements zero
Ricci Scalar
Rsc =0
Bianchi identity (Ricci cyclic equation R o = 0)

— ok

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%)
p=0

Current Density Class 1 (-R’,"7)

Ji=0
Jo=0
J3 =0

Current Density Class 2 (-R’,")

Ji=0
Jo=0
J3 =0

Ji=0
Jo=0
J3 =0

4.4.3 General Crothers metric

This is a general spherical symmetric metric with a general function C(r). It
does not describe a vacuum in general since Ricci and Einstein tensors are
different from zero.

Coordinates

€ & 3 <+
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Metric
—AVC 0 0 0
[ o BVC 0o o0
Guuw 0 0o C 0
0 0 0 sin?9C
Contravariant Metric
- 0 0 0
AVC X
g—| O mm 0 0
0 0o & 0
1
0 0 0 sin2 9 C

Christoffel Connection

d
FO — dr C
T ye
Fol() = I‘001
d
0o 4BC
d
rl. — dr ¢
11 40
d
FI — dr C
27 2B\C
rl sin® 9 (d% C)
3 2BVC
d
1'\2 — dr O
127 9¢C
I‘221 = I‘212
2, = —cos¥ sin®
d
1'\3 — dr C
13 20
cos
I3, =
27 ging
I‘331 =1"3
[Pgy =179
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Metric Compatibility
o.k.

Riemann Tensor

402
Rono =—-R'in
d 2

RO _ _\dr C)

%2 g pct
R¥950 = —R502
RO sin? 9 (% 0)2

SV Yer
R0330 = —R'33

o2 == 8BC
31221 = R1212
) sin? 9 (40 (dd—;C) -3 (d—drC’)g>
o = 8BC1
Rl331 = _31313
, _ A(Lo)
R 002 — — SBOQ
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2 _
R = 32
32121 =—R%q
) sin? 9 ((%0)2—4BC%)
R — _
823 4BC3
R%3,=—R
332 323
d 2
003 3B (2
R3y0 = —R
030 003
w _4c (#¢) -3 (L0
113 = (2
R3131 =—R’3
(&) 4Bt
2 ABC3
R3232 = *R3223
Ricci Tensor
s (f0)
Ricyy =
4BC
| 5C (#2C) =4 (£ 0)°
Ricy; = — 102
B & C-2BVC
iCopg = — 2 —— —
2 2BVC
sin® 9 (ddfz C - QB\@)
Ricgy = —

2BVC
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Ricci Scalar
5C (i 0) -2 (kc)’ —aBCh

Rsc:* 5
2BCz

Bianchi identity (Ricci cyclic equation R“[WU] =0)
—— ok

Einstein Tensor

420 (&) - (£0)" —2B01)

Coo = = 2BC?
4 ) _92BC3
Gll (dr )202
3C (& C) -2 (£0)
G = ABC3
sin? ¥ (SC (% C) -2 (% 0)2)
Cs3 = ABCH

Hodge Dual of Bianchi Identity

—— (see charge and current densities)

Scalar Charge Density (-RY)

dQC

dr?

P=TABC?

Current Density Class 1 (-R’,//)

5C (2 C) -4 (&)

1= 41B2C3

£ 0_2BVC

Jy=drrZ Y7
2BC2

£ 0-2BVC

) i

2 sin? Y BCO3
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Current Density Class 2 (—Riﬂ“j)

Ji=0
Jo=10
J3 =0

Current Density Class 3 (-Ri#”j)

Ji=0
Jo=0
J3 =0

4.4.4 Crothers metric with generalized Schwarzschild pa-
rameters

The general Crothers metric has been taken with a special function C(r):
C(r) = (|r —ro|" +a™)*/™.

Again this is not a vacuum metric.

Coordinates

»

Il
/
€ 3 =
~

Metric
2
=/ (lro = 7| +an)n A 0 0 0
2
Guv = 0 \V(rg—rl™+am)n B 0 ) 0
0 0 (Jro = r|* +a™)n 0

2 P
0 0 0 (Iro —7|™ + a™)n sin® 0
Contravariant Metric

n n l
_VUrg=rim4am)n 0 0 0

2
(Irg=rim+am)n A

2
0 Vg Zr| ) m 0 0

g = z
(Irg—r|"+am)n B
0 0 - 0
(rg—r|?+am)n
0 0 0 L

2
(lrg—r|™+am)n sin? 9
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Christoffel Connection

lro —r[™

', =—
o 2 (ro — 1) (Jro —r|™ +am)

0 0
o =T"%

oo [ro —r|™ A
00 2 (rg—7r) (lro —r|" +am) B
1 lro —r["

M= -

2 (ro—r) (Jro —7r|" +a™)

3
TR " A/ (ro —r|" +am)n
22 =

(ro —7) (lro — 7| +an) B

P)
1 lro —r|™ \/(Iro — r|™ + a™) = sin® 9
[gg =

(ro —7) (lro — 7| +an) B

lro — |

" (ro —7) (Iro — 7™ + am)

2
1—‘127

2 2
1_‘2171—‘12

2 .
"33 = —cos® sind

lro —r|™

e, =-
13 (ro =7) (Iro —r|™ +am)

Metric Compatibility

———  o.k.
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Riemann Tensor

RO _ |rg —r|™ (Jro —r|" —a™ n+a™)
Y CHS N (SR

0 0
R 110 — —-R 101

2
R _ o =Pt (o — 7" +an)n
202 —

2 (rg —7)? (Jlro —r|" + a™)® B

0 0
R 220 — —-R 202

2
o g —712™ A/ (Jrg — 7|™ + a®) 7 sin? 9

R —
308 2 (rg =) (|ro —r|* +a)* B
0 0
R7330 = =R 303
R _ro =" (lIro —7|" —a"n+a™) A
001 ™ g (ro —7)2 (Jrg — r|" + a™)? B
1 1
R 10 = =R o01
2
1 ro—7|" (Jro —r|" +a™)n "2 (Jrg — 7| —2a" n+2a™)
Ry = >
2 (rg —r)2 \(lrg —7|" +an)n B
1 1
R991 = =R 10
2
1 ro —7|" (Jrg —r|" +a™)n "2 (lrg —r|" —2a" n + 2a™) sin? @
Riz13 =

2 n 2
2 (rg — 1) (lrg —r|™ +am)n B

lro — r|2™ A

R%py = —

002 2 (rg—7)2 (|ro —r|” +a)® B

2 2
R0 = =R%002

5 |rg —r|™ (Jro —r|" —2a™ n+2a™)
R =~ 2 n 2

2 (rg =) (Iro — 7" +a)

2 2

R%50 = =R

sin? 9 (’F()2 |ro 7T|2" B—2rmry |rg 77"\2" B+ 1r? |To 7'r\2"‘ B+2a" ry? [rg —r|™ B—4a™rry |rg —r|™ B+.H)

R%,,, =
323 (7o 77,)2 (ro — 7™ +a")2 B
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2 2
R 332 — —-R 323

|rg — 7‘|2” A

T2 (g =12 (Iro—7|" +am)? B

3 —
R%g03 =

3 3
R0 = =R%g03

_ lrg —r|™ (Jrg —r|™" —2a™ n+2a™)

R* .=
18 2 (rg — )2 (|ro — r|" + an)?
3 3
R%31 = —R%y15
2 127 B _9pr | 127 B4 2 |y 127 B 49 o™ 2 1" B _ 40y ™ BiLoamr? |r " B 2n .2
7 __To ro — 7| — 2771 |rg — 7| + 7% |rg — 7| +2a" g% |rg — 7| —4a”™rry |rg —r| +2a"r? |rg —r| +a“™ry + ...
228 (ro =) (Iro —r|™ +a™)*> B
3 3
R%335 = —R%553

Ricci Tensor

[rg —r|™ (Jlro —7r|" +a"n—a™) A

2(rg—7m?2 (Jro —r|"+an)? B

Ri lrg —r|™ 3 |rg —r|" —5a"n+5a™)
ic,; =
H 2 (rg —7)? (Jrg — r|™ + a™)?

. 2 2 . 2
Ri ro? |ro — 2™ /(lro —r|" +a™)n B—27r7ry [rog — 72" \/(lro — 7| +a®)n B+72 |rg — 72" \/(Jro —7|" +a®)n B+ ...
1Ca2 =
2
(ro =) (170 = 71" + ™) Y (Iro — r|" +am) % B

2 2 2
sin? ¥ (r02 lro — 2™ \/(Jro — 7| +an)n B =277y |rg — 2™ \/(|ro —7|" +am)n B4+12 |rg —r|2™ \/ (|19 —r|" + an)n B+ )

2
(ro =12 (o = r[" + am)? V(1m0 = r|" + am) 7 B

Ricgg =

Ricci Scalar

2 2 2
(Irg —r|™ + ™) n 2 (2 02 o — 2™V (lro —r|" +am)n B—4rrg [rg — 72" \/(Jro — 7| +a®)n B + )

Pl
(ro =72\ (ro — 7| +am)n B

Rse =

Bianchi identity (Ricci cyclic equation R"[ 0)

pvol =

———  o.k.
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Einstein Tensor

2 2 2
(Iro = 7" +a™) "7 "% A < lro — 712" \/(Iro —r|™ +am)m B =271 |rg —r|>™ \/(lro — 7" + an)n B+ )

Gy =
00 (ro —7)% B
n ny—2 -2 2 2n ,/ n 2 2n ,/ n 2
(Jro =r|" +a™) (To |ro — 7] (lro = 7| +am)n B—2rrg |rg — 7| (lro = r|™ +an)n B+4..>
Gy = -

(ro —r)?

pl
_ ro —7|" A\ (lro —7r|"+a™)n (Jro —r|" —3a"n+3a™)

2 (rg—7)2 (lro —r|" +a™)® B

2
ro — 7" \/(lro — | + am)n (Jro — 7| —3a™n +3a™) sin® 9

2 (rg — 'r)2 (|lro —r|™ + a")2 B

G33 =

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-RY")

2
_ ITU _,r|n (‘TO _ r‘n +an) w2 (|7'0 _,r,ln +ann_ an)
n 2(rg—7r)? AB

Current Density Class 1 (-Ri#”j)

2
ro—r|" (Jro —r|" +a™) " n "2 B |rg —r|" —5a" n+5a")

J =
! 2 (rg — )2 B2

(Iro — 7|™ n—4-2 ( 2 _o2n o _2n 2 _2n n,. 2 _m B Aam _n
rg—r|"+a™)" n (ro® lro —r|>™ B—=27rrg |rg —r|?™ B+r® |rg —r|?™ B4+2a™ 1 |[rg —r|" B—4a™rrg |rg —7|™ B+ ...)

Jo = —
2 (ro —7)% B

4
; (o —r\"+a")7?72 (r02 lro — 72" B =277y |rg — 72" B4+72 |rg —r|>® B+2a™ 1% |rg —7|" B—4a™rry |19 — 7" B+...)
J3 = —

(ro — 7)? sin29 B

Current Density Class 2 (-Ri#"j)

J1 =0
J2=0
J3 =0
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0-45 T T T T
035 | ]

025 | ]

Charge Density p

0.05 | .

Fig. 4.1: Spherical metric of Crothers, charge density p for rg = 0, = 1,n =
3, A=B=1.
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Fig. 4.2: Spherical metric of Crothers, current density J,. for 1o =0, = 1,n =
3, A=B=1.
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O [
o 02F |
- B
3 ;
- ;
2z /
@ -04F .
c !
(0] B
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€ i
qt’ -0.6 | E
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_1 i | 1 1 1
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Fig. 4.3: Spherical metric of Crothers, current density Jy, J, for 1o = 0, =
1,n=3A=B=1.
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Fig. 4.4: Spherical metric of Crothers, charge density p for rp = 1, = 1,n =
1,A=B=1.
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Fig. 4.5: Spherical metric of Crothers, current density J,. for ro = 1, = 1,n =
1,A=B=1.
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Fig. 4.6: Spherical metric of Crothers, current density Jy,J, for rg = 1, =
0O,n=1,A=B=1.

161



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION
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Charge Density p
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Fig. 4.7: Spherical metric of Crothers, charge density p for rg = 0, = 0,n =

1,A=B=1.
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Fig. 4.8: Spherical metric of Crothers, current density J,. for 1o = 0, =0,n =
1,A=B=1.
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Fig. 4.9: Spherical metric of Crothers, current density Jy,J, for 1o = 0,a =
O,n=1,A=B=1.

Current Density Class 3 (-Riﬂf‘j)

J1 =0
Jo=0
J3 =0

4.4.5 Crothers metric with Schwarzschild parameters

The parameters in the general Crothers metric with:
C(r)=(|r —ro|™ + a”)2/n

have been chosen as rg =0, a =1, n = 3.

Coordinates

g

€ >3 &+
~
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Metric
—(Ir]® + 1)% A 0 0 0
E 1
_ 0 (Ir®P+1)3 B 0 0
Guv = 2
0 0 (Ir>+1)3 0
2

0 0 0 (Ir1® +1)3 sin®9

Contravariant Metric

e 0 0 0

(\r\3+1)% A
0 e 0 0
pv (Ir13+1)3 B
9= 0 0 - 0
(I3 +1) 3
0 0 0 L

(\'r‘\3+1)% sin2 9
Christoffel Connection

r° :L
L2 (4 )

0 _ 10
Mo =T"

o 3 A
© = 2 rl+ ) B
. = L
N )
. = ,L
22 — 3 2
|7 (\r\ +1)3 B
1 r3 sin? 9
[as = T s N2
Ir| (Ir|*+1)3 B
aCa— L
127

2 2
1—‘21_1—‘12

2 .
I'“33 = —cos? sind
3
ré,=—
13 o[+ 4
3 cos ¥
Moy = —
sin ¢

3 _ 3
s =T33

3 3
[ =17
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Metric Compatibility

———— o.k.

Riemann Tensor

r (r? |r| —2)

R0 =
101 g (Ir]® + 8 |r| +2r6)
0 0
R0 =—-R 01
0 r
Ropp = — - 2
2(r2|r|+1) (Ir®P+1)3 B
0 0
R0 = —R7502
0 r* sin? 9
Rg03 = — ; 2
2 (r2 |r|+1) (|7’|‘3 + 1) 3 B
0 0
R 330 = =R 303
R _ r4 (r2 |7 —2) A
001 ™ o (Ir]®> +r8 |r|+2r6) B
1 1
R0 = —R01
RL . _ 2 (3rt |r]> — 47 ||+ 4 |r| +3r%)
212 = 2
2(IrP+1)3 (I7]° + 74 |r| + 18 +72) B
1 1
R0y = —R' 515
R _ r? (37’4 [r)® — 478 |r| +4 |r| +3r4) sin? 9
313 = — ] 2 -
2 (IrIP+1)3 (|l + 74 |r|+r8+72) B
1 1
R 331 = —R'313
72 _ rt A
0027 9 (272 |r|+16 4+ 1) B
2 2
R%50 = =R%g02
R - rt (7’2 |r] — 4)
12T g (Ir]® 4+ 78 |r| +276)
2 2
R = —R%yy
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sin? ¥ <r2 vl (Ir]® + 1)% B+ (Ir]* + 1)% B — T'4>

R’ =
323 = 3 2
(2 |r|+1) (|7‘| + 1) 3 B
2 2
R7330 = —R7393
7 _ rt A
0037 922 |r|+76+1) B
3 3
R%530 = =R%g03
R rt (r? |r| —4)
113 2 (|7”|3—&-7”8 |r| +276)
3 3
R%3; = —R%y33
2 3 2 3 2 4
N (IrP+1)3 B+ (rP+1)3 B—r
223 = T 2
(r2 |rl+1) (Ir*+1)3 B
3 3
R%935 = —R%353

Ricci Tensor

@B+ e+ 307 r| +407° +2) A
2 (r6 >+ |r[> + M |r[+ 578 |r| + 4712 +476) B

Ricyy =

r* (372 |r| — 10)
2 (Ir]® +r8 |r| 4+ 276)

Ricy; =

. 2 1S (e +1)F B4200 o] (rP+1)3 Baart |r| (WP +1)3 B46r® (/P +1)3 B+2s2 (12 +1)5 B...
1C =
2 2 (\T\3+1)% (I 4+ 710 ||+ 274 ||+ 378 +72) B
sin? 9 (2 r® (rP +1)% B+2rt® o) (rP+1)3 Brart o] (7P +1)3 Br6r® (rP+1)3 Br2e? (P +1)3 B..,)
Ricgy =

2 (Ir]® + 1)% (Ir[> + r10 |r| + 274 |r| + 378 +r2) B

Ricci Scalar

12712 7| B+ 1478 7' B2 |r|*t B+12720 |r|® B+387 |r|° B+207% 7| B+272 |r|® B+26722 |r|” B+8871¢ |r|” B...

Rsc =

Bianchi identity (Ricci cyclic equation R =0)

———  o.k.
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Einstein Tensor

A (48720 |r|M B+ 1047 |7|'t B+ 6478 |r|*t B+8r? |r|M B+48728 |r|° B +200722 |r|° B+23276 |r|° B+88710 |r° B...)

Goo = 1
2r2 (|r]® 4+ 1)8 (24718 |r|*t 452712 |p|2 3296 |2t 4 |r|t 424726 7| 4100720 |r|® + 116714 |r|® 4 4478 |r|® 4 ...) B
a. 247 |1t B 42878 ¢ B4+4r? |r|M B4+24722 |7 B4+ 7676 |7 B4+407 || B44r* |r|° B4+52r2* |7|7 B4+ 17678 |r|” B+ ...
11 - 1
2r2 (|r|3 4+ 1)8 (12712 |p|*t + 1476 |p|* 4+ 2 |r|M1 412720 |r|® 438714 |r|® 42078 |r|® + 272 |r|? + 26722 |r|7 + ...)
G — 1278 7)Y 41072 |2|* 4+ 8,16 |#|17 447,10 21T 44t |17 4+ 302 210 4 41018 |20 £ 73012 2|20 44070 2P0 44 |10 + 10020 213 4 L.
22 = , 2
2 (|72 +1)5 (18718 |r|* + 27712 |21 41076 |7|* + |21t + 18726 |7 + 63720 |r|® + 49714 [r]° + 1378 |7 +...) B
(1278 |7|* + 1072 [P + 8716 |r[YT 4 47,0 ¢ 1T f At |17 4302 015 44108 |20 4 73012 |15 4 4008 |15 14 P+ ) sin? ¥
33 =

2
2 (|r|®+1)8 (18718 |r|*t + 27712 2|t 4 1076 |r|*t + |r|1t 4+ 18726 |r|® + 63720 |r|® + 49714 |1 + 1378 |7 472 |r|° +...) B

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-RY,)

1
rd (|r\3 +1)3 @B+ r| + % ||+ 40 + 2)
2 (Ir]° + 78 [r|" + 02 |r|7 + 010 |p[> + 2012 |22 4576 |73 4 7|3 + 14 |r| + 378 |r| + 118 4 10712 4 5r6) AB

p =
Current Density Class 1 (-R’,/7)

1
r (IrP+1)3 (2 |r]® + 1478 |2 + 872 |72 = 13710 |r| + 170 |#| — 30 +210% +1077)

I =
1T (Ir]* + 278 |r|® + 72 |r| 4 716 7|7 4 710 |r |7 44 e 4 12 |r]P 4206 |2 48714 |3 4 ...) B2

2 2 2 2 2
g art e (Ir)P+1)3 B+6r3 |r|” (Ir2+1)8 B+272 |r|” (|3 +1)3 B+27 |r]® (|r?+1)3 B+107 |75 (|7 +1)3 B+ ...
2 2 (2714 |p[13 4308 |p|M3 42 |p |13 4 16 |p |1 4 5010 o1 24 0|t 69712 |r|2 4676 || 42 |r|° +...) B

2 2 2 2 2
J artt " (IrP +1)3 B4+ 67° |r|” (Ir* +1)3 B+20® 7 (|r]> +1)3 B+27' [r° (Jr> +1)3 B4 100" |r° (Ir° +1)3 B+ ...
3= —

2 (2r1 |p[B3 4378 |p|M3 42 |13 4 16 || 4 5020 o1 204 |2t 46012 |2 4676 |7|Y 42 |1 + ...) sin2 9 B

Current Density Class 2 (_Riuuj)

J1 =0
Ja =0
J3 =0
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Current Density Class 3 (—Riﬂ“j)

J1 =0
Jo =0
J3 =0

4.4.6 General spherical metric

The general spherically symmetric metric contains exponentials of functions «
and (8 which in turn are functions of t and r.

Coordinates
t
_ s
=1 0w
7]
Metric
—e2@ 0 0 0
0 e 0 0
Juv = 0 0o 2 0
0 0 0 r2sin?9

—e 2 0 0 0

o 0 e?8 0 0

g = 0 0 % 0
0 0 0 o

r, = —
00 dta

d

o, = —

01 dr

d 2a-2
'y, = —ae?*" 28
00 = o
d
rty, = —
0n=18
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1
1_‘107

1
FDI
d
"’
-2

—e€ T

2B

- .2
—e r sin® V¥

= —cos ¥ sin?

Metric Compatibility

—— o.k.

Riemann Tensor

0
R 101

—e 2@ (ezﬁ (dd—;ﬁ
Rollo = _Rolol
Rozoz = _dir ae !
R0212 =—e 2" (%
R0220 = —R0202
R0221 = *R0212
RCy05 = _dir ae”?’

)

.2
r sin® 9
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d
RO _ _,2a (@ in29
313 e dtﬂ 7 sin
0 0
R 330 = =R 303

0 0
R 331 — -R 313

d
Rl212 =e %0 (*5) T

1
1 1
R 221 — —-R 212

d
R1303 = 2P <—t ﬁ) r sin? 9

d
R1330 = _R1303
Rl331 = *R1313
2 _ % ae2a—28
002

d
g2 _diP
012 ,

2 2
R%550 = —R702
2 2
R 021 — -R 012

d
R2 . _ _dif
102 r
d
R _ _d:P
112 —
,
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R3003 - I
R3013 = g
T
R3030 = _R3003
R3031 = _R3013
R3103 == dc
T
R3113 = % 7
T
R3130 = *Rsms
R3131 = *R3113
R3223 =—c?7
R3232 = *R3223

Ricci Tensor

Ricgyq

Ricy,

20 (27 (£ 8) r4e®? (£ 8)7 r—Fract? (#8) r+e® (Fa) (£8) r=e®® (f5a) r-.)
.
Rico) = 2%")
Ric,, = Ricy,
e (2P (nB) r4e?? (F8) 1= drac?? () r+e (dha) (FB) r—e (Fza)r—e (Fa)’ r+..)
T

Ricyy = e 2P (

Ricgg = e 2P (

d

dr

d

dr
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Ricci Scalar

28 (_d2 ) 2 28 (d )2 .2 4 . 28 (d 2 2 d d 2 2o (—d2 a) r?
R —oge-28-2a € (dt"’ﬁ T (FB)"r*  Fhae?? (Fp)r* % (Fao) (5B © drZ
o = N

r2 2 2 2

2a d 22
¢ (F5e)" + dr _ + _
2 r2 r2 r2

22 (iﬁ) r 2% (%a) T e2ft2a e2a>

T
Bianchi identity (Ricci cyclic equation R =0)

——F— o.k.

Einstein Tensor

e2 =28 (2 (%B) r+e2? 71)

GO(): =
Gy =2 (?ﬁ)

G = G,

Gy =2 (La)r—ef 41

r2

d? d \? d d d d d?
G33:76_2ﬁ_2ar (62/@ (ﬁﬁ)) r4e?? (Eﬁ> rfaaewi (Eﬁ> r4e?® (Ea> (Eﬁ> r—e’® <dr2a r— .| sin?9

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R;")

em20mte (20 (A5 5) r 4P (L) r— fael (L) r+e (fa) (&8) r—e (Lpa)r—e* (a)r—.)

p=-

Current Density Class 1 (-Riﬂ“j)

e48—2 (eQﬁ (d‘i?ﬁ)r—i-ezﬁ (%6)27‘—%&623 (%ﬁ)r-ﬁ—ez (%a) (d—drﬁ)r—e2 (d a)r—62 (%a)Qr-f-...)

J = —

e 28 (%ﬁr—%ar+ezﬁ—l)

J2:_
rd

e 28 (%57‘—%@7‘4-62‘3—1)

J3 = —
r4 sin2 9
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Fig. 4.10: General spherical metric, charge density p for a = 1/r, 5 =r.

Current Density Class 2 (-R’,")

Ji1 =0
J2=0
J3 =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
Js=0

4.4.7 Spherically symmetric metric with perturbation a/r

This spherically symmetric metric contains an additional perturbation a/r.
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Fig. 4.11: General spherical metric, current density J,. for « = 1/r, 8 =r.
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Fig. 4.12: General spherical metric, current density Jy, J, for o =1/r, 5 =r.
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Coordinates
t
< — r
o )
2
Metric
2GM | a
21 0 0 0
0 FTex e 0 0
Juv = CQT T +1
0 0 r? 0
0 0 0 72 sin’9
Contravariant Metric
2.2
_2'rGMicg7‘2Jrac2 02 ) ) 0 0
g = 0 2T‘GM;++M 0 0
0 0 % 0
0 0 0 L

72 sin2 9

Christoffel Connection

o rGM +ac?
M 2rGM+c2r2 +ac?)
F010:F001
1 (rGM—i—acQ) (2TGM+027"2+a02)
oo =~ A5
Lo rGM +ac?
U 2rGM + 22 +ac?)
i _ 2rGM +cr? +ac?
2 c2r
1 sin219(27"GM+02r2+a02)
ey =— 2
r
1
2, =-
12 =
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I‘221 = I‘212
2,5 = —cos¥ sind
1
3, ==
137 0
- cos vV
3
27 giny
Fd31 = Fd13
[Pgy =179

Metric Compatibility
— ok

Riemann Tensor

0 2rGM +3ac?
R = =3 2.2 2
r2 (2rGM +c2r? +ac?)

Rono = *Rolol

o _rGM+ac?
Bom =2
R0220 = _RO202

0 sin? 9 (rGM+a02)
R"305 = 22
R0330 = _R0303

1 (2rGM+3a02) (2rGM+02r2+a02)
RO()l:_ A6
Rlolo = _Rlool

. rGM+ac®
Baw =g
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1 _ 1
R 221 — -R 212

sin? 9 (rGM+a02)

1 _
R 313 — 22
R1331 - *R1313

) (rGM +ac®) (2rGM+c2r?*+ac?)
R%09 = A6
R%*.,,=—R

020 002
R rGM+ac?

U2 02 2rGM + 212 +ac?)
R2121 =—R"

9 sinzﬁ(2rGM+ac2)
R%353 = — 2 2
32332 = *32323

3 (rGM +ac?) (2rGM+c2r?*+ac?)
R’y = A6
33030 = _R3003
R rGM+ac?

H3 = 2 2rGM+c2r?2+ac?)
R3131 = *R3113

s 2rGM+ac?
R993 = 202
33232 = *R3223
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Ricci Tensor

a(2rGM+c2r?+ac?)

Ricyy =
00 02 7,6
. ac?
Ricyy = —— 2,2 2
2 2rGM +c2r?2 +ac?)
a
Ricy, = —
22 rQ
. a sin? ¥
Ricgs =

r2
Ricci Scalar
R,.=0

Bianchi identity (Ricci cyclic equation R"”"[WU] =0)
o.k.

Einstein Tensor

a(2rGM+cr*+ac?)

Goo =

c2rb

G ac?

1 r2 (2rGM +c2r2+ac?)

a

Goy = —

22 T2
a a sin? ¥

33 r2

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)

a02

P= 2 2rGM+c2r2+ac?)
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Current Density Class 1 (—Ri#"j)

a (2rGM+cQ7°2—|—a02)

Ji =

c2r6
a
Iy = ——
6
a
J3 = —
r6 sin? 9

Ji=0
Jo=10
J3 =0

Current Density Class 3 (_Riuuj)

Ji=0
Jo=0
Js =0

4.4.8 Spherically symmetric metric with general p(r)

Spherically symmetric line element with a generalized dependence pu(r).

Coordinates
t
= r
o )
¥
Metric
f% —1 0 0 0
1
oy = 0 s} 0 0
mv 0 0 r? 0
0 0 0 72sin?
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Contravariant Metric

0 0 0
v 0 =0 0
g o 0 L 0
0 0 0 ogeg

1'\0 — dr r—H
N 2r (r+p)
o =10
o ) (GFar—p)
00 2,’,_3
oL _dskr—p
U= "5
27 (r+p)

Iy = —(r+p)

Ty = — (r+ p) sin?9

I‘212 = %
F221 = F212
I, = —cos ¥ sin ¥
FS13 = %
3 cost
27 sind
[Py =173
P39 = T3
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Metric Compatibility
o.k.

Riemann Tensor

2

%ur2—2 (%H)T"‘Q#

RY, = —
207 (r + 1)
Rollo = _Rolol
RO Aopr—p
202 2
30220 = _30202
RO _(dirur—u) sin® 9
303 2y
RO330 = —R'33
2
. (r+p) (d%wQ 2(%u)r+2u)
001 — — 94
Rlolo = _Rlool
R _dhT—p
212 2
31221 = R1212
Rl _(dir/w"—,u) sin? 9
313 2
31331 = _R1313
PO ) (A pr — )
002 94
32020 = _R2002
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4.4.
R _ @i hT—n
112 27”2 (,,,_'_u)
32121 = _R2112
R N sin? ¢
323 = r
R2332 = _R2323
R () (Fpr—p)
003 9 pd
R3y30 = —R
030 003
RS @i hT—n
M2 (r 4 )
R3131 =—R’y3
R3223 =
R3232 = *R3223

Ricci Tensor

Lw (r+p)

Ricyg = 5,2
d2
. arz M
R — __dr2 "
RN )
) d
Ricy,y = P

d
Ricgs = el sin? 9
Ricci Scalar

L2 (L
7:2

Rsc =
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Bianchi identity (Ricci cyclic equation R“[WG] =0)
—— ok

Einstein Tensor

o ()
00 — r3
d
Gy = —2F
U )
2
wr
G :dr2
22 B
dd—zzursiHQﬁ
Ggg =

Hodge Dual of Bianchi Identity
—— (see charge and current densities)
Scalar Charge Density (-R,)

d2
arz P

Y

Current Density Class 1 (-R’,/7)

2
Lw (r+ p)

J =
! 272
d
Jp =4kt
2="7
d
Jy = it
r4 sin? ¥
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Current Density Class 2 (—Riﬂ“j)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
J3=0

4.4.9 Spherically symmetric metric with off-diagonal ele-
ments

This version of the spherically symmetric line element is a precursor form of the
diagonal metric. The functions A, B, C, D depend on t and r.

Coordinates

H

I
/
€ 3
N~

A —-B 0 0

_|-B —-c o 0

Guy =1 0 0 -D 0
0 0 0 —sin?9 D

Contravariant Metric

C B

AC+B2 7,402-52 0 0
__ B _ A 0 0
g’ = AC+B2 AC+B2
0 0 -5 0
1
0 0 0 T sin29 D
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Christoffel Connection

L AC+2B (L B)+LAB
2 (AC + B?)

B(&£co)+LAcC
a 2 (AC + B2)

0 0
1—‘1071—‘01

C(#HO)+B(#£0)-2(#B)C

r’, =
1 2 (AC + B?)
o _C(4D) =B (D)
22 2 (AC + B?)
o sin? 9 (C (& D) — B (& D))
33 2 (AC + B?)
- _2A (£ B) -4 AB+A (£ A
00 2 (AC + B?)
rt 7A(%C)7%AB
01 2 (AC + B?)
Fllozrlm
o _ _B(#C) -A(£C) 2B (£ B)
t 2 (AC + B?)
L _ _B(4D)+A(4D)
22 2 (AC + B2?)
p_ _sin?d (B (§5 D)+ A (45 D))
387 2 (AC + B?)
d
)]
1—‘2 :dt
02 2D
d
)
F212:d27D
[0 =T,
1_‘221:F12
1"233 = —cos ¥ sin?
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3 3
s =T33
3 3
P =I5

Metric Compatibility

———  o.k.

Riemann Tensor

2 2
B (24C (£50)+2B% (£ C) - A(4C)° - AC (£ C) —2B (# B) (C) + & AB (£C) +24 (£ B) (#&C) - ..

RO _ dt2 t s
001 1 (AC + B2)?
Room = *Room
2 2
o _C (240 (£ 0)+2B (£5C) = A (£ C)* = £ AC (£ 0) 2B (4 B) (4 C) + & AB (£ C) +24 (£ B) (£C) - ..)
101 = 4 (AC + B2)?
Rono = *Rolol
- 2 2
o 2AC?D (45 D) +2B2°CD (£ D) = AC? (# D)* = B2C (4 D)’ + ABC (4 D) (5 D) + B® (5 D) (5 D) + ...
202 = 4(AC+B2)?2 D
R _ _AC’(§5D) (D) +B*C (5 D) (5 D) =B (¢5C) D (45 D) + 7 AC* D (3 D) +2B (5 B) CD (7 D) + -
212 4 (AC+B2)?2D
Rozzo = _R0202
R0221 = _R0212
. 2 2
o sin?9 (2402 D (£ D) +2B2CD (5 D) - AC? (4 D)* = B2C (5 D)> + ABC (4= D) (45 D) + B* (D) (D) +-.)
303 —

4 (AC+B2)?D
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RO _ _sin?9 (AC? (£ D) (£ D) +B*C (£ D) (5D)-B* (5C) D (D) + £ AC’D (D) +2B (£ B) CD (#£ D) +..)
313 4 (AC+B2)?2D

o _ 0
R7330 = —R7303
o _ 0
R733; = =R 313

2 2
A(zac (£50)+2B% (£C)—A(£C) - £ AC (£C)—2B (£ B) (£0)+ £ AB (£0)+24 (£ B) (£0) - ..)
4(AC+ B2)?

1
ROOlf

2 2
B (240 (£50)+2B% (£ C)—A(£C)° - £ AC (£C)—2B (£ B) (£0) + £ AB (£0)+24 (£ B) (£C)-..)

1 _ dt2 =
R0 = 4 (AC + B2)?
Rlno: R1101
) 2ABCD (£; D) +28°D (£, D)~ ABC (4 D)* - B* (£ D)* - A%C (A D) (4 D) - AB* (A& D) (& D) — .
R0 = — 4 (AC+B2)?2D
Rl _ABC(§D) (D) +B* (D) (D) +AC (#C) D (# D)+ B (#C) D (# D) +AB (#C) D (D) — -
212 4 (AC’+B’2)2 D
R1220 = _R1202
R1221 = *R1212
in2 d? 3p (4% p) _ d PDV2_ B3 (d D)2 _ A2C (4 d D) _ ARB2 (-4 d p)_
o S0 (24BCD (5 D) +25°D (5 D ABC (& D)? - B® (& D)> - A%C (& D) (& D) - AB? (£ D) (& D) — ...
303 = 4 (AC+B2)?2 D
gl S0’ (ABC (D) (# D)+ B° (D) (D) +AC (#C) D (D) + B (#C) D (#D) +AB (#0) D (# D) — )
313 4(AC+B2)2D
R1330 = _R1303
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2 2
24CD (£, D) +2B°D (£; D) - AC (£ D)* = B2 (& D)* — £ ACD (£ D) -2B (£ B) D (& D) — &£ ABD (£ D) — ..

R? _ dt2
002 4 (AC + B2) D2
2 2
w2 __AC (D) (# D)+ B (# D) (# D)+ B (#C) D (# D) + # ACD (4 D) ~2ACD (743 D) ~2B° D (7873 D) + -
o1z = 4 (AC + B?) D?
R2020 = _R2002
R2021 = —R2012
2 2
) AC (D) (5 D)+ B2 (45 D) (5 D) + B (5 C) D (D) + 45 ACD (£ D) —24C D (355 D) —2B°D (7% D) + ..
Rh02 = = 4 (AC + B?) D?
2 2
2 __C (#C) D (45 D) +B (£C) D (45 D) -2 (5 B) CD (5 D) —24CD (#£5D) =2B°D ({5 D) + AC (4= D)* + ...
112 = — 4 (AC + B?2) D2
R2120 = 7R2102
R2121 = *R2112
e sin?9 (C (45 D)* —2B (£ D) (£ D) — A (£ D)* +4ACD+4B%D)
323 7 4 (AC+B?) D
R2332 = _R2323
2 2
aa 240D (& D) +2B°D (£ D)~ AC (£ D)* — B (4 D)* ~ £ ACD (4 D) —2B (£ B) D (& D) - & ABD (4 D) — ...
003 ™ 4 (AC + B2) D2
2 2
wo __AC (D) (# D)+ B (# D) (# D)+ B (#C) D (# D) + # ACD (#: D) ~2ACD (743 D) ~2B° D (¥ D) + -
013 —

4 (AC + B?) D?

3 3
R 030 — —-R 003
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R3031_ R3013
2 2
pr __ACGED) (#D)+ B (#D) (#D)+B (#0) D (# D)+ ACD (# D) ~24CD (775 D) ~25°D (7#73 D) + -
108 ™ 4 (AC + B?) D2
2 2

. _7C(%C)D(%D)jLB(%C)D(%D)72(%B)CD(%D)72ACD(#D)72BQD(;TD)JrAC(%D)QJr...
s 4 (AC + B2?) D?

R3130 = *R3103

R3131 = _R3113

RS _ C (& D) -2B (&£ D) (& D)-A(LD)?+4ACD+4B*D

228 = 4 (AC+ B2) D

R3232 = _R3223

Ricci Tensor

, 442C?D (£5 D) +8AB2CD (45 D) +4B*D (&5 D) —242C? (£ D)* —4AB>C (# D)* —2B* (# D)* - ..
Ricgy = — 4 (AC + B2)2 D2
Ric, = 2A2C? (£ D) (4 D) +4AB*C (£ D) (45 D)+2B* (L D) (£ D)+24ABC (£ C) D (£ D)+2B° (5C) D (£ D)+ ...

4 (AC+ B?)® D?

Ric,y = Ricgy;

) 24C?* (£ C)D (L D)+2B*C (L C)D (4L D)+24BC (L C)D (4 D)+2B% (£ C)D (&£ D)-4A (L B)Cc*D (£ D) -.

Ricqy = 4 (AC ¥ B?)? D2
2 2

. 240% (£ D) +2B°C (£ D)+ AC (4 C) (4 D) +2B (4 C) (4 D)+ AB (£ C) (45 D) — 45 AC? (4 D) — ..

Ricas = 1(AC+ B?)?
. 2 2

. sin?9 (24C2 (L3 D) +2B2C (L5 D) + AC (£ C) (D) +2B* (££C) (£ D) +AB (4 C) (£ D) - £ AC* (£ D) - )

1C33 =

4 (AC + B2)?
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Ricci Scalar

2 d? 2 d?
440D (3 D) 4B°CD (§D) AC (D) | BC(#D)? | 24BC(4#D) (D)
2 (AC + B2)? D2 r2 2 (AC+ B2)? D2 2 (AC+ B2)? D2 r2

Rsc =

2B* (#: D) (#D)  2AC (#£C) D (D) 4B° (§5C) D (#D)  24B (£ C) D (D) 2 (#4) C*D (45 D)

2 (AC + B2)2 D2 2 (AC + B2)? D2 2 (AC + B2)2 D2 2 (AC + B2)? D2 2 (AC + B2)? D2

2

2 a2 2 d
4B (& B)CD (£D) 4A(AB)CD(4D) 2(£A4) BCD(4D) 440D (#5 D) 44D ({#5D)

T 2(AC+B2ZD? | 2(ACT B2 D? + 2(AC+B22 D2  2(AC+B2)2D? 2(AC+ B?)? D2
2 2
_84BCD (757 D) _8BSD(dfdtD) A2C (L D)? AB? (£ D) 24B (4 C) D (£ D)
2 (AC + B2)? D2 2 (AC+B?)2 D2  2(AC+ B2)2 D2 2 (AC+ B2)? D2 2
24% (£ C)D (£ D) 4A(4£B)CD(£D)1 N 2(£A)BCD (£ D) 24(L£A)CD(LD) 4AB (L B)D (£ D)
2 (AC + B2)? D2 2 (AC + B2)? D2 2 (AC + B2)2 D2 2 (AC + B2)2 D2 2 (AC + B2)? D2
d 2 d 24cC (43 ¢) p? 2B (4L ¢) D? 4 2 p2 d d 2
4(A) B D(ﬁD)_i_ FEY] N FEY; Ao Db FHAc(Fo)D
2 (AC + B2)? D2 2 (AC + B2)?2 D2 r2 2(AC+ B2)2 D2 2 (AC + B2)? D2

2B (§B) (#C)D*  FAB(§C)D* 24 (& B) (§50) D*  #HAB(450) D?

2 (AC + B2)? D2 2 (AC + B2)? D2 2 (AC + B2)? D2 2 (AC + B2)? D2
d d 2 44 (-4 B) cD? d da 2 24 (2% A) D2 d 4)2 2
LAGEA) (#0) D TraE 2 (£ A) (A B) CD* e (£ 4)2 cD
2 (AC + B2)? D2 2 (AC + B2)? D2 2 (AC + B2)? D2 2(AC + B2)2 D2 ' 2 (AC + B?)® D2
d d 2 4pB2 a2 p\ p2 2 ~2 2 4
4B (L B) (L B) D Trai 4A°C°D  BAB°CD 4B4D
2 (AC + B2)? D2 2(AC+B2)2 D2 ' 2(ACY+B2)2D? ' 2(AC+ B2 D2 ' 2 (AC + B2)? D2

Bianchi identity (Ricci cyclic equation R"‘[WU] =0)

—— o.k.

Einstein Tensor

4ABC?D (5 D) +4B°CD (45 D)~ ABC? (45 D)* = B*C (45 D)* —242C? (£ D) (& D) — -

Goy = —
ot 4 (AC + B2?)? D2
GloiGOI
o 4AC*D (£, D) +4B2C?D (£ D) — AC* (£ D)* = B2C? (£ D)* +2ABC? (£ D) (£ D) +2B°C (A D) (4 D)+
ne 4 (AC + B2)? D2
2 2
o _ 24C2D (£, D) +2B°CD (£ D) - AC? (4 D)* = B2C (4 D)* +2ABC (£ D) (5 D) +2B° (£ D) (& D) + ...
2 4(AC+B2?)?2D
o sin?9 (24C2D (£, D) +2B2°CD (£ D) - AC? (4 D)* = B2C (4 D)* +2A4BC (£ D) (# D) +2B° (£ D) (& D) +..)
33 —

4(AC+B2)?D
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Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R;")

14C*D (£, D) +4B°C?D (£ D) —2AC* (£ D)* —2B2C? (£ D) +44BC? (4 D) (45 D) +4B°C (£ D) (& D) + ..

_ dt2 dt2
P 4(AC + B?)® D?

Current Density Class 1 (-R’ ")

44B°CD (£ D) +4B'D (5 D) —2AB>C (# D)* —2B" (# D)? — 44> BC (£ D) (45 D) —4AB® (4 D) (45 D) — ...

= 4 (AC + B?)? D?

2 2
L 24C? (£ D) +2B2C (L3 D)+ AC (45C) (£ D) +2B (4C) (D) +AB (4C) (£ D) - 45 AC? (£ D) — ...
- 4 (AC + B2)? D2

2 2
; 24C% (£, D) +2B2C (L3 D)+ AC (45C) (£ D) +2B (4C) (D) +AB (4C) (£ D) — 45 AC% (£ D) — ..
3=

4sin29 (AC + B2)% D2

Current Density Class 2 (-R’,")

J1=0
J2=0
J3 =0

J1 =0
Jo=0
J3 =0

4.4.10 Reissner-Nordstrom metric

This is a metric of a charged mass. M is a mass parameter, QQ a charge parameter.
Cosmological charge and current densities do exist.

Coordinates

€ & 3 <+
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Metric
Q 42M g 0 0 0
1
uv = ’ ?22 -5+ 0 !
0 0 r? 0
0 0 0 72sin®Y

Contravariant Metric

2

g 0 0 0
g = 0 Q—QT# 0 0
0 0 5 0
0 0 0 ey
Christoffel Connection
oo Q?—rM
01 r(Q%>—2r M +1r?)
I‘Olo:FOm
rt 7_(Q2—27“M+r2) (QQ—TM)
00 = 5
i _ Q*—rM
1 r(Q2—2rM+1?)
Il __Q2727’M+r2
2= o
r __sinzﬁ(Q2—2rM+r2)
33 = ,
1
I‘212:;

2 _ 12
1_\21_1_\12

%, = —cos® sin®
1
I, ==
137 0
cos v
I3, =
B sing
F331 = F313
[Pgy =179
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Metric Compatibility
o.k.

Riemann Tensor

RO 3Q>-2rM

1017 2 (Q?—2r M +r?)
Rouo = _R0101

o Q*—rM
R¥90 = 2z
Rozzo =—R'9p

0 banﬂ(QQ—rM)
R 303 — r2
30330 = _R0303

1 (Q2—27“M—|—7°2) (3@2—2TM)
R = — 6
R'yo=—-R

010 001

2

1 QF—rM
R91 = 2
31221 = _R1212

L sin® 9 (Q% —r M)
R 415 = r2
R! =—-R

331 313

5 (Q2—2rM+r2) (QQ—TM)
R 002 — r6
R%*.,,=—-R

020 002
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R Q*—rM

H27 2 (Q*>—2r M +r?)
R2121 = R2112

9 sin? ¥ (Q2—27"M)
R%393 = — r2
R’y = —R

332 323

3 (Q2727’M+r2) (QQ—TM)
R0 = 6
R3p.0 = —R

030 003
3 Q*—rM

H3 =2 (Q%—2r M +r?)
R3131 =-R 113

2

3 Q=2rM
R 223 — 72
R3,., = —R

232 223

Ricyy = 6
: Q?
Riew = =5 @ —arar + )
2
Ricy, = z
s 2 2
sin”
Ricy — S0 V@

2

Ricci Scalar

Ry =0
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Bianchi identity (Ricci cyclic equation R“[WG] =0)
o.k.

Einstein Tensor

Q2 (Q* —2r M +12)

Goo = 6
Q2
Gun=-13 (Q%—2r M +1r?)
Q2
G22 = er
sin? 9 Q2
G33 = )

Hodge Dual of Bianchi Identity

——— (see charge and current densities)

Scalar Charge Density (-R%)

QQ
p= r2 (Q% —2r M + r?)

Current Density Class 1 (-Riﬂ“j)

Q2 (Q* —2r M +1?)

7’6
Q2
JQ == _TT
Q2
Jo = —
3 r6 sin% 9
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Charge Density p

Fig. 4.13: Reissner-Nordstrom metric, charge density p for M=1, Q=2.

Current Density Class 2 (-R’,/7)

Jy=0
Jo =0
Js =0

Current Density Class 3 (-Ri#“j)

Ji =0
Jo=0
J3 =0
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Fig. 4.14: Reissner-Nordstrom metric, current density J,. for M=1, Q=2.
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Fig. 4.15: Reissner-Nordstrom metric, current density Jy, J, for M=1, Q=2.
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20

15

10

Charge Density p
o

-15 +

-20

N
o

-100

Current Density J,

-150

Fig. 4.17: Reissner-Nordstrom metric, current density J, for M=2, Q=1.
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Fig. 4.18: Reissner-Nordstrom metric, current density Js, J, for M=2, Q=1.

4.4.11 Extended Reissner-Weyl metric

General solution of Einstein-Maxwell field theory for electromagnetism unified
with gravitation. This metric assumes a vacuum outside of the center, therefore
it should be a vacuum metric, but it isn’t (only the Ricci scalar is zero). A, B,
C, and k are parameters.

This metric is identical with the Reissner-Nordstrom metric. The parameter
C was introduced experimentally to see differences to the Reissner-Nordstrom
metric.

Coordinates
t
x— r
Tl v
¥
Metric
G g8 _44, 0 0 0
0 — 0 0
Guv = 7%7%7%7%
0 0 r? 0
0 0 0 7r2sin®d
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Contravariant Metric

273
T 2C+rrB242r2 A—273 20 ) 5 0 0
gl“’ _ 0 QCJranthr A—2r 0 0
0 0 5 0
1
0 0 0 r2 sin? 9

Christoffel Connection

3C+krB2+4+1r24

%, =-
o1 r(2C+KkrB2+4+21r2A—27r3)
I‘010:F001
1 (2C+/<57“B2—|—21“2A—2r3) (3C—|-I€TB2+7’2A)
Do == 4r7?
o 3C+rrB*+1r?A
U QCH+krB24+2r2A—213)
1 204+ krB2+2r2A—2¢3
oy = — 922
r
1 sin219(20+/4:r32+2r2A—2r3)
g3 =— 9,2
r
1
rz,=-
12 =

2 _ 12
1_\21_1_\12

[, = —cos ¥ sin¥
1
., ==
137
cos
I3, =
B sing
Fd31 = Fd13
[Pgy =179
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Metric Compatibility
o.k.

Riemann Tensor

12C +3krB%2+4+2r2A4

R = — ‘
WOL= 702 (2C + kr B2+ 212 A —279)
Rouo = _R0101
RO _3CH+krB?+r2A
202 = 9,3
RO220 = *R0202
RO 75111219(304-/{7“32—1—7‘214)
303 — 2,3
RO330 = _R0303
1 (2C+krB>+2r2A—21%) (12C +3krB? +2r? A)
R = — 1.8
r
R1010 = _R1001
Rl _304—%7“32—1—7“214
212 = 5,3
31221 = _R1212
R _Sin219(3C+IiT’BZ+T2A)
313 — 9,3
R1331 = *R1313
R2. . — (2C+krB>+2r2A-21%) (3C+ krB? +1%A)
002 = 18
R%.,,=—R
020 002

201



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

3C+krB*2+1r2A

R? )y =—
112 r2 (2C+kKkrB2+2r2A—213)
32121— R%1
R sin? 9 <QC+KTB2+27"2A—47"3)
323 = 9,3
32332 = _R2323
»o (20+/£7"B2—|—27“2A—27“3) (3C+/€’I"B2+T‘2A)
003 = 418
RSoso = _R3003
R 3C+krB*>+r2A
M3 42 (2C +krB242r2 A —213)
R3131 = _R3113
R _2CH4kTrB*+2r2 A— 403
223 = 5,3
R3232 = _R3223

Ricci Tensor

(20+HTBQ+2T2A—2T3) (6C+/11"BQ)

Ricyy =

478
. 6C + k1 B?
Ricy; = —
r2 (2C+kKkrB2+2r2A—213)
. 74C+/<;7"BQ+47’3
Ricy, = 5,3
.2 2 3
sin“y (4C +krB*+4r
Ricsg = ( 3 )
2r
Ricci Scalar
2 (0—27"3)

202



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Bianchi identity (Ricci cyclic equation R“[WG] =0)
o.k.

Einstein Tensor

(2C+krB?+2r? A—21%) (AC + kr B? +413)

Goo = 478

G — 4C+krB2+493

U 12 (20 +krB2+212A—213)
6C + kr B2

Gopy = ——

22 273
sin? ¥ (60—}—/@7‘32)

Ggg =

273

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%™)

- 6C + rr B>
P 2 QC+rrB? 1212 A—279)

Current Density Class 1 (-R’,/7)

(2C+mﬂBQ+27’2A727’3) (6C+/<LTB2)

Jy =

4r8
4C+ kr B2 +473
Jo=—
277
4C + kr B2 +473
J3=—

277 sin? ¥
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20

Charge Density p
o

Fig. 4.19: Extended Reissner-Weyl metric, charge density p for A=1, B=2, C=1.

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-Riuuj)

Ji=0
Jo=0
J3 =0

4.4.12 Kerr metric

This metric describes a rotating mass without charge. M is the mass parame-
ter, J the parameter of angular momentum. Cosmological charge and current

densities do exist.
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Fig. 4.20: Extended Reissner-Weyl metric, current density J, for A=1, B=2,
C=1.

)
o
T
1

Current Density J,, J3

Fig. 4.21: Extended Reissner-Weyl metric, current density Jy, J,, for A=1, B=2,
C=1.
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150 " T T T T T T T T T

100 | -

50 i

Charge Density p

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 4.22: Extended Reissner-Weyl metric, charge density p for A=1, B=2,
C=-1.
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Fig. 4.23: Extended Reissner-Weyl metric, current density J, for A=1, B=2,
C=-1.
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50 |: T T T T T T T T
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5 10+ -
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Fig. 4.24: Extended Reissner-Weyl metric, current density Jg, J,, for A=1, B=2,
C=-1.

Coordinates
t
_ T
=1 v
©
Metric
2M 4sin29J
2M g 0 0 —4sin®oJ
B 0 —r O 0
I = 0 0" 42 0
_4 sirf 9 J 0 0 r2 sin2 9
Contravariant Metric
r 0 0 arJ
273 M—16 sin2 9 J2—r4 o 2713 M—16 sin2 9 J2 —rd
.
o 0 —2M 0 0
g = 0 0 % 0
arJ r(2M—r)
273 M—16 sin2 9 J2—r? 0 0 sin2 9 (273 M—16 sin2 9 J2—r4)

Christoffel Connection

r® M — 8 sin® 9 J?
r (273 M — 16 sin? 9 J2 — r%)

0
Mo =
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0
1—‘02_

o _
M=

3
e =

4.4.

EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

16 cos ¥ sin 0 J2
213 M — 16 sin?2 9 J2 — r4

0
1—‘01

672 sin? 9 J

T 293 M — 16 sin2 9 J2 — rt

_M(ZMfr)

r3

2sin?9J (2M —r)

3
M
r(2M —r)
2M —r

sin®9 (2M —r)

4 cos ¥ sin?d J

r3

—cos ¥ sind

2J

T 2r3 M — 16 sin2 9 J2 — rt

4 cosdJ (2M —r)

Tsin® (2r3 M — 16 sin2 9 J2 — r4)

3
1—‘01

273 M + 8 sin2 9 J2 — r?

T r(2r3 M — 16 sin2 9 J2 — r4)

3
=T,

cos ¥

sin ¥
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Metric Compatibility

———— o.k.

Riemann Tensor

4sin®9J (29 M? +8sin? 9 J> M — r* M + 127 sin® 9 J® — 16 J?)

Rl003 =
003 r (273 M — 16 sin2 9 J2 — 14)
RO 2472 cos 9 sind J2 (2 M — 1)
0127 (293 M — 16 sin2 9 J2 — rd)?
o 0
R g1 = =R7012
0 0
R%y30 = =R 903

2 (475 M3 — 6473 sin® 9 J% M? — 477 M? 4 256 sin* 9 J* M + 56 r* sin? 9 J2 M + r® M — 967 sin* 9 J* — 1475 sin® 9 J?)

R = —
ot r2 (2M —7r) (273 M — 16 sin2 9 J2 — r4)?
RO 16 cos ¥ sin ¥ J2 (3r31\/l—24 sinzﬁJ2—2r4)
102 7 r (213 M — 16 sin2 9 J2 — r4)?2
0 0
R0 =—-R01
RO 67 sin? 9 J (4r3 M? + 16 sin29 J? M —4r* M — 167 sin® 9 J? —+ 7"5)
Hs 2M —r) (2r3 M — 16 sin2 9 J2 — r4)?
0 0
R50 = —R7102
RO 1272 cos® sind J (2r3M—8sin219J2—r4)
123 (278 M — 16 sin2 9 J2 — 14)?2
0 0
Ry30 = —Rys
0 0
R"y3p = —R7y3
RO 8 cos ¥ sin¥ J? (12r3M748 sin20J277r4)
201 r(2r3 M — 16 sin2 9 J2 — r4)?
R _ 478 M3 —647° sin® 9 J® M? — 477 M? 4 256 sin® 9 J* M + 1127* sin® 9 J> M — 327* J> M 4+ r® M — 3847 sin* 9 J* — 407° sin® 9 J? + ..
202 7 r (2r3 M — 16 sin2 9 J2 — r4)?
0 0
R0 = =R 50
0 672 cos® sind J
R513 =

273 M — 16 sin2 9 J2 — r4
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0 _ 0
R0 = =R 502

672 sin?9J (2M —r)

R%,, = —
223 2713 M — 16 sin?2 9 J2 — r4

RO sin? 9 (27"3 M? +8sin?29J2 M —r* M 4+ 121 sin? 9 J? — 16rJ2)
308 r (213 M — 16 sin2 9 J2 — r4)

615 cos9 sin®J (2M —r)

R, = —
12 (273 M — 16 sin2 9 J2 — r4)?
0 0
R7350 = —R7315
0 0
R 330 = =R 303
Rl 2 (473 M3 —32sin® 9 J*> M? — 4r* M? 4+ 167 sin® 9 J®> M + r® M — 272 sin® 9 J?)
001 ™ rt (2r3 M — 16 sin2 9 J2 — r4)
R _ 8 cos® sin®¥ J2 (2M —r)
0027 2 (293 M — 16 sin2 9 J2 — r4)
1 1
R 510 = —R o01
R 2 sin® 9 J (87° M? — 64 sin® 9 J® M — 107" M + 247 sin® 9 J* + 379)
o1 = r (273 M — 16 sin2 9 J2 — 14)
1 1
R 50 = =R 02
1 12 cos® sind J (2M —7r) (2r® M — 8 sin® 9 J? — r%)
R 93 =

3 (273 M — 16 sin? 9 J2 — 1)
1 1
R 31 = =R g13

1 1
R 032 — -R 023

6 cos® sin® J (2M — )2
273 M — 16 sin?2 9 J2 — r*

1
R503 =
1
Rgip = —

M
r

1 1
R 221 — -k 212
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1
R 302

1
R3107

1
R 313

2
R112_

2
R 121

2
R 130

1
-R 203

2 sin? 9 J (87'3M2 — 64 sin?9J> M — 107"4M+24r sinZ 9 J? +3r5)
rd (273 M — 16 sin? 9 J2 — rd)

6 cos¥ sindJ (2M —r)

r3

1
—-R 301

sin? 9 (27 M? 4 56 sin? 9 J2 M — r* M — 367 sin® 9 J?)
r (273 M — 16 sin? 9 J2 — 1)

1
—-R 302

1
-R 313

8 cos ¥ sin 9 J?

I (273 M — 16 sin? 9 J2 — r4)

@M —r) (2r*M? — 16 sin® 9 JP M — r* M + 167 sin® 9 J> — 167 J7)

rd (273 M — 16 sin? 9 J2 — r?)
_Rr?
001

6 cos ¥ sin?d J

rd

2
—-R 002

2sin29J (2M —37)
4

T
2
—R 013
2
—R 023

6 cos¥ sindJ (2M —r)
r (273 M — 16 sin? 9 J2 — r4)

M
r2 (2M —r)

2
—-R 112
2
—-R 103
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3 —
R3 = —

4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

2 12c05195in19J(QTSM—8sin219J2—T4)
rd (273 M — 16 sin? 9 J2 — r4)

2sin?29J (2M —37)

2
R~. =

302 )

2 2
R0 = —R%303

2 2
R399 = =R7302

2 2

2 sin® 9 M

R7393 =

2
R332 = —R7523

(2M —7r) (2r* M? +8sin? 9 J> M — r* M + 127 sin® 9 J® — 16 J?)

R%y5 =
003 rt (273 M — 16 sin? 9 J2 — r?)
R 672 cos¥J (2M —7)?
912 7 Sind (2r3 M — 16 sin2 9 J2 — r4)?2
3 3
R0 = —R%012
3 3
R30 = —R7003
R 2J (127° M? — 48 sin® 9 J> M — 127* M + 167 sin® 9 J? + 377)
ror r(2M —r) (273 M — 16 sin2 9 J2 — r4)?
B 2 cos?J (127 M? — 96 sin? 9 J> M — 127* M + 327 sin® 9 J? + 37°)
10z ™ rsing (273 M — 16 sin2 9 J2 — r4)?
3 3
R0 = —R%01

4rS M3 + 17672 sin? 0 J2 M2 — 4¢7 M? — 512 sin* 9 J* M — 208r* sin? 9 J2 M + v M + 192 sin? 9 J* + 60 r® sin? ¢ J>

r2 (2M — 1) (273 M — 16 sin2 9 J2 — r4)?
3 3
R%190 = —=R%102

R _ 48 cos® sing J? (273 M — 8 sin® 9 J? — r?)
128 r (213 M — 16 sin2 9 J2 — 14)?2

3 _ 3
R%31 = —R%y33
3 3
R%ygp = —R%p3

4 cosV J (127”3M2 — 48 sin? 9 J> M — 127* M + 167 sin219.]2+3r5)

Ry =
201 rsing (273 M — 16 sin2 9 J2 — r4)?
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5 2J (2M —r) (673 M — 16 sin? 9 J* — 32J% — 3r*)
(273 M — 16 sin2 9 J2 — r4)?

3 3
R 210 — —-R 201

24 cos¥ sind J>

R%, 5 =
2137 (273 M — 16 sin2 9 J2 — r4)
3 3
R%550 = —=R%302
R 2 (2r® M2 +8sin® 9 J2 M — r* M — 127 sin® 9 J?)
223 7 r (2r3 M — 16 sin? 9 J2 — r?)
3 3
R%531 = —R%513
3 3
R%330 = —R%593
R 4sin®9J (27 M? 48 sin? 9 J> M — r* M + 127 sin® 9 J® — 167 J?)
308 4 (273 M — 16 sin2 9 J2 — 74)
R _ 2472 cos ¥ sin J2 (2M —r)
3127 (2943 M — 16 sin2 9 J2 — r4)2
3 3
R%391 = =R%31
3 3
R7330 = —R7303

Ricci Tensor

8J% (6 cos® 9 M? — 6 M? +4r cos? 9 M + 47 M — 372 cos®> 9 — r?)

Ri =
oo (23 M — 16 sin? 9 J2 — 14)
Ri 32 sin? 9 J°3 (d sin29 M + 3r sin21972r)
1 =
€03 rd (273 M — 16 sin? 9 J2 — r?)
Ri 8 sin® 9 J? (307% M? — 96 sin® 9 J> M — 367" M + 487 sin® 9 J? + 111°)
1C =
1 r2 (2M —7r) (273 M — 16 sin2 9 J2 — r4)?
) 16 cos ¥ sin® J? (97 M — 48 sin®? 9 J® — 5r*)
Ricy, = —

r (213 M — 16 sin2 9 J2 — r4)?2
Ricy; = Ricyy

16 J? (67"3 sin? 9 M2 — 48 sin* 9 J? M — 11r* sin? 9 M + 2r* M + 487 sin* 9 J? 4+ 41° sinzﬂ—rs)

Ricy, =
22 r (213 M — 16 sin2 9 J2 — r4)?2

Ricgy, = Ricyg

8 sin® 9 J? (12 sin® 9 M — 37 sin® 9 — 2r)
r (2r3 M — 16 sin? 9 J2 — r?)

Ricgg
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Ricci Scalar

_ 8J% (487% sin® 9 M? — 96 sin® 9 J> M — 287 sin® 9 M — 167" M — 1447 sin® 9 J* 4 647 sin® ¥ J> + 37° sin® 9 + 87°)
e 3 (278 M — 16 sin2 9 J2 — r4)?

Bianchi identity (Ricci cyclic equation R"”"[WU] =0)

—— o.k.

Einstein Tensor

4 sin® 9 J? (7272 M3 — 1087r® M? — 64 sin® 9 J2 M — 128 J> M + 547* M + 48 r sin®> 9 J + 647 J> — 91°)

G =
00 r3 (273 M — 16 sin2 9 J2 — r4)?2
o _ 16 sin? 9 J? (3672 sin? 9 M? — 347° sin? 9 M — 873 M — 48 sin* 9 J? 4+ 9r* sin? 9 + 47%)
03 r3 (273 M — 16 sin2 9 J2 — r4)2
o - 4J% (127° sin® 9 M? — 96 sin® 9 J> M — 447r* sin® 9 M + 167" M + 2407 sin® 9 J* — 647 sin® ¥ J? + 197° sin® 9 — 879)
e r2 (2M — 1) (273 M — 16 sin2 9 J2 — r4)?
G _ _16cos¥ sin® J? (973 M — 48 sin? 9 J? — 57*)
2 r (273 M — 16 sin2 9 J2 — r4)?
G =Gyy
a 4.J2 (727"3 sin?2 9 M2 — 288 sin* 9 J2 M — 72r* sin? 9 M —87’4M+48r sin* 9 J? + 64r sinZ 9 J? + 197° sin219+4r5)
2 r (213 M — 16 sin2 9 J2 — r4)?2
G30 = Gos
G 4 sin? 9 J? (288 sin* 9 J? M +87* sin?9 M — 8r* M — 240 sin* 9 J? — 37° sin219+47‘5)
38 r(2r3 M — 16 sin2 9 J2 — r4)?

Hodge Dual of Bianchi Identity
———— (see charge and current densities)
Scalar Charge Density (-R?;)

_ 87 J2 (67"3 cos? 9 M? — 612 M2 — 96 cos® 9 J2 M + 192 cos®? 9 J> M — 96 J2 M + 4r* cos? 9 M 4+ 4r* M + 1447 cos* 9 J? — )
r= (273 M — 16 sin2 9 J2 — r4)3

Current Density Class 1 (-Ri#”j)

8 sin® 9 J% (2M —r) (307® M? — 96 sin® 9 J2 M — 36 r* M + 487 sin® 9 J 4 111°)

J =
! 4 (213 M — 16 sin2 0 J2 — r4)2
167 (67° sin® 9 M? — 48 sin® 9 J® M — 117* sin® 9 M + 27* M + 487 sin® 9 J? + 47° sin® 9 — r®)
2 75 (273 M — 16 sin2 0 J2 — r4)2
J 8.J?2 (48r3 sin? 9 M2 — 96 sin? 9 J2 M2 — 607* sin? 9 M2 — 8% M? — 327 sin* 9 J2 M + 245 sin® 9 M 4+ 87° M + 48r2 sin* 9 J? — )
3 r2 sin2 9 (273 M — 16 sin2 9 J2 — r4)3
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0.05 i

Charge Density p
=
o
(4]

Fig. 4.25: Kerr metric, cosmological charge density p for M=1, J=2.
Current Density Class 2 (-R’,")
Ji=0

16 cos® sind J* (2M —r) (973 M — 48 sin® 9 J? — 57%)
rd (278 M — 16 sin2 9 J2 — r4)?2

Jo =

J3 =0

Current Density Class 3 (_Riuuj)

16 cos® sind J? (2 M —r) (97"3 M — 48 sin® 9 J? 757“4)

I =
! rd (273 M — 16 sin2 9 J2 — r4)?2
J2 =0
Js =0
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Fig. 4.26:
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Fig. 4.27: Kerr metric, cosmological current density Jy for M=1, J=2.
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02 T T T T

o

-y

()]
T

1

o
a
T

1

0.05 .

Current Density J3

Fig. 4.28: Kerr metric, cosmological current density .J, for M=1, J=2.

20 T ; T T T

10 | -

Charge Density p
o

Fig. 4.29: Kerr metric, cosmological charge density p for M=2, J=1.
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Fig. 4.30: Kerr metric, cosmological current density J,. for M=2, J=1.

20 T T T T

10 | ]

Current Density J,
o

Fig. 4.31: Kerr metric, cosmological current density Jy for M=2, J=1.
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Fig. 4.32: Kerr metric, cosmological current density J, for M=2, J=1.

4.4.13 Kerr-Newman (Charged Kerr metric) with M =
0, p = const.

Metric of a charged mass with rotation. The quantities of this metric could only
be calculated by assuming the following functions to be constant in the Maxima
code:

p = Vr2+a?cos? 0 = const.

A=7r2—2Mr+a®+Q?
and further assuming
M = 0.

These expressions have to be inserted into the metric. a, M, and Q are param-
cters:

—(1—@Mr=Q%)/®) 0 0 —((4Mr — 2Q%)asin(0)2/5?)
0 p2/A 0 0
0 0 rho? 0

—((4Mr —2Q%)asin(0)?/p*) 0 0 (r*+a®+ (2Mr — Q?)a®sin(0)?/p?) sin(0)?
Results are extremely complicated. Even charge densities of class 2 and 3 exist.
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Coordinates
t
x — s
| v
(7]
Metric
2
B | 0
£ 2
_ 0 o
Guv 0 0
2a sir;z 9 Q2 0

Contravariant Metric

4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

2a sin? 9 Q2

sin2 (_ a? sin? 9 Q2
a” sin’ ¥ Q7

02 ({12 sin2 9 Q212 p2_q2 2
2

P

2

0
0

+ 72 +a2)

3a2 sin2 0 Q3 —a2 p2 sin2 9 Q2472 p2 Q2+a2 p2 Q2+12 pEta2 p2 2

. 0 i

g = 0 0
2 H2

2ap®Q 0

3a2 sin2 9 Q4 —a2

Christoffel Connection

0
FO27

0
1—‘137

22 sinZ 9 Q2+12 p2 Q24aZ p2 Q242 phtaZ pA

4a? cos¥ sind Q*

o 3o o

24,2 Q2
302 sin2 9 Q%—aZ p2 5in2 0 Q2472 p2 Q24 a2 p2 Q2412 phtaZ pL
0

0
0?2 (Q2+f>2)

sin2 9 (3 a2 sin2 9 Q1—a2 p2 sin2 9 Q24712 p2 Q24a2 p2 Q2+r2 plta2 pl)

3a2 sin219Q47a2p2 sin219Q2+T2p2Q2+a2p2Q2+r2p4+a2p4

2arp? sin? 9 Q2

3a2 sin219Q4—a2p2 sin219Q2+T2p2Q2+a2p2Q2+T2p4+a2p4

0
F02

2a® cos? sin® ¥ Q*

73(12 sin219Q4—a2p2 sin219Q2+r2p2Q2+a2p2Q2+T2p4+a2p4

0
F13

0
F23

A7 sin? 9
02

2a cos? sind Q2
_p74

2
F03

cos Y sin ¥ (2a2 sin219Q2 —r? p2 — a2p

p

4
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2a cos ¥ Q> (Q2+p2)
T sin® (3a2 cos29 Q4 —3a2 Q4 — a2 p2 cos2 V9 Q2 — 12 p2 Q2 — 12 pt — a2 pt)

- rp? (Q2+p2)
3a2 cos29Q* —3a2 Q4 — a2 p2 cos2 ¥ Q2 — r2 p2 Q2 — 12 pt — a2 pt

3 _ 3
o0 =T,

cos I (2112 sin? 9 Q* — 242 p? sin219Q2+T2p2Q2+a2p2Q2+T2p4+a2p4)

e, =
23 sind (3a? sin2 9 Q* — a? p? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p* + a2 p*)

3 _ 3
s =13

F332 = F323
Metric Compatibility
—— o.k.
Riemann Tensor

8a® cos? ¥ sin? 9 Q°

R%05 =
003 pt (3a2 cos2 9 Q* —3a2 Q% — a2 p? cos2 ¥ Q2 — 12 p2 Q2 — 12 pt — a2 pt)
RO _ 4a®rp? cos¥ sin? Q* (Q? + p?)
012 — (3a2 sin2 9 Q4 — a2 p2 sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)?
0 0
R g1 = —R7g12
0 0
R%030 = =R 003
RO 2a® p? sin? 9 Q? (3 sin? 9 Q* — p? sin? 9 Q% + p2 Q* + p4)
113

= (3a2 sin2 9 Q4 — a2 p2 sin219Q2+7‘2p2Q2+a2p2Q2+r2p4+a2p4)2

2arp? cosV sind Q2 (SCL2 sin? 9 Q% — a? p? sin219Q2+2r2p2Q2+2a2p2Q2+2T2p4+2a2p4)

R®,5 =
123 (3a2 sin2 9 Q4 — a2 p2 sin2 ¥ Q2 + r2 p2 Q2 + a2 p2 Q2 + r2 p + a2 p4)?
0 0
R%y31 = —R'113
0 0
R%y30 = —R'1a3
RO _ 4427 p? cos® sin® Q* (Q2 + p2)
201 (3a2 sin2 9 Q4 — a2 p2 sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p* + a2 pt)?
RO 4a2Q* (3a2 sin 9 Q* — a2 p? sin* 9 Q2% + 272 p? sin®? 9 Q% +2a? p? sin2 V¥ Q%2 —r2p2 Q% — a® p? Q* + 272 p* sin? Y + 24a? p* sin? Y — )
202 =

(3(12 SiIl219Q47(12p2 sin219Q2+r2p2Q2+a2p2Q2+r2p4+a2p4)2
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0 —
R93 =

4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

0 0

R0 = =R 501

RO _ 2ar p? cos ¥ sind Q2 (4 a?sin29Q* +r2p2 Q% +a?p? Q% +r2pt +a? p4)
213 (3a2 cos2V Q4 —3a2Q* —a2p? cos2V9 Q2 — r2p2 Q2 — r2 pt — a2 p4)2
0 0

R0 = =R 502

2a® sin? 9 Q* (12(12 sin®* 9 Q* — 94a? sin2 ¥ Q* —4(12p2 sin419Q2+5T2p2 sinQﬂQ2+8azp2 sin219Q2—4r2p2Q2 —4a2p2Q2+...)

(3(12 COS219Q4—3(12Q4—(12/72 COSQ’&QQ —T2P2Q2 —r2p4—a2p4)2

0 0
R 931 = =R7913

0 0
R7930 = =R 993

o 4a? cos? ¥ sin? 9 Q* (a2 sin2 9 Q2 — r2p? —a? p2)
R303 =

7p4 (3&2 COS219Q473(12Q47(12/)2 Cos219Q277‘2p2Q27r2p47a2p4)

2arp? cos? sind Q2 (Q2 +p2) (a2 sin? 9 Q2 —r2p? —a? p2)

R, =
312 (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 p* + a2 p4)2
0 0

R735 = —R7515
0 0

R 330 = =R 303

R 2aAr cos? sind Q% (Q? + p?)
023 — p? (3a? sin2 9 Q%4 — a2 p? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pt + a2 p?)
1 1

R 35 = —R7g23

Rl - 2aAr cosd sind Q> (Q2+p2)
203 = '3 (3a2 sin2 9 Q1 — a2 p2 sin2 ¥ Q2 + r2 p2 Q2 + a2 p2 Q2 + r2 p* + a2 pt)
1 1

R 930 = =R 503

RL a® Asin®? 9 (3 sin® 9 Q* — p? sin® 9 Q% + p* Q* + p*)
313 — p?2 (3a2 sin29 Q% — a2 p? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p + a2 pt)
1 Ar cost sin (4a2 sin219Q4 + 72 p2 Q2 + a2 p2 Q2 + 72 p4 +a? p4)

R". =
323 p2 (3a2 cos2 Q4 —3a2Q* —a?p? cos2 V¥ Q? —r2 p2 Q2 — r2 p* — a2 p?)
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1
R 331

1
R 332

2
R0027

2
R 020

2
R0237

2
R 032

2 —
R%yp3 =

2
R302_

2
R 310

2

1
-R 313
1
-R 323

B 4a® cos® 9 Q* (Q% + p?)
ot (3a2 sin2 0 QL — a2 p2 sin2 9 Q2 12 p2 Q2 + a2 p2 Q2 + 12 pl 1 a2 ph)

2
-R 002

2a sin? ¥ Q? (4a2 sinzﬁQ4fa2Q4+r2p2Q2+r2p4+a2p4)
p* (3a2 sin2 9 Q% — a2 p2 sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + 72 pt + a2 pt)

2
—-R 023

2ar cosd sind Q? (Q2+p2)
p2 (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pt + a2 pt)

2
—-R 103

2ar cos? sind Q? (Q2 +p2)

:7p2 (3a2 sin2 9 Q* — a2 p2 sin2 V¥ Q2 + r2 p2 Q2 + a2 p2 Q2 + r2 p* + a2 p4)

R7313 =

2
R 320

2a sin? ¥ Q> (4a2 sin219Q4—a2Q4+T2p2Q2+r2p4+a2p4)
p% (3a2 cos2 9 Q* —3a2 Q% — a2 p? cos2 9 Q2 — r2 p2 Q2 — 12 pt — g2 pt)

2
—-R 301

r cos? sin Y (4(12 sin20Q4+r2p2Q2+a2p2Q2+r2p4+aZp4)
p2 (3a2 sin2 9 Q* — a2 p? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 p* + a2 pt)

2
—-R 302

(16(14 sin? 9 Q% — 10a? sin? ¥ Q% — 44’ p? sin? Y Q* +2a?r? p? sin? I Q* + 44 p? sin? Y Q* —3a?r? p2 Q* —3a* P2 Q* + )

2
R 332

3
RDOS_

3
R012_

P4 (3(12 COSQ,&Q4_3G2Q4_G2PZ 005219@2_T2p2Q2_T2p4_a2p4)

2
—-R 313

2
—R 323

4a? cos® 9 Q* (Q2 + p2)
pt (3a2 sin? 9 Q4 — a2 p2 sin? 9 Q2 + 72 p2 Q2 + a2 p2 Q2 + 2 pt + a2 pt)

2arp? cos? Q? (Q2 erz)2

T sind (3a2 sin2 9 Q% — a2 p2 sin2 9 Q2 + 2 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)?

223



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

3 3
R%021 = =R%012
3 3
B30 = =R%g03
e B a2 p? (QQ +p2) (3 sin2 9 QY — p? sin? 9 Q2 + p? Q2 +p4)
113 = (3a2 sin29 Q% — a2 p2 sin2 9 Q2 + 2 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)2
R? _ r (r2 +a2) p4 cos ¥ (Q2 +p2)2
1237 §ing (342 sin2 9 Q4 — a2 p? sin2 9 Q2 + r2 p2 Q2 + a2 p? Q2 + r2 pt 4 a2 pt)?
3 3
R%3; = —R%y33
3 3
R%130 = —R7a3
I - 2arp? cos¥ Q? (Q2+p2)2
2017 gind (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)?
e _ _2aQ2 (Qz +p2) (3(12Q4+r2p2Q2 +r2p4+a2p4) (3(12 cos? 9 Q* —3a2Q* — a2 p? cos? 9 Q2 —r? p2 Q2 — 12 pt —a2p4)
202 (3a2 sin2 9 Q1 — a2 p2 sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p* + a2 pt)?
3 3
R7510 = R0
e B rp? cosd (Q2+p2) (4a2 sinzﬁQ‘l+r2p2Q2+a2p2Q2+r2p4+a2p4)
2137 sing (3a2 sin2 9 Q4 — a2 p2 sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)?
3 3
R399 = =R%502

6a* sin? 9 Q% —12a* p? sin* 9V Q% +2a% 1% p? sin®’ V¥ Q% +6a* p? sin? 9 Q% +3a%r?2p? Q% +3a*p? Q% +4a*p? sin? VW Q* — ...

R%,,5 = —
223 (3a2 sin29 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 2 pt + a2 p4)2

3 3
R 231 — —R 213

3 3
R 232 — —-R 223

8a® (sin® — 1) sin® ¥ (sin®¥ 4+ 1) Q°

RP305 = —
303 p* (3a2 sin2 9 Q* — a2 p? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)

4a®rp? cos? sind Q* (Q2 + p?)
T (BaZsin29Qt —aZp? sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pd + a2 ph)?

3

3 —
R%330 = —R7303
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Ricci Tensor

8a? cos? 9 Q* (QZ + p2)

Ri =—
€00 pt (3a2 cos29 QY —3a2Q* —a2p? cos2 9 Q2 —r2p2 Q2 — r2 pt — a2 pt)
Ri 2a sin? ¥ Q? (8a2 sin? 9 Q* — 542 Q* 4+ r? p? Q% 4 12 p4 +a? p4)
icyg =
03 % (3a2? sin2 9 Q* — a2 p? sin2 9 Q2 4+ 72 p2 Q2 + a2 p2 Q2 + 72 pt + a2 p?)
e a2 p2 (Q2 +p2) (3 cos2 9 Q — 301 7p2 cos? 9 Q? 7p4)
11 = (3a2 cos2 9 Q* —3a2 Q* — a2 p? cos2 Y Q2 — r2 p2 Q2 7r2p47a2p4)2
2 2\ 4 2 2)2
r(r“+a cos ¥ +
Ric, = ( ) p (@ +0°)

T sinv (3a2 cos29 Q4 —3a2 Q% —a2p2 cos29 Q2 —r2p2 Q2 — r2 pt — a2 p4)?

Ricy; = Ricy,y

12 a* cos® 9 Q% — 30a* cos? 9 Q% + 18a* Q% — 16 a* p? cos? ¥ QS — 104”12 p? cos? 9 Q% 4 18a* p? cos® I QS + 9412 p2 Q6 — ...
(3a2 cos2 9 Q* — 3a2 Q* — a2 p? cos? ¥ Q2 — r2 p2 Q2 — r2 pt — a2 p4)?2

Ricy, =

Ricgy, = Ricyg

sin? ¥ (20(14 sin* 9 Q% — 14a* sin? 9 Q% —4a* p? sin* ¥ Q* —2a% 12 p? sin® Y Q* +3a2 Ap? sin? 9 Q* +a? 72 p2 Q* +a* p? Q* + )
ot (3a2 sin2 9 Q4 — a2 p2 sin? 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pt + a2 pt)

Ricgg = —
Ricci Scalar

2 (24a* sin* 9 Q% — 6a* sin® W Q® — 20a” p? sin* YW Q° + 140 r? p? sin® YW Q% — 3a® A p® sin® ¥ Q% +22a% p® sin® W Q® —5a7 1% p? Q% — )
- p? (3a2 sin2 9 Q% — a2 p2 sin2 ¥ Q2 + r2 p2 Q2 4 a2 p2 Q2 + r2 p + a2 p4)2

Rse

Bianchi identity (Ricci cyclic equation R" = 0)

———  o.k.

Einstein Tensor

(Q2+p2) (18a4 Sin219Qz'5712a4p2 sin419Q6+6a27‘2p2 sinzﬁQGfBazAp2 sin219Q6+6a4p2 sin219Q6+3a2r2p2Q6+3a4p2Q6+‘..)

G =
00 pt (3a2 sin2 9 Q% — a2 p2? sin2 9 Q2 + r2 p2 Q2 + a2 p2Q2+r2p4+a2p4)2

2a® sin? 9 Q? (9a? sin? 9 Q% —12a? p? sin* Y Q% + 372 p? sin® VY Q° —3Ap? sin? Y Q% +9a? p? sin® Y Q% + 44 p* sin* ¥ Q* — ...
G
03— pt (3a2 cos29 Q4 —3a2 Q4 — a2 p? cos2 9 Q2 —r2p2 Q2 — 12 pt — a2 pt)?
G — 24 a* sin®* 9 Q% — 6a* sin? 9 Q% — 20a* p? sin* V¥ Q% + 14a? r? p? sin? Y Q% +22a* p? sin? Y Q% —5a?r?p2 Q% —5a* p?2 Q% + ...
11 = =

A (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 p* + a2 p*)?

r (r2 +a2) p* cos¥ (Q2 +p2)2

Gy =—
12 sin® (3a2? sin2 9 Q% — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pt 4 a2 pt)?
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Gy =Gy

a? (12112 sin? 9 Q% — 1242 sin? 9 Q% — 442 p? sin* Y Q® + 412 p? sin2 Y Q% —3Ap? sin? V¥ Q% +8a? p? sin2 Y Q% —4r2p2 Q% — )
(3a2 sin2 9 Q4 — a2 p2 sin2 ¥ Q2 + r2 p2 Q2 + a2 p2 Q2 + r2 pt + a2 pt)?

Gy = —
G3p = Gos

4a? sin? 9 Q* (9a4 sin® 9 Q% — 9a? sin? ¥ Q% — 34 p? sin® Y Q* + 6a? r? p? sin? Y Q* +3a% A p? sin* 9 Q* + 94 p? sin419Q4—...)

Gan =
33 pt (3a2 cos2 ¥ Q* —3a2 Q4 — a2 p2 cos2V Q2 — r2 p2 Q2 — 12 pt — a2 p)?

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-RY™)

4a%Q* (6a4 sin® 9 Q% — 6a* si1r141962672a4p2 sin619Q4+8a2r2p2 sin479Q4+3a2Ap2 sin419Q4+10a4p2 sin419Q47...)
(3a2 sin2 9 Q* — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p* + a2 pt)?

Current Density Class 1 (-Riu“j)

a® A% (Q% 4 p?) (B cos?9Q* —3Q* — p? cos® ¥ Q% — p*)
’02 (3 a2 0052 '19Q4 _ 3a2 Q4 _ LL2 P2 C052 19Q2 _ 7.2 /12 QQ _ 7.2 p4 _ a2 [)4)2

Ji =

12a* sin* 9 Q% + 6a* sin? ¥ Q% — 16114,02 sin® 9 Q% + 1()(12r2p2 sin? 9 Q% + 14a4p2 sin? 9 Q% — a2r2p2 Q% — a4p2Q6 + ...
ot (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 12 p2 Q2 + a2 p2 Q2 + r2 p + a2 pt)?

(Q2 + pz) (12 a* sin* 9 Q% + 64 sin? 9 Q% — 164 p? sin? Y Q° +10a% 72 p? sin? ¥ Q% — 342 A p? sin? 9 Q% + 14a* p? sin2 9 Q% — )

J3 = —
3 sin2 9 (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 72 p2 Q2 + a2 p2 Q2 + r2 p + a2 pt)?

Current Density Class 2 (-Riﬂ“j)
Ji=0

A7 (r? 4+ a?) cos¥ (Q? +p2)2

Jo —
%7 sin9 (3a2 sin2 9 Q4 — a2 p2 sin2 9 Q2 + 72 p2 Q2 + a2 p2 Q2 + 12 p4 + a2 p4)?

Jz3 =0

Current Density Class 3 (_Riuuj)

_ Ar (T2 +a2) cos ¥ (Q2 +p2)2
T sind® (3a2 sin2 9 Q4 — a2 p? sin2 ¥ Q2 + 12 p2 Q2 + a2 p2 Q2 + 12 pt + a2 pt)?
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4.4.14 Kerr-Newman (Charged Kerr metric) with a =0

In this approximation the non-diagonal terms vanish due to a = 0.

Coordinates
t
x— r
o 9
¥
Metric
_ N2
% -1 02 0 0
0 s 0 0
g — Q2—27r M+r2
" 0 0 r2 0
0 0 0 72sin®9
Contravariant Metric
7‘2
T QZ2r M+r2 ) 0 ) 0 0
g = 0 H«# 0 0
0 0 L 0
1
0 0 0 r2 sin? 9

Christoffel Connection

0 Q*—rM
o1 = — 2 2
r(Q%>—2r M +1r?)
FO10:F001
1 (Q2—2TM+7“2) (Q2—TM)
Moo =— 5
r
o Q>—rM
1y (Q*>—2r M +1r?)
1 Q*—2rM+1r?
[y = —
r
1 sin 9 (Q2727"M+r2)
Mgy =—

r
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1
I?,==
127
F221 = F212
I‘233 = —cos ¥ sind
1
., ==
137 0
- cos vV
3., —
27 siny
[Py =13
[Pgy =179

Metric Compatibility
o.k.

Riemann Tensor

RO 3Q% —2rM

101 7= .2 (Q2 —2r M +1r2)
Rouo = _R0101

2

o _Q°—rM
R"90 = 2
R%,, = —R

220 202

0 sin® 9 (Q2 ’I"M)
R¥303 = r2
R0330 = *R0303

L (Q2—27“M—|—7“2) (3Q2—27“M)
R 001 — — r6
Rlow = _Rlool
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2
T Q- —rM
R91p = 2
R, = —R
221 212
L sin® ¥ (Q* —r M)
Rg15 = )
}31331 = “}%1313
9 (Q2—2rM+7’2) (Qz—rM)
R0 = 6
R%.,,=—-R
020 002
B2 Q?—rM
1272 (Q>—2r M +1r?)
f%2121 =—R%,
9 sin ¥ «QQ—-QTAJ)
R%353 = — r2
R%*., = —R
332 323
3 (Q2—2rAf+r%(Qz—rAﬂ
Ry03 = 6
}33030 = —R’y3
R Q?—rM
13 = r2 (Q% —2r M + r?)
}33131 =-R 113
2
3 Q°—-2rM
R2237 7,,2
f%3232 =-R 223
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Ricci Tensor

Ricyy =

r6
. Q?
Ricy; = — T (QZ 2 M 119
2
Ri622 = 7‘72
.2 2
9
Ricgy = 0 V&

r

Ricci Scalar
Rse=0
Bianchi identity (Ricci cyclic equation R"[/Lw] =0)

o.k.

Einstein Tensor

Q2 (Q* —2r M +1?)

Goo = 16

G = 2 (Q? —giM +72?)
Goy = %22

Gg3 = Sinzrf <

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%)

Q2
r2 (Q? —2r M +1?)

p =
Current Density Class 1 (-R’,//)

Q2 (Q2 —2r M +1?2)

Ji = "
Q2
J2 - _1"76
Q2
J _
s 6 sin? ¥

Ji=0
Jy =0
Js =0

Current Density Class 3 (—Ri#“j)

Ji=0
Jo=0
J3 =0

4.4.15 Goedel metric

This is the Goedel metric. w is a parameter.

Coordinates
t
15
X =
Tp
Z3
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Metric
-5 0 0 2e™
0 5 0 0
Guv = 1
m 0 0 52 O2
2¢" 0 0 -4
Contravariant Metric
20?2 16w e "1
32 :2—1 0 ) 0 32ww+—1
g = 0 2w 0 0
0 0 2w? 0
16 wt e 71 402 e 271
woimr 0 0 T

Christoffel Connection

o 16 wt
0L 3201 — 1
F010 = FO01
I‘013 = _M
2wt -1
F031 = FO13
F103 = —2uw?%e™
Flao = I‘103
F133 = 62;1
A2 e—®
I‘310 = I‘301

w—-1) 2w+1) (4w?+1)

s, =
13 3204 —1

3 _ 13
1_\31_1_‘13
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Metric Compatibility

—F ok

Riemann Tensor

0 32w e
Rloos = =357 1
ROOSO = _R0003

0 o 8W4
o = =35 571
Rono = *Rolol

4w? e
0 _
Rs = = o1
RO131 =—R' 3
4wt 2
R =
3037 39,4 — 1
RO330 = _R0303

1 Sw?
R = =55 11
Rlolo = _Rlom

32 Wb %1
1 _
o = —35,7-1
31031 = *R1013
32 w0 e
Ry = oo
3017 3904 — 1
Rl310 = _31301
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R'yy =
313 2 (32wt — 1)
R1331 = *31313
8wt
Riyp3 = —
003 3204 —1
R0 = —R
030 003
Swt—1
3
R 320wt — 1
R3131 - R 113
32 0 e
3
503 320wt — 1
Ry = —R
330 303
Ricci Tensor
. 16 w*
Ricoo = 35511
. 64 w0 e
Ricos = =35 i1
2w—1) Qw+1) (4w?+1
RiCn:*( w—1) Qw+1) (4w )

2wt -1
Ricgy = Ricy,

Ri B (48 wt — 1) e2
19837 T (3200 — 1)
Ricci Scalar

4w? (24wt —1)

Rsc =
32wt -1
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Bianchi identity (Ricci cyclic equation R“[WG] =0)
—— ok

Einstein Tensor

Swt—1
Goo = ~5950 -1
G 4w? (8w4— 1) e’
0 32wt — 1
Sw?
G = 32wi—1
240t —1
Gz = 3P2wi—1
G3o:G03
12wt e2 2
Gisa = 32wt —1

Hodge Dual of Bianchi Identity
(see charge and current densities)
Scalar Charge Density (-R°)

64 w®
(32wt —1)°

Current Density Class 1 (-Ri#“j)

4wt Qw—1) 2w+1) (4w?+1)

1= 320w — 1

Jo=0

; 8w 2w—1) Qw+1) (4w?+1) e 2™
5 =

(32wt —1)°
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0.1 T T T T T
0.08 | ]
o Y
>
= 0.06 | 1
C
(O]
[m]
(0]
(@)]
5  0.04F} 1
z
(@)
0.02 | ]
O 1 1 1 1 1
0 0.5 1 15 2 25 3

x1

Fig. 4.33: Goedel Metric, charge density p for w=1.

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-Riuuj)

Ji=0
Jo=0
J3 =0

4.4.16 Static De Sitter metric

This metric describes a universe with a constant scalar curvature. « is a pa-
rameter. There is a horizon at » = «. This is also visible in the cosmological

charge and current densities.
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Current Density J4

Current Density J3

3 T T T T T
25 r i
L2 R T
15| .
1l _
05 J

0 . . . . .
0 0.5 1 1.5 2 25 3

x1

0.14 | | | | | | .
0.12 | ]
0.1 ;
0.08 | ;
0.06 | ]
0.04 | ]
0.02 | ]
0 1 1 ‘ 1 [ booooooi
0 0.5 1 15 2 25 3
x1

Fig. 4.35: Goedel Metric, current density Js for w=1.
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Coordinates
t
<= r
- 9
¥
Metric
2
a1 0 0 0
0 L0 0
Juv = 1_?
0 0 r2 0
0 0 0 72sin®9

Contravariant Metric

o2
(r—a) (rt+a 0 0 0
g = 0 _(rmallrta) 0
0 0 % 0
0 0 0 r2 siln2 9

o — r
ot (r—a) (r+a)
F010 = FO01
Il r(r—a)(r+a)
00 — 044
r
rt, =-—
1 (r—a) (r+a)
It r(r—a)(r+a)
22 — Oé2
1 r(r—a) (r+a) sin?9
r 33 — a2
1
2, =-
12 =

238



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

F221 = F212

%, = —cos ¥ sin¥
3 cost
B sinv

[Py =173

[Py =173

Metric Compatibility
o.k.

Riemann Tensor

RO — _;
101 =
(r—a) (r+a)
0o _ 0
R0 =—R"'n
2
r
0o _
R¥500 = 22
0o _ 0
R¥950 = =502
R 72 sin® 9
303 o2
0o _ 0
R%330 = —R7303
b (r—a) (rta)
001 o
1 1
Rg10=—Ron
2
r
1 _
R91 = )
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EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

1 _ 1
R 221 — -R 212

T r2 sin? ¢
R g3 = —z
R1331 = _R1313
(r—a) (r+a)
R2002 - A
R2020 = _R2002
1
R’y= ———F——
112 (r—a) (r+a)
R2121 = _R2112
2 r2 sin? ¥
R7395 = T2
R2332 - *32323
(r—a) (r+a)
RS003 = T A
R303o - *33003
1
R3 ;=
W= (r—a) (r+a)
R34, =R
131 113
2
T
R3223 = g
33232 = _R3223

Ricci Tensor

3(r—a) (r+a)

Ricyy = o
Ric,; = —m
Ricyy = SQL;

240



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Ricci Scalar

12

o?

Rsc =

Bianchi identity (Ricci cyclic equation R"””[WU] =0)
— ok

Einstein Tensor

Goo = — Py
G = (r— oz)g(r + )
G =20

Gy — _37‘251211219

Hodge Dual of Bianchi Identity

—— (see charge and current densities)

Scalar Charge Density (-R°)

_ 3
p= (r—a) (r+a)

Current Density Class 1 (-R’,/7)

J =
3
J2 = a2
3
Js =

272 sin? 9
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30 ]

20 :

Charge Density p
o

)
o
T

1

Fig. 4.36: Static De Sitter metric, charge density p for a = 1.

Current Density Class 2 (-R’,//)

Jy=0
Jo =0
Js =0

Current Density Class 3 (-Ri#“j)

Ji=0
Jo=0
J3 =0
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Current Density J4

Current Density J,, J3
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Fig. 4.38: Static De Sitter metric, current density Jy, J, for o = 1.
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4.4.17 FLRW metric

The Friedmann-Lemaitre-Robertson-Walker metric is a cosmological metric of
a homogeneous and isotropic space. It contains a (normally increasing) time-
dependent function a(t) and a constant k which restricts the describable size of
the universe by the condition

1
r —.

vk

Although the time function a grows, the charge and current densities go to zero
over time. The reverse is true if a decreases in time.

Coordinates
t
r
=1 v
P
Metric
1 0 0 0
2
Gy = 0 1—ak r2 0 0
" 0 0 —a?r? 0
0 0 0 —a?7r? sin® Y

Contravariant Metric

10 0 0

w_ [0 ECSL g 0

g (S (J—— 0
0 0 0

a2 r2? sin2 9

Christoffel Connection

a (ia)
FOH - erdt— 1

1"022 =a (jt a) r?

d
%, =a (dt a) r? sin? ¥
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d
1‘\1 — dt a
o= T T
Fl10 - Fl01
kr
I, =-
1 kr2 —1

I‘122 =r (k:r2 — 1)

M, =r (k r? — 1) sin? ¢

d
1‘\2 _ﬁa
02 = —
a
1
r,=-
127
2 _ 2
%0 =T
2 _ 2
% =17,
I, = —cos¥ sin®
d
F3 _Ea
03 =~
a
. 1
3, ==
137
3 cos ¢
27 giny
Mg =173
Iy =173
3
[Pgy =179

Metric Compatibility
o.k.
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Riemann Tensor

2
0 ¢ (ddt2 a)
R =7
101

T kr2—1
Rono = _R0101
d2
R0202 =a <d7§2 a> r?
R0220 = _RO202

d2
R0 =a ( a) r? sin? ¥

dt?
Rosso = _R0303
d2
= a
Rl — dt2
001 a
Rlolo = _Rlool
d 2
R1212 = <k+ <dt CL) > TQ
R, =—-R
221 212
d ? 2 .2
Rigi5=|k+ e r? sin” ¢
R1331 - *R1313
2
R2 — Czi? a
002 a
R? R
020 = 002
d
R2 k + (E CL)
112 kr2—1

246



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

32121 = _R2112
d 2
R%305 = <k + (dt a> ) r? sin? 9
32332 = _R2323
2

R3 _ dd? a

003 = T T
R3030 = —R’y3
R3. . — k+ (% a)

113 kr2—1
33131 =—R’3

d 2

R225— (k—l—((“a))qa?
R3232 =-R 223

2k+a (dd—;a)—l—Q (%a)2
kr2 —1

, > d \?\ ,
Ricy, = 2k+a<dt2a)+2<dta> r

2 2
Ricgg = <2k+a (ddtza)—ﬁ—Q <jta> )7"2 sin® ¥

Ricci Scalar

Ricy; = —
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Bianchi identity (Ricci cyclic equation R"'[WU] =0)
o.k.

Einstein Tensor

3 (k—|— (% a)2>

G =
00 a2

k+2a (dd—;a)—l—(%af
kr2 —1

d? d \*\
G22——<k+2a <dt2a>+<dta> )'f'

d? d \? 2 2
G33<k+2a <dt2a>+<dta> )r sin” v

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)

s (10)

a

pP=—

Current Density Class 1 (-R’,/7)

(2k—|—a (j—;a) + 2 (%a)z) (k;rQ—l)

J =

d? d \2
Jr =~ ad 2

d? d \2
J3 = —

a*r? sin? ¥
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Charge Density p
o

-15

Fig. 4.39: FLRW metric, charge density p for a = t2,k = .5,7 = 1.

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
Jz3 =0

Current Density Class 3 (-R’,")

Ji=0
Jo=0
J3 =0

4.4.18 Closed FLRW metric

The closed Friedmann-Lemaitre-Robertson-Walker metric describes a closed
universe. a is a time dependent function.
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Fig. 4.40: FLRW metric, current density J, for a = t2,k = .5,r = 1.
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Fig. 4.41: FLRW metric, current density Jy, J, for a = 2 k=.5,r=1.
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Charge Density p
=

-20

Fig. 4.42

Current Density J4

o)
o
T

-100

Fig. 4.43

: FLRW metric, current density J, for a =t"2,k = .5,r = 1.
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Fig. 4.44: FLRW metric, current density Jy, J, for a = t72 k=.5,r=1.
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Fig. 4.45: FLRW metric, current density, r dependence of J, for a = t2,¢t =
1,k =.5.
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10 | / 1

Current Density Jo, J3

radius r

Fig. 4.46: FLRW metric, current density, r dependence of Jy, J,, for a = t?,t =
1,k=.5

Coordinates
t
x=| 3
2
Metric
1 0 0 0
|0 —a? 0 0
Iw=10 0 —a2sin? X 0
0 O 0 —a? sin? y sin? ¥

Contravariant Metric

1 0 0 0

w |0 -5 0 0

9 =10 0 ——5Lt— 0
a“ sin“ x

0 0 0 L

a? sin? x sin? 9
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Christoffel Connection

0 _
1_‘11_

0 _
I‘22_

0o _
FSS_

1
FOI_

1
FIO_

1
F22_

4.4.
d
a|—a
dt
d 2
a | —=—a) sin
dt X
d
a (dt a) sin? x sin?
d
ﬁa
a
I
—cosx siny

— cos x sin x sin? 9

IS

—cos ¥ sind

d
%CL
a

cos Y

sin y

cos

sin ¥
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Metric Compatibility
o.k.

Riemann Tensor

d?
30101 =a <dt2 a)

R0 =-"R1n

d? .
R0 =a <dt2 a) sin? x
30220 = _R0202

d2
R =a <dt2 a) sin? x sin® ¥

0 0
R%330 = —R7303
2
Rl — dd?a
001 a
R0 = —R
010 001
d 2
RY, <<dt a> Jrl) sin? y
R, = —R
221 212
1 d 2 ) .2
R 513 —a | +1] sin”x sin“d
dt
}31331 = “}%1313
d2
= a
}32002 = 4t
R? R
020 = 002
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Ry = —R%

2 d 2 .2 .92
R%595 = T + 1| sin®y sin” ¢
32332 = _R2323

d2

R3 _ aez d

003 a
R0 =—R

030 003

d \2

RYy=—1|(— 1

113 <<dta) + )
R5 = —R% 15
R0 = i a i +1 | sin®

223 a1
R’y =—R

232 223

Ricy, = —
, & d \*
Rlcll—a<dt2a)+2<dta> +2
. d? d \’ .
Ricy, = (a (dt2 a) +2 <dt a> + 2) sin? y
4 d
Ricgg = | a (dt2 a) +2 (dt a) + 2 | sin? x sin?4
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Ricci Scalar

6 (a (%a)—&—(%a)Z—i—l)

2

Rsc:*
a

Bianchi identity (Ricci cyclic equation R" = 0)
—F  o.k.

Einstein Tensor

> d \?
G11:_<2a <dt2a>+<dl‘ja) +1>

a2 d \’ .
G22:—<2a (dt2a>+(da> —|—1> sin”

9 2
G33:—<2a (La)—i—(jta) —|—1> sin2xsin219

Hodge Dual of Bianchi Identity

~

(see charge and current densities)

Scalar Charge Density (-R%;")

3 (%a)

pP==
a

Current Density Class 1 (-R’,")

a ((f—;a)+2 (%a)2+2

Ji=— s
a(ddtza)—&—Z(%a) + 2
J2: 4 o2
at sin” y
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Charge Density p
o

-15

Fig. 4.47: Closed FLRW metric, charge density p for a = t2.

a (%a)—i—? (%a)2+2

a* sin? y sin? ¥

Iy = -

Current Density Class 2 (-R’,//)

Ji=0
Jy =0
Js =0

Ji=0
Jo=0
J3 =0
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Current Density J;

Current Density J,, J3

Fig.

-0.5

-1.5

Fig.

-0.5

-1.5

4.49:

Closed FLRW metric, current density Jy, J, for a = 2, x = 7 /2.
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Fig. 4.50: Closed FLRW metric, current density Jy, J,, x dependence for a =

2 t=1.
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Fig. 4.51: Closed FLRW metric, charge density p for a = t~2.
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Fig. 4.52: Closed FLRW metric, current density J,, for a = =2
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Fig. 4.53: Closed FLRW metric, current density Jy,J, for a =72, x = 7 /2.
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100 t |

Current Density Jo, J3

-150 | ]

_200 1 1 1 1 1 1 1

Fig. 4.54: Closed FLRW metric, current density Jy, J,, x dependence for a =
t72 t=1.

4.4.19 Friedmann Dust metric

Metric of the Friedmann Dust universe. a is a parameter.

Coordinates
t
T
X =
T2
I3
Metric
-1 0 0 0
2
0 (cosh(3t—1))° 0 0
= 2
I 0 (cosh (2t —1))° 0
2
0 0 (cosh(g’t—l))j
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Contravariant Metric

-1 0 0 0
o —1 0 0
. (cosh(2))3
g9 =10 0 SN S— 0
(cosh( 3t;a ))3
0 0 0 L

wl

(COSh(Sa%a))

Christoffel Connection

o s
a (cosh (Staf"))§
I‘022 _ sinh (3‘;—“) 1
a (cosh (‘Q’ta_“))§
F033 — sinh (3ta_a) .
a (cosh (3’;"))§
L sih (32)
01 ™ 4 cosh (35%)
I‘110 = FlOl
FQ _ Sinh (35%@)
027 4 cosh (3L=2)
F220 = F202
s _ sinh (3%“)
0 a cosh (3%“)
F330 = F303

Metric Compatibility
o.k.
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EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Riemann Tensor

o coh®(352) 42
R" 01 E

a? (cosh (3ta_“ )3
Rono = *Rolol

R0202 cosh? (3%”) +2

0
R 220

R, cosh? (3=2) 42

0
R 330

1 cosh? (32) +2
oo = a2 cosh? (‘3?77“)

1
ROIO_

1
—R 001

sinh? (3t=2
R1212: ( a )

1 _ 1
R991 = —R'519
1 sinh? (3ta_a
R'g15 = . 4
@ (cosh (25:2))
1 _ 1
R'g31 = —R 33

) oot () 4 2
R o02 = a? cosh? (?’ta—_“)
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sinh? (3t_a)

2, = —R?
R7330 = —R393

cosh” (22) +2

= a
— a2 COSh2 (Bafa)

B3, = -
113 a? (cosh (3t;a))§
R3131 _m,
3 sinh? (3t=a)
Ry93 = — é
a? (COSh <3ta_a)) 1
R%,50 = —R%,05

Ricci Tensor

3 (cosh® (252) +2)

Ricyy = — a2 cosh? ( g%a )
Ricy, = 3 (COShSta_a))g
Ricyy = 3 (COShCESta_a))g
Ricgy = 3 (COShCE;ta))g
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Ricci Scalar

6 (2 cosh? (3%“) + 1)

a? cosh? (3 ta_a)

Ry =

Bianchi identity (Ricci cyclic equation R*
o.k.

:0)

[uvo]

Einstein Tensor

3 sinh® (2L=2)

Coo = a? cosh?® (33?_“)

3 (cosh? (2=a) + 1)
G =-

a? (cosh(?’t “))

3 (cosh2 (‘” a) + 1)
G22 - 2

a? (cosh( ))3

3 (cosh? (3t=2) 4+
o B (oo (252) 1)

2))*

Hodge Dual of Bianchi Identity

a? (cosh (

(see charge and current densities)

Scalar Charge Density (-R,)

3 (cosh2 (3t=2) +2)

a? cosh? (3ta “)

p==

Current Density Class 1 (-R’,//)

3
77T o (1))
Ty = 2

o7 (cosh (222)
Jz = — > 3
o7 (cosh (222)
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Charge Density p
&

_10 1 L \
0 0.5 1 1.5 2

t

Fig. 4.55: Friedmann Dust metric, charge density p for a = 1.

Current Density Class 2 (-R’,//)

Jy=0
Jo =0
Js =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
J3 =0
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Fig. 4.56: Friedmann Dust metric, current density Ji, Jo, J3 for a = 1.

4.4.20 Kasner metric

The Kasner metric. pp, p2 and p3 are parameters. There must hold two sum
rules:

These probably can only be fulfilled for trivial cases like
=1 p2=0,p3=0

and permutations. In these cases the charge and current densities are indeed
zero. However, the Kasner metric does not contain dependencies on space coor-
dinates and is nothing else than a change of one coordinate axis in time. This
is not a realistic 3D model.

The plots show a case which does not obey the sum rules. Then there is a
cosmological density.

Coordinates
t
Hg]
X =
T2
Z3
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Metric
-1 0 0 0
o e 0 0
G =10 0o ¢r o
0 0 0 t2ps

Contravariant Metric

1

= O

$+2P1

0
0

O O

gt =

~

)
S
)

0
0
0

o

Christoffel Connection
1‘\011 = py t2p1—1
1-\022 = po t2p2—1

1-\033 = ps t2 ps—1

P1

Iy ==

01 n
Mo=T"n

P2

2 ==

02 f
F220 = F202

Ps

I3, ="

03 ‘

3 3
Mg =T

Metric Compatibility
o.k.
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Riemann Tensor

R = (p1 — 1) ps 77172

R%g = =R’

R0, = (p2 — 1) pa t*7272
R0220 = —R'p

R%05 = (ps — 1) pg t*77 72
R033o = —R'303

R1001 _ (p1 ;21) D1

Rlolo = _Rlool

1 2ps—2
R0 =p1pet™?

1 _ _p1
R0 = —=R'y1p

Rl =p;pst?Pi—?

R1331 =-R 313

(p2 — 1) p2
R2002 = 12
R2020 = _R2002

R2121 = _R2112
R393 = pa ps t°7772
R2332 = —R33
R3003 _ (ps ;21) bs
R3030 = _R3003

R3113 = —D1Ps t2p1—2

3 _ 3
R%y3 = —R7y3

3 2py—2
R’y95 = —p2 ps t°7*

3 3
Rg30 = —R593
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Ricci Tensor

3’ —ps+p2® —pe i’ —pi
t2

Ricy

Ricy; = p; (ps +pe +p; — 1) 27172
Ricyy = p2 (ps + po +ps — 1) 27272

Rics3 = p3 (pB +p2 +p1 — 1) e =2

Ricci Scalar

2 (ps® +p2ps +p1ps —ps+p2®+p1pe—pe+ P12 —p1)
t2

Rsc =
Bianchi identity (Ricci cyclic equation R o = 0)

— ok

Einstein Tensor

G Peps + Dp1 ps + P1 P2
00 +2

Gy = — (ps® + paps — ps +pe® — po) 27172
Goy = — (ps® +p1ps —ps +p1° —py) °P72

Gss = — (p2® +p1pe — po +pi° —p1) 27772

Hodge Dual of Bianchi Identity

—— (see charge and current densities)

Scalar Charge Density (-R°)

_p3® —p3 +pe® —pe+pi® —p
t2

p:
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Current Density Class 1 (—Riﬂ“j)
Ji=—p1 (ps +p2+ps—1)t72772
Jy=—ps (ps +p2+p; — 1)t P72

J3=—p3 (ps +p2+p1—1) $—2ps—2

Current Density Class 2 (-R’ ")

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
J3=0

4.4.21 Generalized FLRW metric

The generalized form of the FLRW metric by Portugese authors. m and n are
parameters.

Coordinates
t
T
X =
Yy
z
Metric
1 0 0 0
0 -t 0 0
Guv = 2%
a 0 0 -y 0
0 0 0 € _

T2 (ntm)
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Charge Density p
o

_30 L L L L L

Fig. 4.57: Kasner metric, charge density p for p; = 1,p2 = —1,p3 = 0.

30 T T T T T

20 + ]

Current Density J4
o

Fig. 4.58: Kasner metric, current density J; for p; = 1,p2 = —1,p3 = 0.
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—_
T
1

1
—_
T
|

Current Density Jo, J3
o

'
N
T
1

Fig. 4.59: Kasner metric, current density Jo, J3 for p1 =1,ps = —1,p3 = 0.

Contravariant Metric

1 0 0 0
g = |0 (n—m) 0 0
O 0 —t2 n+2m e2:v 0
0 0 0 —t2 n+2m 6—21'

t

FO _

M (n—m)?
F022 — _ (TL 4 m) t—2n—2m—1 6—237
F033 — _ (n +m) t72n72m71 6295

1

My ==

01 n
Fllo = Fl01

F122 _ (Tl _ m)2 t—2n—2m=2 2z

274



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

IMyy=—(n— m)2 j—2n-2m-2 2z
n+m
. =_
02 ;
2, =-1
%, =TI,
F221 - 11212
n+m
™. =
03 ;
M,=1
P30 =173
F33l =13

Metric Compatibility
—  o.k.

Riemann Tensor
Ry =(n+m) (n+m+1)t2n"2m-2e2e

RO212 =(Mn+m+1) $—2n—2m-1 -2z

Ry03 = (n4m) (n4m+1) t72072m=2 27

R0313 = - (n +m + 1) t*zn*mel 621;
0 0

Ri330 = —R7303
0 0

Rigg = —R'513
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Rlypy = —(n— m)? (n+m+ 1) ¢2n2m=3 22
R1212 = - (nz —2mn+n+m?+ m) $—2n—2m=2 —2=z
R'y50 = —R'50:

R1221 = _R1212

Rlyps = (n—m)® (n+m+1) ¢72n"2m=38¢2e

R1313 = — (n2_2mn+n+m2+m) 42n—2m=2 2z
Lo— 1

Ri330 = —R7303
L 1

Rigg1 = —Rz13

(n+m) (n+m+1)

R2002 = 2
n+m+1
R2012 =
t
R2020 = _R2002
R2021 = *R2012
n+m+1
R2102 =
t
2 n?—2mn+n+m?+m
R 112 — 5
(n —m)
R2120 = 7R2102
Ry =—R%,

R2323 =2 (’17,2 + m2) t—2 n—2m-—2 ezx

_(n4+m) (n+m+1)
t2

276



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

. n+m+1
35013 = 77t
33030 = _R3003

. n+m+1
33103 = ¢
3 n2—2mn+n+m2+m
R’y15 = 2
(n—m)
3 3
R’y50 = =703
3 3
R 131 — -R 113
R3223 —_9 (n2 + m2) t—2n—2m—2 6—239
3 3
R 232 — -R 223

Ricci Tensor

2(n+m) (n+m-+1)
12

Ricyg = —

. 2(n2—2mn+n+m2—|—m)
Ricy; = — n —m)2

Ricgs =2 (n+ m)2 tT2n—2m=2 2
Ricgs =2 (n+ m)2 t2n—2m=2 2w
Ricci Scalar

4 (n2 +4mn+m2)

RSC - - t2

Bianchi identity (Ricci cyclic equation R"””[
o.k.

0)

uvol
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Einstein Tensor

2(2mn—n—m)

GOO: +2

G 2 (2n*+2mn+n+2m? +m)
1 (n—m)2

G22 — _4mnt—2n—2m—2 e—2x

G33 — _4mnt72n72m72 eZa:

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY™)

2(n+m) (n+m-+1)
t2

pP==

Current Density Class 1 (-Riu“j)

2 (n—m)* (n? —2mn+n+m?+m)

J = T
J2 = —2 (Tl + m)2 t2n+2m72 eZa:
J3 = —2 (n+m)2 t2n+2m72 6721’

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
J3 =0
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Current Density Class 3 (—Ri#"j)

Ji=0
Jo=0
J3 =0

4.4.22 Eddington-Finkelstein metric for black holes

Metric of Eddington-Finkelstein for black holes. This metric has non-diagonal
terms and a zero on the main diagonal. G and M are the usual parameters of
the spherical metric.

Coordinates
N
< T
o 9
¥
Metric
2GM_1 1 0 0
_ 1 0 O 0
Tuw = 0 0 0
0 0 0 r2sin’d
Contravariant Metric
0 1 0 0
1 _2GM-—r 0 0
[ L g— r
g 0 0 L0
1
0 0 0 72 sin2 9

GM
0 _
r 00 72
[0 =—r
%, = —rsin®¥
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It _ GM (2GM—r)
00 — 73
GM
FlOl__ )
Fl1o:1ﬂ101

F122 =2GM —r

I, =sin®d (2G M —r)

1
I, =
12 =
I1221 = I1212
I, = —cos ¥ sin¥
1
I3, =-
137 0
cos
I3, =
B sing
F331 =1"3
F332 =13

Metric Compatibility
o.k.

Riemann Tensor

2G M

Room = 3
Roow =—Ry
GM

30202 -,
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RO220 = _R0202
2
sin“9G M
R0303 =
r
RO330 = _RO303
1 2GM 2GM —r)
R 001 — — rd
R1010 = R1001
2G M
1 _
Ry =— 3
Rlno = R1101
GM
RYy = —
212 r
31221 =—Rypy
2
sin“9G M
R1313 =
r
31331 = _R1313
) GM (2GM —r)
R 002 — 7"4
GM
2 _
R7y10 = 3
R2020 = R2002
32021 =—R012
GM
2
R%102 3
32120 = —R%
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2sin?9G M
32323 =
r
R2332 = _R2323
3 GM (2GM —r)
Ro03 = v
GM
3
Ry13 = 3
Ri3 = —R
030 003
R4 = —R
031 013
GM
3 _
R 103 — 73
R3}.,=—-R
130 103
2G M
R3yp =
223 ,
R3232 = _R3223

Ricci Tensor

all elements zero

Ricci Scalar
Rse=0
Bianchi identity (Ricci cyclic equation R"[WU] =0)

o.k.

Einstein Tensor

all elements zero
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Hodge Dual of Bianchi Identity
(see charge and current densities)
Scalar Charge Density (-R°)
p=0

Current Density Class 1 (-R’,/7)

Ji=0
Jo=0
Jz3 =0

Current Density Class 2 (—Ri#"j)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (_Riuuj)

Ji=0
Jo=0
Js3 =0

4.4.23 Kruskal coordinates metric of black hole

Metric of Kruskal coordinates for the black hole. r is a function of the coordi-
nates u and v.

Coordinates

€ e
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Metric
_ w 0 0 0
Guw = 0 32G3 1\43:‘ 2G M 0 0
0 0 r? 0
0 0 0 r?sin29

Contravariant Metric

r
~e2G M
re 0

T 32G3 M3 - 0 0
re2GM
gttt = 0 32G3 M3 (1) 0
0 0 ol (1]
0 0 0 r2 sin2 9

Christoffel Connection

Ly (2GM+7)

%, =
00 4rGM

0 ﬁr@GM-‘rr)
Iy =—-—*————
4rGM

FOIO :Fom

0 %T(2GM+T)
o, =—4v 7" T/
4rGM

r2 (i r) eZC;]vI
dv

%, = -

22 32G3 M3

0 r2 (d—dv'r) sin2 9 e7C A7
T =

33 32G3 M3
S ﬁr(ZGM-‘,—r)
00 = —
4rGM

1 %r(2GM+r)
iy, =-4v """/

4rGM
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r
r? (i r) sin? 9 ezG ™

Fl o du
33 32G3 M3
d
=T
2 _ d
1—‘l02— .
"
d
=T
2 d
F12: “
"
2 _
1—‘20_1—‘02
2 _ 12
FQI_FIQ
2., = 9 sin ¢
33 = —cos¥ sin

r
3 dv
o3 =

r

d

<
3 du
I3 =

r
3 cos v
o3 = —

sin ¥
3 _ 13
30 =193
3 _ 13
M3 =T33

3  _ 713
F32_1‘23

Metric Compatibility
o.k.

Riemann Tensor

2 (%r) GM—2 <div7‘>2 GM—2r (%7‘) GM+2 (ﬁr)2 G M + 72 (dd—jzr) _ 2 (%r)
o1 == 142G M
Rono = *Rolol
r(4r (ddsz?") GM+2 (%}T)Q GM+2 (%r)Q GM+r (divr)z—&—r (ﬁr)z) eTG M
RO202:

128 G4 M4
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0 7’(2 (%7‘) (divr) GM+2r (#;vr) GM+7‘(%7") (%7’)) ez
Rz = 64 G4 M4

0 _ 0
R 220 — —-R 202

0 — 0
R 221 — -R 212

. r sin2 ¢ <4r (%r) GM+2 (%r)Q GM+2 (%r)Q GM+r (%r>2+r (%02) ez
R303 =

128 G4 M4
o r sinZ 9 (2 (ﬁr) (%r) GM+2r (%r) GM +r (%7’) (%7)) eTT I
R =
313 64G4 M4
R0330 = —R0303
R0331 = *R0313

d’i—jzr) GM -2 (%T)ZGM—QT (%T‘) GM+2 (diur)2 GM +r2 (%r)—ﬂ (dL;r)
412G M

oo
ROOIZ_

1 _ 1
R 010 — —-R 001

= :_7" (2 (diur> (%T) GM+2r <#2dvr> GM—&-r(%r) (divr)) e
202 64 G4 M4

r (2 (divr>2GM+4r (%r) GM+2 (%T)Q GM+r <%r>2+r (%r>2> eTC

Rz == 128 G4 M

Rlys0 = —RY509

Rl = —RY%
Ry, = (2 (&) (&) am +2;4(;;‘f};4r> oMt (L) (7)) e

r sin® 9 (2 (%r)Q GM+ar (Lyr)GM+2 <%T)2 GM+r (%’“)24” (ﬁT)Q) .

Rlyig=— S

Rl3a0 = —RY303

Rlgg) = —R'ss
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Ar (%T) GM+2(%T) GM+2( r) GM+T(%T)2+’“(ﬁT)2

2 —
R0027

472G M
2 (%r) (%r) GM+2r (%r) GM+r (%r) (%7‘)
R2012_ 272G M
R%920 = —R%02
R%21 = —R%12
) 2 %T) (di )GM+2T( T)GMJrr(dir) (%r)
Ri02 = 27‘2GM
2(%7") GM+4r( )GM+2< T) GM+T(%T)2+T(%T)2
Bz = 142G M
R?50 = —R% 102

2 2
2 d P d r 3 /3
sin“ ¥ (r <ET> e2GM —r (HT) e2GM +32G M)

2 —
R323_

32G3 M3
R%335 = —R%353
R _47' (d 27"> GM+2<(%T) GM+2< r) GMJrr(%r)err(%r)z
008 = 4r2GM
4 2 ﬁr) (di )GM+27”< r)GM—i—r(dir) (%7‘)
Ros = 2r2GM
33030 = *33003
R%y3; = —R%3
2 (ﬁr) (divr) GM+2r (#Zur) GM+r (ﬁr) (%T‘)
s = 2r2G M
r
5 2(%7"> GM+4r (d 27“> GMJrQ( r) GMJrr(%r) +r(ﬁr>2
R = 412G M
R%30 = —R% 03
R3131 = *R3113

2 . 2 .
r(%r) emfr(ﬁr) ezG M + 32G3 M3

RPp05 = —
223 32G3 M3

3 — 3
R 232 — -R 223
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Ricci Tensor

6r (%T) GM+6 (%T‘)2GM+27" (%r) GM+2 <%T>QGM77"2 (%T)‘FQT‘ (%T)QJer (%r)Jr
42 GM

Ricgg = —

2 (%r) (%7‘) GM+2r (#Zl)r) GM+r (%r) (%r)
- P2 GM

2r (%r) GM+2 (%r)QGM+6T (%r) GM+6 <£T)ZGM+T2 (%T)—&-%ﬂ (%r)2—r2 (%T)-i-...

42 GM
P 42 _r d 2 _r 2 42 _r d 2 r 0GB M3
Ri _7‘ (mr) e2GM +r (WT) e2GM —r (mr> e2GM —r (WT) e2GM + 3
22 32G3 M3
2 2 (d? - d \? adar 2 (2 - d .\ adwr 3 33
sin®?d (r <mr) e2GM +r (HT> e2GM —r (mr) e2GM —r (ﬂr) e2GM +32G° M
Ricss =

32G3 M3

Ricci Scalar

672 (—dz r) GMeZc +67 (—d 7“)2 G M ezcn — 612 (—dz r) GMezc ™ — 671 (—d r)2 GMezcar —p3 (—dQ r) eTC +
dv? dv du? du dv?
Rsc:

64r2 G+ M4
Bianchi identity (Ricci cyclic equation R, = 0)

o.k.

Einstein Tensor

r r 2 T 2 r 2 T
e 2GM (41ﬂ2 (%r) GMe2GM +4r (ﬁr) G Me2a™ + 12 (%r) eTCM + 12 <%7~) e2CG M —64G4M4)

23 G M
Gy = (#e7) (57) GMHTT(ng}M N eMr (&) (&)
G1o = Gon
i (12 () oMemm ar (0)" OMerdm o2 ()" exdm 02 ()" x4 oacant)
L=

2r3G M
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2

r(2r () a2 () oar-2r () 6o -2 () G002 (5 r) 402 (7)) exéw

128 G4 M4

Gay = —

r sin? ¥ (27" (d‘i—;r) GM+2 (d—dur>2GM72r <%r> GM —2 (%r)z GM —1r? ((ﬁ%r)+r2 <dd—;r)) eTT
Gag = —

128 G4 M4

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)

<6r (%r‘) GM+6 (%r)QGMJrQT (%r) GM+2 <%7‘)2GM77'2 (%r)«#Zr (%r)2+‘..) eT
4096 G7 M7

p=-

Current Density Class 1 (-R’,/"/)

<2r (%r) GM +2 (%r>2GM+6r (%r) GM+6 <%T)2GM+T‘2 (%7‘>+2T (%T)Qfﬁ (#r)Jr...) e G
J1 =

4096 GT M7

2 2 - 2
2 (_d? T d st _ 2 [ d Py d Preavd 3 /3
r (dqﬂr) e2G M +r(dvr) e2GM — 7 (duzr) e2G M r(dur> e2GM +32G° M
3274 G3 M3

2 2 2
2 d2 _r d s 2 d A d _r 3 2 s3
I (Tﬂ r) e2GM +r (—dv r) e2GM —r (—duz r) e2GM — 7 (—dur) e2GM™M +32G° M

3274 sin? 9 G3 M3

Current Density Class 2 (-R’,")

J1 =0
Jo =0
J3 =0

J1 =0
Jo=0
J3=0
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4.4.24 Einstein-Rosen bridge metric, u cordinates

Metric of the Einstein-Rosen bridge with u coordinates.

Coordinates
t
< u
- 9
¥
Metric
uQiz — 0 0 0
B 0 —4(u*+2m) 0 0
G = 0 0 —(u2+2m)2 0
0 0 0 —sin? ¥ (u2—|—2m)2
Contravariant Metric
w't2m 0 0 0
guy _ O 74(u2+2 m) 01 0
0 0 ICEeTo: 0
0 0 0 1

" sin? 9 (u2+2m)?

Christoffel Connection

o _ 2m
0w (u2 +2m)
FO10 = FO01
mu
My=——"—"3
079 (u? +2m)°
u
'y, =——
w2y 2m
u
M, =——
22 B
L. — sin® 9 u
33 — 9
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2 2u
27024+ 2m

2 _ 12
F21_Fl2

I, = —cos¥ sin¥
2u
Mm,=—-——
BT w2 4+2m
cos ¥
[Py, =
237 sind
11331 = 11313
11332 = F323

Metric Compatibility
o.k.

Riemann Tensor

8m
RO
1ot (u?+2 m)2
Rouo = _R0101
0 - m
R900 = T2 T om
RO220 = _R0202
RO _ m sin® ¥
3037 w24 92m
RO330 = _R0303
1 2mu?
R 001 — 1
(u® +2m)
Rlolo = _Rlool
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Ricci Tensor

all elements zero

Ricci Scalar

Ry =0

Bianchi identity (Ricci cyclic equation R"”"[ 0)

o.k.

pvol —

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)
p=0

Current Density Class 1 (-R’,"/)

Ji=0
Jo=0
J3 =0

Ji=0
Jo=0
J3 =0
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Current Density Class 3 (—Riﬂ“j)

Ji =0
Jo=0
J3 =0

4.4.25 Einstein-Rosen bridge metric, r coordinates

Metric of the Einstein-Rosen bridge with radial coordinates. € is a parameter
equivalent to charge in the Reissner-Nordstrom metric.

Coordinates
t
< r
I
¥
Metric
2m =t 4 0 0 0
r 272
0 -1 0 0
Guv = St tl
0 —r? 0
0 0 0 —r2 gin% 9

Contravariant Metric

2
2r 0

T dmr—e? . .0 0
e 0 —ir—gmree 0
0 0 -5 0

0 0 0 —otoy

Christoffel Connection

0 2mr + 2
o1 = 2 2
r(2r2 —4mr —e?)
Mo =T"n
1 (2m7’+52) (2r274mr752)
oo =

475
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r 2mr + &2
= (2r2 —4mr—e?)
212 —4dmr —€?
i, == - =
22 2r
1 (2r2—4mr—52) sin? 9
F 33 — 2
r
1
%, =-
12 =
I‘221 = I‘212
I'?;, = —cos¥ sin®
1
[P,=-
13=
. cos v
I3, =
27 ginv
I‘331 = I‘313
F332 = F323
Metric Compatibility
o.k.
Riemann Tensor
RO Admr + 32
L1702 (292 —4mr — 2)
Rono = *Rolol
RO 2mr+ g2
202 = 5,2
RO220 = _R0202
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(2m7“ + 62) sin? 9

R%5 = —
303 9,2
RO330 = _R0303
R (4mr—|—352) (2r2—4mr—52)
001 = 476
RlOlO = Rlool
2mr + &2
Ry, =
212 9,2
31221 = R1212
Rl (2mr—|—52) sin? 9
313 = 9,2
R1331 = _R1313
R B (2mr+52) (2r274mr752)
002 = 4,6
R2020 = _R2002
R 2mr + &
127 2 (272 —4dmr —e?)
R2121 =—R%,
R (4mr—|—52) sin? ¢
323 = 9,2
R’y = —R
332 323
o (2mr+¢e?) (2r2 —4dmr —e?)
003 = 476
R0 =—R
030 003
R 2mr + &2
13 7= 2 (272 —4dmr —e?2)
R3131 =-R 113
R Amr+ g2
223 — 27“2
R’y =—R
232 — 223
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Ricci Tensor

g2 (212 —4dmr —e?)

Ricyg = —

476

Ri e

ici; =

U2 (292 —4dmr — £2)
2

. €
R1C22 = _ﬁ

. e2 gin? 9
R1C33 = _7

Ricci Scalar
R,.=0

Bianchi identity (Ricci cyclic equation R"””[ 0)

uvol

o.k.

Einstein Tensor

e2 (2r2 —4mr —£?)

Goo = —

4176
Gy = =
B2 (202 —4mor — €2)
2
5
Cu="3p
2 sin? 9
Cun=""52

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%")

52

r2 (2r2 —4dmr —e2)

p=—
Current Density Class 1 (-Ri#“j)

g2 (27“2 747%7’762)

J=—
! 4r6
2
€
=50
2
€
J, = —
3 276 sin 9

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
J3=0

Current Density Class 3 (-Ri#“j)

Ji=0
Jo=0
J3 =0

4.4.26 Massless Einstein-Rosen bridge metric, r coordi-
nates

Metric of the massless Einstein-Rosen bridge (Nandi and Xu) with radial coor-
dinates. 3 is a parameter.

Coordinates
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Charge Density p

1 O 1 T T ; T T

-10 :

Fig. 4.60: Einstein-Rosen bridge, charge density p for m = 1,e = 1.

1 0 T T T T

Current Density J4

Fig. 4.61: Einstein-Rosen bridge, current density J, for m = 1,e = 1.
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10 3 T T T T
8_ 4
(2]
<
&
= 67 I
‘@
c
]
[a)]
=
(G
2_ .
0 1 1 1 1
0 1 2 3 4 5

Fig. 4.62: Einstein-Rosen bridge, current density Jy, J, for m = 1,¢ = 1.

Metric

(1_M)2
4r2

—_— s 0 0 0
2m | m2+4p2 2
Guv = 0 - (T + 2 + 1) 0 0
2, 42 2
0 0 — (22 4) a2 0
2., 42 2
0 0 0 — (24 1) % sin?0
Contravariant Metric
4r24a mr+m2482)?
( ) 0 0 0
(42 _m2_32)2
_ 16 r4
gh = 0 (47248 m r+m2452)>2 0 0
0 0 . 1er2 0
(4 r248m 7‘+77L2+ﬂ2)2
0 0 0 = 16,2

(4 7‘2+8 m 7‘+7n2+5‘2)2 sin2 9
Christoffel Connection

4 (4m7-2+4m27'+4627'+m3+62m)

r’, =
01 (472 —=m?2 — 32) (472 +4mr+ m?2 + B2?)

0 0
FIO_FOI
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647t (47’2 —m? —,82) (47nr2 +4m2r+462r+7n3 +B2 m)

1“100_ 3 2
Ar24+4mr+m?2+ B2)° (472 +8mr + m?2 + 32)
o 2(4mr+m2+ﬂ2)
BT s (4r2 4+ 8mr 4+ m?2 + 62)
1 r(47’2—m2—[32)
o =—775 2 2
4r2+8mr+m2+ 3
1 r (4r2 —m? —[32) sin? ©
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42 4+8mr+m2+
) 4r? —m?— 32
[P

-7 (4r2+8mr+m?2+ 32)
2 2

[y =17,

2. — .
33 = —cos? sind

472 —m?— 32

r (472 +8mr+ m?2 + 32)

3
s =

cos ¥

sin ¥

Metric Compatibility
o.k.

Riemann Tensor

8 (16mr4+40m2r3+24ﬁ2r3+32m3r2+48,82mr2+1Om4r+16ﬁ2m2r+6ﬁ4r+m5+2B2m3+ﬁ4m)

R o =
101 r(4r2+4mr+m2+,32)2 (4r2 +8mr+ m?2 4 (32)
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7(4'r2+4m7‘+m2+[32) (4r2 +8mr+ m?2 4 §2)
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0 _ 0
R 330 = =R 303

12873 (472 —m? —52)2 (16mr* +40m?r® + 2482 1% +32m®r? + 4882 mr? +10m* r + 16 B2 m2r + 684 r + m® +282m3 + )

(Ar2 +4mr+m2+62)* (472 +8mr +m?2 + 2)3

1 1
R 10 = =R o01
Rl 7787" (4mr2+2m2r+262r+m3+ﬂ2m)
212 = (472 + 8mr + m?2 + (2)2
1 1
Ry = —R'515
Rl 8r (4mr2+2m2r+2ﬁ2r+m3+52m) sin? 9
313 —

(4r2+8mr+m2+52)2
1 1
Rg3; = —R 313

6413 (47‘2 —m? 7,32)2 (4m7‘2+4m2r+4ﬁ27‘+m3+,82m)
(4r2+4mr+m2 4 £2)% (472 +8mr +m?2 + 52)3

2 —
R%g09 = —

2
R%550 = =R

5 _8(4mr2+2m2r+2[32r+m3+52m)
r (472 +8mr + m?2 + 32)2

2
R 121 — —-R 112

167 (r +m) (4mr+m2+ﬁ2) sin? 9

R%5,4 =
323 (4T2+8m7’+m2 +ﬁ2)2
2 2
R332:_R 323
Re 647 (4r® —m® - 6%)° (4mr® +am’r +46%r 4+ m® + 52 m)
008 (Ar2 +dmr +m2+ 02)° (472 + 8mr +m? + B2)°
3 3
R%30 = =R%003
R? _8(4mr2+2m2r+2[32r+m3+52m)
s r (472 +8mr 4+ m?2 4 32)2
3 3
R%31 = =Ry
R — 167 (r+m) (4mr+m2+ﬁ2)
223 — (4'r2+8m7‘+m2+52)2
3 3
R%535 = —R%553
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Ricci Tensor

256 r* (4r27m27ﬁ2)2 (4m2r2+4['32r2+4m3r+12,82m7‘+m4+2[32m2+ﬂ4)
(4r2 +4mr+m2 4+ 62)* (472 +8mr + m?2 + 52)3

Ricyy =
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Ri
e r(4r2 +4mr+m?2 + $2)? (472 + 8mr + m?2 + 32)?

4r (4mr2+4m2r—4ﬂ2r+m3+62m)
Ar24+4mr+m2 4 p2) (4r2 +8mr + m?2 4 (2)

Ricy, =

4r (4m7‘2+4m2r7452r+m3+62m) sin? 9
4r24+4mr+m2 4 p2) (4r2 +8mr + m?2 4 [2)

Ricgg =
Ricci Scalar

2048 m r? (16mr4+36m2TS+12ﬁ2r3+28m3r2+28B2mr2+9m4r+12@2m2r+354r+m5+2ﬁ2m3+54m)

Rse =
(A4r2+4mr+m2 4+ £62)2 (472 + 8mr +m?2 + §2)*

Bianchi identity (Ricci cyclic equation R"””[ 0)

uvol

— o.k.

Einstein Tensor

256 (3m? — g2) rt (4r2 —m? - g2)°

G =
00 (472 +4mr+m2 4+ 82)% (472 £+ 8mr 4+ m?2 + B2)4

8 (161717“4+2417127"3 —8,[32r3+16m3r2 —16ﬁ2mr2+6m4r+4ﬁ2m2r—2,ﬁ4r+m5+252m3+ﬁ4m)

G = —
1 r(4r2 +4mr+m?2+ 32) (4r2+8mr+m2+ﬁ2)2

o 4r (64mr® — 6482 r° —208m®r* — 336 87 mr* — 192m* r® — 48087 m? r® — 328* r® —52m°r? — 136 82 m3 r? — ..)
22 = (4r2+4mr+m2+ﬁ2)2 (4r2+8mr+m2+62)2

o 4r (64mr® —648%r° —208m®r* — 336 82 mr* — 192m* 3 — 480 8% m? r® — 328% r® — 52m® r? — 136 B2 m3r? — ...) sin? 9
33 =

(4r2+4mr+m2 4+ £62)2 (472 + 8mr + m?2 + (2)2

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R%)

256 r* (4m2r2+452r2 +4m3r+12ﬁ2mr+m4+252m2 +[34)
(472 —m?2 — §2)% (472 + 8mr 4+ m? 4 §2)?

p=

303



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 1 (—Riﬂ“j)

204877 (64mr® +32m”r® — 3287 r% —112m®r* — 176 87 mrt — 112m* r® — 256 87 m7 r® — 168 r® —28m®r® — 7287 mP % — )

! (4r2 +4mr+m2+ £2)2 472 +8mr + m?2 + (52)°

10247° (4mr? +4m?r —48%r + m3 4+ 32 m)

Jo = —
2 (472 +4mr +m2 + B2) (472 + 8mr + m2 + 32)°

1024 r° (4mr2 +4am?r—ap%r+m® + 82 m)

Js = — .
3 Ar2+4mr+m2+32) (472 +8mr +m?2 + 32)° sin? 9

Current Density Class 2 (_Riuuj)

J1 =0
J2 =0
J3 =0

J1 =0
J2 =0
J3 =0

4.4.27 General Morris-Thorne wormhole metric

Metric of the General Morris-Thorne wormhole. ® and b are functions of the
radial coordinate parameter R.

Coordinates
t
I
I Y
®
Metric
e2® 0 0 0
0o —— 0 0
Juv = 1-r
0 0 —R2 0
0 0 0 —sin? 9 R?
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Contravariant Metric

e 2% 0 0 0
v o iz 0 0
0 0 —ﬁ 0
0 0 0 " sin2 9 R2
Christoffel Connection
d
', =—=o
0™ 4R
0 0
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- T (@) (R-b)
00 R
d
rl_ @R bR—b
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1
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2 2
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1
r’,=—
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3 _ 3
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3 3
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Metric Compatibility

———  o.k.
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Riemann Tensor

2 2 2 2
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R R bR-b
212 — 2R
1 1
Rig5y = —R'515
Rl _sin?9 (2 bR-D)
313 — 2R
1 1
R7331 = —R'313
2P
R € (% @) (R—0b)
002 R2
2 2
R0207 ROOZ
R L bR—b
112 2R? (R—b)

B2 b sin? 9
323 R
2 2
R3327 R323
3 2® (4 @) (R-10)
R 03 = — R2
3 3
ROB()*_R 003
1
1137 "9 R2 (R—1b)
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Ricci Tensor

? (2 (4o @) B2 +2 (4 @)° B - 20 (4

£ ®) R=2b (75 ®)° R— b (75 @) R+4 (@) R—3b (7% )

2 R?

d R2

Ricyy =

2 (87 0) R*+2 (5 @) R - 2b (47 @) R? - 2b (4 ®)° R? - ;
2R2 (R—b)

:a‘“
<o
a0
:a‘“
-
N
+
o
:u‘“
>
|
[V}
:c‘“
<
o]
+
[V}
o

Ric,; = —

: Q(ddné) R? —2b (ddR(b)R_ddeR_b

Ricyy = — 2R' -

) sin® ¥ (2 (g% @) R —2b (3% @) R— ;& bR 1)
Ricgg = —

2R

Ricci Scalar

2 2
2 (dd?‘b) R? 42 (4% )2 R2 — 20 (ddR2 q>) R—2b (5% )2 R— o b (3% @) R+4 (5% &) R—3b (5% &) — 2 (5% b)
R2

Bianchi identity (Ricci cyclic equation RY e = 0)

———— o.k.

Einstein Tensor

_ dR
GUU_

2 (3% ®) R?—2b (3% ®) R—b
R2 (R—b)

2 (2 @) R +2 (85 )7 R* =20 (355 ®) R2 =2 (55 ) B? = b (7% ®) R +2 (75 ®) R —b (5 ®) R~ 7R bR+b
2R

. sin? 9 (2 (357 @) R +2 (5% @)° B —2b (125 @) B2 - 2b (% @)° B2 = ghb (5 @) 242 (75 @) B2 —b (75 @) R—..)
33 =

d R dR
2R

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R,)

e (2 (Ly @) R242 (5 @) B2 -2 (525 @) R-2b (5 @) R— 3% b (5 ®) R+4 (3

TR2 ®) R—3b (L4
2 R2

?)

:c‘“
:a‘“

p=
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 1 (—Riﬂ“j)

(R=1b) (2 (35 @) B*+2 (4% )7 B* = 2b (355 @) B2 = 2b (55 )% B2 = g% b (35 ®) B2 +b (4% @) R—2 (%5 b) R+20)

d R2 d R2
2 R4

2 (@) RP—2b (%L @) R— L bR-b
2 RS

2 (;%®) RP—2b (3% ®) R— % bR—b
2 sin? Y RS

Current Density Class 2 (_Riﬂw‘)

J1 =0
J2=0
J3 =0

Current Density Class 3 (- Riuuj)

J1=0
Jo =0
J3=0

4.4.28 Bekenstein-Hawking radiation metric

It is assumed that the angular term dX? is

dX? = r2d6? + r?sin? 6d¢>

with
2
U
=2M + —.
r + Wi
Coordinates
X =

€ 2
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Metric
u2
-1z 0 0
0 4 0
pry ’LL2
Iuv 0 0 (2 M+ 2
0 0 0
Contravariant Metric
—ar 0
124 0 2% 0 2
g’ = 4M
0 0 @erer
0 0 0

1
FO(n:*
F10*F001
1 u
oo 16 M2
rL. — u(4M2+u2)
22 — 8M2
i _ 51n219u(4M2+u2)
33 8M2
2u
2 _
1j12_4M2—&—u2
I =17
%, = —cos ¥ sin¥
2u
3 _
D= e e
cos U
1‘\3 _
27 giny
F331*F13
F32:F23

0
4 M?

sin2 ¢ (4 M2+4u?2)?

309



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Metric Compatibility
—  o.k.

Riemann Tensor

0 4M? +u?
B0 =53
R0220 = _R0202
RO sin® 9 (4 M? + u?)

303 — S M2
R0330 = _R0303

4 M? 4+ 2

B2 = =5
Rl221 = _R1212
Rl sin® 9 (4 M? + u?)

313 — S M2
R1331 = _R1313
R%0 = — u

00277 8 M2 (4 M2 + u2)
R%.,,=—-R

020 002

2

2
R 112 4M2 + u2
R2121 =—R"%q
2 :sinQﬁ(QM—u) (2M +u)

323 4 M2
R’y = —R

332 = 323
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2

Ry = — -
003 8 M2 (4 M2 + u?)
33030 = _33003
. 2
3
s 4 M2 + u?
33131 =—R’3
R __(2M—u) (2M +u)
223 = 4 M2
33232 = _R3223

Ricci Tensor

2

Ricyy = “

4 M? (4 M? 4 u?)
Ric,; = —ﬁ
Ricy, = f%
Ricgs = _3157192”2

Ricci Scalar

2 (4M? +307)

Rsc: p)
(4 M? 4+ u?)

Bianchi identity (Ricci cyclic equation RN[MWT] =0)
o.k.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Einstein Tensor

ut
Goo = — 2 2 22
2M? (4 M? + u?)
8 u?
e e—
(4 M? 4+ u?)
AM? 4+ u?
G227 4M2
sin? 9 (4M2 +u2)
G33:

4 M?

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY,)

A
= (4 M2 4+ u?)

Current Density Class 1 (—Riﬂ“j)

1
hi=1 (4 M2 + u?)
8u? M?

2 (4 M2+ u2)*

_ 8u? M?
sin? 9 (4 M2 4 u2)*

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
J3 =0
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10 ' T T T T
8_ 4
Q
=
5 6_ -
c
)
o
(0]
o
s 4t .
e
®)
2_ .
O 1 b e P 1 1
0 1 2 3 4 5
u

Fig. 4.63: Bekenstein-Hawking radiation, charge density p for M = 1.

Current Density Class 3 (_Riuuj)

Ji=0
Jo=0
J3 =0

4.4.29 Multi-cosmic string metric

Multi-cosmic string metric. Parameter a = a; + ¢b; is complex.

Coordinates

N 8y o+
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0.07 : : : :
0.06 i
0.05 | ]
0.04 | ]

0.03 1

Current Density J,

0.02 + -

0.01 -

Fig. 4.64: Bekenstein-Hawking radiation, current density J, for M = 1.

0.014 ]
0.012 b |
0.01 ]
0.008 | ]

0.006 F ]

Current Density Jo, J3

0.004 | | ]

0.002 | 1

Fig. 4.65: Bekenstein-Hawking radiation, current density Jy, J, for M = 1.
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Metric
1 0 0 .
— 1
0 ((y—b1)2+(x—a1)2)4m1 G O 0
uv = - :
" 0 2 2\dm1 G 0
((y*bl) +(z—ay) )
0 0 0 »
Contravariant Metric
1 0 )
gNV: O _(y2_2b1y+x2_2a1$+b%+a%)47rllG O
0 0 _(y2—2519+x2—2a1x+b%+a%)
0 0 :

Christoffel Connection

dmy (z—aq) G
2 —-2by+a?—2a1 0+ b3 +ad

_ dmy (y—b1) G
Y2 —2biy +a? —2a1 2 + b7 + af

1 _ 7l
F21*F12

dmy (z—a1) G

Iy, =

272 2biy4a?—2a12+ 02 +a?
2 _ dmy (y—b1) G

U2 —2by+ a2 —2a1 2+ 02 +a?
2 __ dmy (z—aq) G

12 y2—2biy+a? —2ax+ b3 + a?
11221:11212
2 dmy (y—0b1) G

22 =

2 —2byy+a? —2ayz+ b2 + a?

Metric Compatibility
o.k.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Riemann Tensor

all elements zero

Ricci Tensor

all elements zero

Ricci Scalar

R, =0

Bianchi identity (Ricci cyclic equation R = 0)
o.k.

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY")
p=0

Current Density Class 1 (_Riuuj)

Ji=0
Jo=0
J3 =0
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Current Density Class 2 (—Ri#"j)

Jy=0
Jo =0
Js =0

Current Density Class 3 (-R’,//)

Jy=0
Jy =0
Js =0

4.4.30 Multi-cosmic string metric, bicone

Multi-cosmic string metric, describing a form of a bicone. Parameter b = by +ibs
is complex.

Coordinates
t
T
X pr—
Yy
z
Metric
1 0 0
0 — . 0
_ V (—v2+2+03-03) (22 y—20b1 b)?
Guv = 1
0 0 - 2 :
\/(7y2+w2+b§*b%) +(2xy—2by ba)?
0 0 0
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Contravariant Metric

A=y*+ (22° =205 +207) y> —8by bywy + x* + (205 — 2b7) x* + by + 27 b3 + by

fi1=foa=VA
1 0 0 0
gpz/ _ 0 7f11 0 0
0 0 —fae O
0 0 0 -1

Christoffel Connection

ry? —2biboy+ a3+ bl —b3x

M, =-
1 (Y2 —2byy + a2 —2byx + b3+ b%) (y2 +2boy + 22 + 2by x + b3 + b?)
- v 42ty —by+biy—2bhbw
12 (Y2 —2byy + a2 —2byx + b3+ b%) (y2 +2bay + 22 + 2by x + b3 + b3)
Fl21:F112
L xy? —2biboy+ a3+ b3z —b2x
27 (42 —2bgy+ a2 —2byx + b3 +02) (Y2 + 2byy + a2 + 2y x + b3 + b?)
2 4ty —By+biy—2b b
U (2 —2byy+a? —2bia + 03+ 02) (y2 +2bay + 22 + 20z + b3 + b3)
2. __ ry? —2biboy+ad+biz—bix
2T (g2 —2byy+ a2 —2bya+ b3 +02) (Y2 +2boy + 22 +2byx + b3 + b3)
1ﬂ221:r212
2 _ vty —b3y+biy—2bibax
227 T

(Y2 —2bsy+ 22 —2by 2 + b3 + b%) (y> +2boy + 2%+ 2by & + b3 + b?)

Metric Compatibility
o.k.
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Riemann Tensor

all elements zero

Ricci Tensor

all elements zero

Ricci Scalar

Rse=0

Bianchi identity (Ricci cyclic equation R"”"[ 0)

pvol —

o.k.

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY)

A
I
=

Current Density Class 1 (_Riuuj)

Ji=0
Jo=0
J3 =0
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Current Density Class 2 (—Riﬂ“j)

Ji=0
Jo=0
J3=0

Ji=0
Jo=0
J3 =0

4.4.31 Einstein-Rosen type cosmic string metric

Einstein-Rosen type cosmic string metric. a, b, and ¢ are complex parameters.

Coordinates

g

Metric

Ny o+
N—

4my G :
A:((y—c2)2+(m—c1)2) ! \/(—y2+2a2y+m2—2a1x+b§—a%—bf+a%)2+(2my—2a1y—2a2x—2b1b2+2a1a2)2

fi1=-

1 0 0 0
[0 fi1 0 0
I =10 0 faa O
0 0 0 -1
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Contravariant Metric
A:y474a2y3+ (21274a1m72b§+6a§+2bf+2af) y2+ (74a2m2+(8a1a278b1b2) z+4a2b§+8a1b1 b274a3+ (74b? 74af> ag) Yy
+z474a1x3+ (2bg+2a§72bf+6af) x2+ (74a1b§+8b1a2b274a1 a§+4a1 b§74af) z+b§+ (72a§+2bf+2a§) b§78a1 by as ba

+a3 + (263 +2al) af + b1 — 2070} +al

B=y* —dary®+ (2x2 74a1172b§+6a§+2bf+2a3>
v2 + (74a2x2+(8a1a2 —8byby) x4+4azb? +8ay by by —4ad + (74bf 74af) az)
y+ot —dara® + (203 + 203 - 207 +60]) 2” + (—4a1b] +8braz by — 4araf + da1 b] — 4a})
w403+ (—2a3 +267 +2a]) b3 —8arbraz b

+aj+ (207 +2a]) of + b} — 2] 07 + of

4my G
fu:—(y2—202y+x2—201x+c§+cf) 1 VA
4 el
f22:7(y27252y+127201z+c§+cf> " VB
1 0 0 0
we _ |0 f1a 0 0
g 0 0 fa2 0
0 0 0 -1

Christoffel Connection

_ 4mla:y4G74clm1y4G716m1aza:y3G+1601m1a2y3G+8m1x3y2G7801m1w2y2G716a1m1x2y2G78m1b§wy2G+‘..

', =
1 (y2 —2bsy —2asy+...) (y2+2b2y —2asy+z2+..) W2 —2c2y+a2—2ciz+...)
rt 774m1y5G74m1czy4G'716m1a2y4G+8m112y3G’7lﬁalmlwy3G+16m1a2czy3G'78m1b§y3G+24m1a§y3G+...
12 (Y2 —2bzy —2a2y+...) (Y2 +2byy —2a2y+...) (Y2 —2c2y + 2% —...)
1 1
Iy =T,
N 4m1my4G74clm1y4G716m1a2$y3G+16(:1m1a2y3G+8m1z3y2G78clm1$2y2G716a1m1$2y2G78m1b§wy2G’+..A
. (Y2 —2byy —2a2y+...) (2 +2bzy —2a2y+...) (> —2c2y+ a2 —..)
2 4m1y5G74m102y4G’716m1 a2y4G+8mlz2y3G’f16a1m1xy3G+16m1aQCQy3G78m1b2y3G+24m1a2y3G’+8b2m1y3G’...
r = 2 2 1
H (y2 —2b2y —2asy+..) (y2+2b2y—2asy+..) (¥y2 —2coy+x2...)
2 7_4m1xy4G74c1m1y4G716m1a2xy3G+16¢:1m1a2y3G+8m1z3y2G78clm1m2y2G716a1m112y2G78m1b§zy2G+...
12 (y2 —2b2y —2az2y+..) (y2+2b2y—2asy+..) (y2 —2coy+ x2...)
2 2
[y =T,
2 4m1y5G74m1ch4G716m1a2y4G+8m122y3G716a1m1my3G+16m1a2ch3G78m1b§y3G+24m1a§yaG+.,.
22 = —

(y2 —2bsy—2a2y+..) (y2+2b2y—2asy+..) (y2 —2coy+a2—..)
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Metric Compatibility

——  o.k.

Riemann Tensor

———— all elements zero

Ricci Tensor

all elements zero

Ricci Scalar
Rye =0
Bianchi identity (Ricci cyclic equation R"”"[WU] =0)

— o.k.

Einstein Tensor

———— all elements zero

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R;")
p=0

Current Density Class 1 (-Ri#”j)

J1 =0
J2 =0
J3 =0

Current Density Class 2 (—Riﬂ“j)

J1 =0
J2 =0
J3 =0
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Current Density Class 3 (—Ri#"j)

J1 =0
Ja =0
J3 =0

4.4.32 Wheeler-Misner wormhole by 2 cosmic strings

Wheeler-Misner wormhole by 2 cosmic strings. For simplicity, a, b, and ¢ are
assumed to be real (non-complex) parameters.

Coordinates

(3

Metric

N e 8y o
SN———

(7y2+a:2762)2+4x2y2

A=
\/(y476m2y2+2a2y2+x472a2’12 — bt +at)? 4 (—4xyd +4a3y —4a2zy)?

fi1=fa2 = A

1 0 0 0
_ [0 —fi1 0 0
I =10 0 —fa O
0 0 0 -1

Contravariant Metric

A:y8+ (4w2+4a2) y6+ (63;4+4a2w2 —2b4+6a4> y4+
+(4w6—4a2w4+ (12b4—4a4) 22 —4a2b4+4a6) y2+
+m874a2:c6+ (6a4 72b4) x4+ (4a2b474a6) a:2+b872a4b4+a8

VA

fu= (y2+22—-2cx+c2) (y2+22+2cz+ c?)

B=y8+ (49c2+4a2> y6+ (6x4+4a2x2 —2b4+6a4) y4+
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+ (4356 —4a®z* + (12b4—4a4) z2 —4a2b4+4a6) y2+ac8—4a2x6+

+(6a4—2b4) w4+ (4112174—4116) $2+b8—2a4b4+a8

o = VB
22_(y2+x2—2cz+02) (y2 + 22 +2cz + c?)
1 0 0 0
w0 —f11 0 0
o700 e 0
0 0 0 -1
Christoffel Connection
2z (3¢ 8—3(1218+802.'£215—8a2m2y5+(:4y6+6a2c2y6+5b4y5—7a4y6+662m4y4—6a2m4y4+3c4m2y4—2a2c2m2y4—...
rtoo—_ Y Y Y
1 (y2+ 22 —2cax+c?) (y2+22+2cx+c?) ...
- 2y (czys—a2y8+c4y6+2a202y6+b4y6—3a4y6—602w4y4+6a2x4y4+304w2y4—6a202x2y4—9b47;2y4+3a4x2y4+...)
12 (y2+ 22 —2cx+c?) (y2+ 22 +2cx+c?) ...
1 1
oy =T,
rt 2x (302y873a2y8+802w2y678a2w2y6+c4y6+6a2c2y6+5b4y677a4y6+602x4y476a2x4y4+304w2y472a2c2m2y47...)
22 = (y2+ 22 —2czx+c?) (y2+22+2cx+c?) ...
2 2y (02y87a2y8+c4y6+2a202y6+b4y673a4y676c2x4y4+6a2z4y4+354x2y476a2c212y479b4m2y4+‘..)
= (y2+ 22 —2cx+c2) (y2+22+2cx+c?) ...
2 22 (3c2y® —3a%y® +8c222y% —8a% 2% Y0 +c*y® +6a% Y0 +5b%y® —TatyS + 62ty —6aatyt +3ct 2yt —2a% P2yt — L)
2 (y2+22 —2cx+c?) (y2+22+2cx+c?)...
2 2
Do =17,
2 _ 2y(02y8—a2y8+c4y6+2a202y5+b4y6—3a4y6—6c2m4y4+6a2x4y4+3c4$2y4—6a2c2x2y4—9b4x2y4+3a43¢2y4+...)
22 =

(y2+ 22 —2cx+c?) (y2+22+2cx+c2) ...

Metric Compatibility
——  o.k.
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Riemann Tensor

————— all elements zero

Ricci Tensor
————— all elements zero
Ricci Scalar
Rse =0
Bianchi identity (Ricci cyclic equation R0 = 0)

———— o.k.

Einstein Tensor

—————— all elements zero

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R%™)
p=0

Current Density Class 1 (-R’,"7)

J1:O
Ja =0
J3 =0

Current Density Class 2 (-R’,//)

J1=0
J2=0
J3=0

Current Density Class 3 (_Riuuj)

J1 =0
Jo=0
J3 =0
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4.4.33 Hayward-Kim-Lee wormhole type 1

Angular parts have been assumed as identical to the spherically symmetric line
element. A is a parameter. Charge and current density contain diverging terms
for large r.

Coordinates
t
<= r
I
2
Metric
277” -1 0 0 0
1
o = ey 0
! 0 0 r2 0
0 0 0 r2sin®9
Contravariant Metric
o 0 4r (r—2m) A? 0 0
71 o 0 L0
1
0 0 0 r2 sin? 9

Christoffel Connection

m
My =—-—
O (r—2m)
F010:F001
Il _Am (r—2m) N2
00 =
r
r—m
rl,=——r-m_
H r (r—2m)

Iy = —472 (r —2m) A\?
Ty, = —4r% (r —2m) sin® 9 A2
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F212 = %
I‘221 = I‘212
%, = —cos ¥ sin®
11313 = %
3 cost
B sing
[y =175
F332 = F323

Metric Compatibility
o.k.

Riemann Tensor

R0101 = ﬁ
Rono = _R0101

R0y = —4mr \?

30220 = *ROQOQ

RO505 = —4mr sin? 9 \2
RO330 = _R0303
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RY5 = —47 (r —m) sin® 9 \?
R'ys = —R'3i3
4m (r—2m) A2

R2002 == r2
R? R

020 = 002

r—m

R%p,

R2121 = _R2112
R?;55 = —sin® ¥ (47“2 N —8mr A\ — 1)
R2332 - *32323

4dm (r—2m) A2

R3y03 =
003 2
3 3
R%30 = —R703
r—m
RS
U372 (p — 2m)
3 3
R°y31 = —R'y3

R0 =472 )2 —8mr A% —1
R3232 = *R3223
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Ricci Tensor

4m (r—2m) A2
)

Ricy =

2r —3m
r2 (r—2m)

Ricy; = —
Ricyy = — (87"2 N —8mr A — 1)
Ricgy = —sin® 9 (872 A% —8mrA? — 1)

Ricci Scalar

2 (12r2 A2 —12mr A\ — 1)
r2

Ry = —
Bianchi identity (Ricci cyclic equation R0 = 0)

o.k.

Einstein Tensor

(r—2m) (12r* X2 —=16mrA\* — 1)
r3

Goo:—

2rA—1) (2rA+1)

G = 473 (r—2m) A2

Goy =471 (r—m) N2
Gz =4r (r—m) sin® 9 \?
Hodge Dual of Bianchi Identity
(see charge and current densities)
Scalar Charge Density (-R,)

4m N2
r—2m

p:
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Current Density Class 1 (—Riﬂ“j)
Jy =16 (r—2m) (27 —3m) \*

Jy = 822 —8mri2—1

ré

_ 812 X2 —8mri2—1

rd gin? ¢

J3

Current Density Class 2 (-Ri#“j)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (- Riuuj)

Ji=0
Jo=10
J3=0

4.4.34 Hayward-Kim-Lee wormbhole type 2

Angular parts have been assumed as identical to the spherically symmetric line
element. A\ and a are parameters. Charge and current density contain diverging
terms for large r. Results are similar to the type 1 wormhole.

Coordinates

€ 3 o+
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Metric
—% 0 0 0
1
P 0 8(1—2)r2 a2 0 0
. 0 0 72 0
0 0 0 72sin’Y

—z 0 0 0
w | 0 8r(r—a)X 0 0
7= 1o 0 L0

0 0 0 =2y

1
o -
ot 2r
Fom :Fom
8 (r—a) A2
Moy =-—
00 ”
2r—a
M, =-——
1 2r (r—a)

Iy, = =872 (r —a) \?

Iy =872 (r —a) sin® 9 \?
1

I, =-
12 =

2 _ 12
F21_F12

2?5 = —cos ¥ sind
1
I8, ==
137
cos
I, =
27 giny
FB31 = FB13
r 32 — r 23
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Metric Compatibility
o.k.

Riemann Tensor

r—2a
Ry =———5——
1o1 472 (r —a)
R0 =—R%

R0y =47 (r—a) N2
R0220 = _RO202

RO0s =47 (r —a) sin® 9 \?

R0330 = —R"303
4 (r—2a) \?
R1001 = - 2
R'0=—-R
010 001

Rl313 = —47 (27 —a) sin? 9 \2

R1331 = _R1313
8 (r—a) A2

2
R 002 — 7"2
R%.,,=—-R

020 002

2r—a

R2

U277 992 (r —a)
R2121 =—R"%q
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R?555 = —sin® 9 (87* A% —8arA® —1)

R2332 = _R2323
8 (r—a) N2

R3003 = 2

33030 = *R3003

2r —a

Rj3=c0g—-
U3 ™ 9r2 (r —q)

33131 = _R3113

RPy,5 =81 A% —8ar\’ —1
R3232 = _R3223

Ricci Tensor

. 4 (3r—2a) \?
RICOO = _r—2

) 3(38r—2a)
Ricy, = C4r2 (r—a)

Ricyy = — (127* A% —8arA* — 1)
Ricgy = —sin® ¥ (127"2 A —8arA? — 1)
Ricci Scalar

2 (18722 —12ar \? — 1)
r2

Rsc:_

Bianchi identity (Ricci cyclic equation R o = 0)
o.k.
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Einstein Tensor

2 (247202 —16ar X? — 1)
r3

Goo = —

1
873 (r—a) A2

G =
Goy =27 (37 —2a) N\

Gas =27 (37 —2a) sin? 9 \?

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)
p=—3r—2a) N\

Current Density Class 1 (-R’,//)
Ji =48 (r—a) (3r —2a) M

127222 —8arX2 —1
Jo =

rd

_ 127222 —8arX2 —1

J3 =
r4 gin? 9

Current Density Class 2 (—Riﬂ“j)

Jy =0
Jo =0
Js =0
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Current Density Class 3 (—Ri#"j)

Ji=0
Jo=0
J3 =0

4.4.35 Simple Wormhole metric

Metric of a simple form of a wormhole. k is a paremeter.

Coordinates
t
_ l
=l v
2
Metric
-2 0 0 0
_ 0 1 0 0
I =1 0 0 12+k? 0
0 O 0 (l2 + k;2) sin? 9

0
0
1

[RE
0

o O = O
o O O

[ S
(I12+k2) sin? 9

Christoffel Connection

I, = -1

Iy, =~ sin®9
2 l
127 2

11221 = 11212
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4.4.
2, = —cos¥ sin®
l

M=

13 lQ i k2

3 cost

B sinv
F331 - F313
F332 = F323

Metric Compatibility
o.k.

Riemann Tensor

1 k?
R 212 12 + k2
R1221 = R1212

L k*sin®v
R 313 — 7 12 + k‘2
31331 = _R1313

k.2

R2

2T (2 k)
R2121 =—R
R k2 sin® ¥

323 — l2 + kQ
R2332 - R2323

) k2
R3

113 (l2 T k2)2
R3131 =-R 113

]4)2

3
Fom =~ g
R3., = —R

232 223
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Ricci Tensor

2k2
Ricj; = —————
(12 4+ k2)
Ricci Scalar
2 k2
Rye =5
2+ )

Bianchi identity (Ricci cyclic equation R" = 0)
o.k.

Einstein Tensor

Gy = (ZQJ]ka)Q
Coa = k; inl;ﬂ

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)
p=0

Current Density Class 1 (-R’, ")

2 k?
Ji=———
(12 + k2)
Jo=0
J5=0
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T ]
15t 1

_';

>

‘®

[

(0]

a 1 |

C

©

=

(@]
05 1
0 | ‘e e L

Fig. 4.66: Simple Wormhole metric, current density J; for k = 1.

Current Density Class 2 (_Riuuj)

Ji=0
Jo=0
J3=0

Ji=0
Jo=0
J3=0

4.4.36 Simple wormhole metric with varying cosmological
constant
Metric of a simple form of a wormhole with a varying cosmological constant.

Here I'(r) /2 is the redshift function and b(r) is the shape function determining
the shape of the wormhole. The cosmological constant is contained in the form

of b(r).

338



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Coordinates
t
x — ™
- 9
©
Metric
—el'() 0 0 0
0 L. 0 0
Juv = 1= b(r )
0 0 r2 0
0 0 0 r2sin?9
Contravariant Metric
—e~T() 0 0 0
b(r)—r
g = 0 - [13 0
0 0 o 0
1
0 0 0 r2 sin2 9

Christoffel Connection

()

% =
01 2

0 _ 10
1—‘1071—‘01

a7 (o) =b0)
H 2r (b(r) —r)

Ty =b(r)—r

Tl = (b(r) —r) sin? ¥

1
2, =-
r

2 _ 12
F21_F12

2,5 = —cos®d sind
1

F313 = -
r
cos

3. —

23 sin ¢
I3 =173
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Metric Compatibility

o.k.

Riemann Tensor

206 () (L) —2r2 (L) +rb() (1)~ (AT0) +r (@) (A1@) b0 (Er0)

R0 o = —
101 ar (b(r)—7)

ROllO = _Rolol

L b =n (Erm)
R 202 —

2

ROZQO = 7R0202

. () — ) (dir r (r)) sin2 ¢
R"303 =

2

R0330 = *R0303

1
ROOI_

e(") (2rb(r) (Lrm) -2 (ETm)+rb0) (%F(r))zfrz (dirr(r))Qw (o) (Arm)—b0) (T

1 —
ROlO_

1 —
R2127

472

1
-R 001

r(Zbom) —b()

2r
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(b(r) =7 '@ (LT (1))

2 —
R0027

272
R2O20 = _R2002
2 r (dlr b(r)) —b(r)
27 92 (b(r) — 1)
R’15 = —R1pp
b(r) sin2 9
RP553 = b(r) sin 9
"
R2332 = _R2323
0O -0 O (Frm)
003 = 2,2
RSOSO = _RSOOS
L (Eem) —em
RS g=—20 /7 7

272 (b(r) —7)

b(r
R3223 — _ ( )
r
33232 = —R3223

Ricci Tensor

el'(r) <2rb(r) (%F(r)) — 272 (dd—; F(r)) +7rb(r) (% F(r))2 —r2 (dir F(r))2 +r (dir b(r)) <% F(r)) + )

Ricgg = — 12
. 202b(r) (@) —2r* (T @) +r200) (A1) —r* (Erm) +02 (L o) (AT0) —rbl) () + .
Rie == 412 (b(r) —7)
' rb(r) (%F(T))—TQ (%F(r))—i—r(%b('r‘))—i—b(r)
Ricyy = T
. (Tb(r) (dir F(T)) —r2 (% F(r)) +7r (dlr b(r)) + b(r)) sin? ¢
Ricsz =

2r
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Ricci Scalar

C2rb(@) (f T ) 202 (T @) +rb() (%F(r)>27r2 <%F(r))2+r (o) (Erm)+3b0) (T M)~

Roe = 272

Bianchi identity (Ricci cyclic equation R =0)
o.k.

Einstein Tensor

Goo = ;F(T) (‘%’” b(r)>

r

o) (A1) =72 (T @) +b(r)
r2 (b(r)—r)

202b(r) (L2 T(r) =253 (L2 T (1) +r2b(r) (d—drlﬂ(r)>2fr3 (%rm)ﬂﬂ (o) (ZET @) +7b) ()= .o

4r

(2r2b(r) (%F(T’)) — 273 (%F(r}) +7r2b(r) (%1"(7‘))2 —r3 <%F(r))2+r2 (%b(r)) (%F('r)) +) sin? ¢
4r

Hodge Dual of Bianchi Identity

——— (see charge and current densities)
: 0 70
Scalar Charge Density (-R°;")

T <2rb(r) (Zrm) —202 (Zrm) +ro0) (E10) 2 (A1@) +r (Lom) (£ 0) +)

472

p=-

Current Density Class 1 (-R’,"/)

() —7) (27"21)(7‘) (Zrm) —20* (Lrm) +260) (Erm) = (A10) +02 (L) (A7) —)
J1 =

rb(r) (dirr(r)) — 2 (dir(r)) +r (%b(r)) +b(r)

b (£r@) = (ET@) +r (bm) +b0)

275 sin? ¥
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Current Density Class 2 (—Ri#"j)

J1=0
Jo =0
J3 =0

Current Density Class 3 (-R’,"/)

J1 =0
Jo =0
J3=0

4.4.37 Evans metric

The general spherical metric contains four functions A(t,r), B(r), C(r), D(r)
by which all so-called vacuum metrics can be described. The terms for the
cosmological charge and current densities can be used to determine the functions
in a way so that these densities disappear, leading to the most general condition
to describe a true vacuum in the EH theory:

p(A4,B,C,D) =0
Ji(A,B,C,D) =0
J2(A,B,C,D) =0
J3(A,B,C, D) =0

However, the Einstein tensor, which describes the energy momentum density,
has also to vanish in order to describe a true vacuum.

Coordinates
t
x — '
- 9
4
Metric
A 0 0 0
o B o0 0
dwv=10 0 C 0
0 0 0 sin?29D
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Contravariant Metric

gt =

o o Oxl=
o o~ o
oqQo ©
~o oo

sinZ2 9 D

Christoffel Connection

d

o :HA

00 24
d

o :WA

01 24

0 _ 10
1—‘IO_FOI

d
rt _ _WA
00 5B
d
Tl = WB
11 2B
d
rl.. — _WC
22 2B
sin2 9 (di D)
| -
33 2B
d
r2,. — WC
12 Y]
%, =T?%,
r2.. — _cosvsindD
33 = C
d
3., = WD
13 2D
cos
s, =
23 sin ¥

3 _ 13
FSI_F13
3 _1m3
1—‘32_1—‘23
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Metric Compatibility
o.k.

Riemann Tensor

R0101:A (d%A) (%B)—QA (%A) B+<%A)23

4A2B
R% 0 = —R%
d d
RO . — ar 4 (W C)
202 — 4AB
R0 = —R%;q,

sin? ¢ (% A) (% D)

0 —
R3037_

4AB
R%30 = —R%03
. A(EA) (£B) 24 () By (LA) B
Roor == 4AB2?
RlOlO = _le)Ol
o 2BC (Lc)-B (%0)27 LB (o)
212 4B2C
R1221 = _R1212
sin2 9 (QBD (L Dp)-5 <%D>27 4 BD (%D))
s = = 4B2D
L cos ¥ sin ¥ (C (d—er>7%CD>
Rlazs = - 2BC
R1331 = _R1313
R'zy = —R'aas
L ga(ko
002 — o~

4BC
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2 _ 2
R 020 — -R 002

2BC (%c)—B(‘i C)Z—iBC (ic)

dr dr dr
R%*, =
112 1BC?
R% 5 = —R% 15
: d d
w2 __cost?smﬁ (C <ﬁD>fﬁCD)
313 = 202
sin 9 (dic (iD) —4BD)
R2 __ T dr
323 1BC
R%33, = —R%;3
32332 = *R2323
d d
R . — ar 4 <W D)
03 = T mp
R%y30 = —R%y03
42 d 2 4 d
o 2BD (WD> B (WD) - 48D (WD)
113 = 1B D2
cos (C (di D) — %CD)
R3 o r T
123 2 sind C D
R3131 = *R3113
R% 30 = —R% 53
d d
s 0 (c (4 p)-4cp)
213 = 2 sin¥ C D
) 4c (% D) —4BD
R J—
223 1BD
RPy3 = —R%3
R3232 = —R’593
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Ricci Tensor

Ricgo = =—= - 1AB>CD -
242BC2D (£, D) - A>BC? (%D)2—A2 (£ B) 2D (L p)+242BC (S 0) D>~ AB (%0)2 D? - ..
fien = - 4 A2 BC? D?
Ricy, — 7COS’(9 (C <% D> - %C’D)

2 sindC D

Ricy; = Ricqy

ABC (fC) (£ D) +24BC ({5C) D-AB (d%C)QD—A (£B)c (4C) D+ faBc (Lc)p-.

Ricgs = - LAB2CD

sin2 9 <2ABCD (%D) —ABC (%D)Z—I—AB (%0) D (d%D) "y (d%B) cD (%D) +)
4AB2CD

Ricgg = —

Ricci Scalar

RSC:_2A2BC2D (%D> - A?2BC? <%D)2 A2BC (dirc> D (%D)

2A2B?C% D? 2A2 B2 C? D2 2A2B?C? D?
a2 (LB)c2p (LD) A(ZA)BC2D (LD) 242BC ([ C) D
a 2 A2 B2C2 D? 2 A2 B2 C2 D? T oazprcrpe
AQB(%(,“)QDQ—AQ (LB)c (L£c)p* a(ka)Be (ko) D
- 2 A2 B2 C2 D? * 2A2 B2 (2 D?
A(f&4) (£B)c2p® 24 (f54) BC2D? (%A)QBCQD2—4A2BQCD2
- 2 A2 B2 (2 D2 T Tharprczpr 2 A2 B2 C2 D?

Bianchi identity (Ricci cyclic equation R0 = 0)

o.k.
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Einstein Tensor

A(2BC?D <dd—i.D>—BCQ (d%D)QJrBC (d%c) D (%D)—%BCQD (d%D)+2BC (%c) D2—...)
Goo =

4B2(C2D?

A(#£0) (#0) + 40 (#0) + 4 (#0) p-445
G = 4ACD

cos v (C (%D) — %CD)

2 sindC D

G =—

Go1 = Gyg

¢ (24250 (&) - 425 (£0) a2 (£8) D (£ D) +4 (#£4) 8D (£D) 4 (&) (£ 5) 07+

Gy =
22 4 A2 B2 D2

sin2 9 (2A2Bc (iLrc)-a2B (d%c)ZfAQ (itB)c (Lo)+a(fa)Bo(fLc)-a(iLa) (&B) 02+.A.) D
41A2B2C?

G33 =

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R")

A (%A) BC (%D)+A (d%A) B (%0) D—A <%A> (%B) CD+2A (C;%A) BCDf(%A)Q BCD
4A3B2CD

p=-

Current Density Class 1 (-R’,//)

b 242 BC?D (£ D) - A2 BC? (%D)Z—M (L B)c*D (L D)+242BC () D>~ A%B (d%c)QD‘Z—

4 A2 B3 02 D?
ABC (£0) (D) +24B0 (£ 0)p-aB (L0) D-a(L£B)c (£C) D+ LaBc (LC)D-14B2CD
2= 4AB2C3D
), _2ABCD (£ p)-aBc (%D)QJFAB (L) p(£p)-a(&B)cp (£ D)+ LABCD (4 D) -1482D?

4 sin?9 AB2C D3
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Current Density Class 2 (—Ri#"j)

Ji =0

cost (C (£ D)= D)

Jo =
2 2sind BC2D

J3=0

Current Density Class 3 (_Rium’)

cos vV (C (%D) — diTCD)

J =

! 2 sind BC2 D
Jo=0

J3 =0

4.4.38 Perfect spherical fluid metric

Metric of a perfect fluid sphere. There are similar versions called homogeneous
perfect fluid. a and b are parameters.

Coordinates
t
_ T
=1 w
%)
Metric
—ar? -1 0 0 0
0 (1—3(17'2)% 0 0
Guv = (3ar2+1)%—br2
0 0 r? 0
0 0 0 r2sin?9
Contravariant Metric
—— =1 0 0 0
2,2 ;.2
w 0 (3(17" +1)3 2br 0 0
g = (1-3ar2)3
0 0 = 0
1
0 0 0 r2 sin2 0¥
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Christoffel Connection

ar
%, =

O a2 41
1%, =T%

2
ar ((3ar2+1)3 7b7“2>

Iy =

00

(1 —3ar2)%

r (3a2br4 (3ar2+1)% —10abr? (3(17‘2—&—1)% —-b (3ar2+1)% +abdrb (3(17’2—&—1)% — b3t (3(17’2—&—1)% +)

(Barz—1) (9abr4 (3ar2+1)% +3br2 (3ar? +1)% + 6376 (3ar? +1)% —9a2rt (3ar? + 1)% — >

r ((3ar2 + 1)% — br2>

1o
F227_

(1—3ar2)%
2
L r ((3(17’2 +1)3 7br2> sin? ¢
a3 =— 2
(1-3ar?)s

1
Iy ==

r
Iy =T%,
2, = —cosd sind

1
F313 =~
r
cos ¥
. =
23 sin ¥

3 _ 13
FSI_F13
3  _1m3
1—‘32_1—‘23

Metric Compatibility

— ok
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Riemann Tensor

2 2 2 2 1
o a (3a3b7"8 (3(17‘2—&—1)g +20a2b7r0 (3ar2+1)§ —1labr? (3(17’2—|—1)§ —4br? (3(17"2—|—1)§ + a3 10 (3@7‘2-‘,-1)§ +)
R 01 = —
(ar? +1)% Bar2 —1) <9abr4 (3ar? +1)% +3br2 (3ar2+1)% + b3 76 (3ar2+1)% —9a%274 (3ar? +1)% — >
Rono = *Rolol
2
N ar? ((3(17"2-1-1)§ —b7”2)
R 500 = — 3
(1-3ar?)3s (ar?2+1)
R0 = —R%;q,
2
o ar? ((3(11"2—1—1)§ —b'r2) sin? ¥
R¥303 = — p)
(1-3ar?)3s (ar2+1)
R%30 = —R%3
2 2 2 2 . 2
L a <a2b4r12 (3ar2+1)§ +3abtri0 (3ar2+1)§ —9a%brl0 (30Lr2+1)§ —2b%r8 (3ar2+1)§ —78a3brd (3ar2+1)3 +>
R0 =
(1 —3(17‘2)% (ar2+1) Barz—1) (b3r6 (3ar2 +1)% —9a27r% (3ar2 + 1)% —6ar? (3ar2 +1)% - >
R'510 = —R'01
2 N 2 . . 2 2 2
N r2 (ab4r8 (3a7"2+1)§ — b0 (3ar2+1)3 —9a3brb (3ar2+1)3 +39a2brt (3ar2+1)3 +17abr? (3ar2+1)3 +>
Ry15 =
(1—3(17‘2)% (Barz—1) (b3T6 (Bar? + 1)% —9a2r* (3ar? + 1)% —6ar? (3ar2+ 1)% - )
Ry, =—-R
221 212
2 . 2 . . 2 2
| r2 (ab4r8 (3ar2+1)5 — b0 (3ar2+1)3 —9a3brb (3ar2+1)3 +39a2brt (3ar2+1)3 +) sin? ¥
R7313 =
(1 —3a7‘2)% (3ar? —1) <b3r6 (3ar2 +1)% —9a27r% (3ar2 + 1)% —6ar? (3ar2+ 1)% - )
Rl'33, =-R
331 313
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a ((3(17“2 + 1)% —br2)

(1 73(17"2)%

2 —
R002__

2 _ 2
R%20 = =R%002

R 3a?brt (3ar2+1)% —10abr? (3a7‘2+1)% —-b (3ar2+1)% +abd3rb (3(17"2—&—1)% — b3t (3ar2+1)% + ...
112 =

(Bar2 —1) (9abr4 (3ar2+1)% +3br2 (3ar? +1)% + 376 (3ar? +1)% —9a%rt (3ar? +1)% - )

R%305 = —
(1 —3ar2)%
R? R
332 = 323
2
5 a((Sar2+1)§—br2)
R 03 = — 3
(1-3ar?)s
R%y30 = —R%y03

3a2brt (3ar2+1)% —10abr? (3(17“2-‘,-1)% —-b (3ar2+1)% +abd3rb (3(17’2—&—1)% — b3t (3(17’2-1—1)% + ...

R3113: 2 2 1 1
(3ar2—1) <9abr4 (3ar2+1)3 +3br2 (3ar2+1)3 +b3r6 (3ar2 +1)3 —9a2r4 (3ar2 +1)3 — )

R3131 :—R3113

2 2
3 (3ar2+1)37(173ar2)37br2

Rog93 = 2
(1-3ar?)s

R3232 = *R3223
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Ricci Tensor

a (1—3@7’2)% (7a2b47’12 (3ar? +1)
Ricgg =

2 2 2 2
S+ 7abtr0 (3ar? +1)5 — 22506010 (3072 4+1)3 —4btr® (3arZ+1)5 - )
(ar2+1) (3ar?2 —1)> (b3r6 (3ar2+l)% —9a27r4 (3ar2+l)% —6ar? (3ar2+l)% — )

Ricqq

2
3

3a3 6116 (3ar2+1)% +5a2 b0 14 (30//‘2-‘,—1)% —270a5 b3 14 (3a7‘2+1)

2
—4ab5712 3ar?+1)3 — ..
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Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY™)
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4.4.39 Carmeli metric for spiral galaxies

Carmeli metric for spiral galaxies. R; and 7 are parameters.
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Charge Density p

Current Density J4
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Fig. 4.67: Perfect spherical fluid, charge density p for a =b = 1.
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Fig. 4.68
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: Perfect spherical fluid, current density J, for a =b = 1.
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Fig. 4.69: Perfect spherical fluid, current density Jy, J, for a = b = 1.

Coordinates
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Christoffel Connection

R (1) - (i ).

0
Moo = 4
R ()
Iy, = —cosx sinx
', = —cosx sin x sin? 9
33 — COSX blnx Sin
cos X
2, =
12 sin y
2 2
[P =17,
%, = —cos ¥ sin ¥
cos Y
I, =
137 siny
cos
I3, =
27 ginv
Mg =173
r 32 — r 23

Metric Compatibility
o.k.
Riemann Tensor

Ry, = sin?x

R'; 5 = sin? x sin? ¥
1 _ _pl
Rigs = —Rigis
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2 —
R 112 — -1

2 _ 2
R 121 — -R 112

R?5,5 = sin® x sin® ¥

2 _ 2
R 332 — —R 323

3 —
R 113 — -1

3 _ 3
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R3,55 = (cosx — 1) (cosx + 1)
R3232 = _R3223
Ricci Tensor
Ric,; =2
Ricy, = 2 sin? x
Ricyy = 2 sin” y sin? 9
Ricci Scalar

Rsc:_G

;
Bianchi identity (Ricci cyclic equation R = 0)
o.k.

Einstein Tensor

R;?
G =-1
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358



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%™)
p=0

Current Density Class 1 (-R’, ")

2
Jl - _ﬁ
2
Jo = —
2 sin? x 72
2
Js =

sin? x 72 sin? 9

Current Density Class 2 (-R’,")

Jy=0
Jo =0
Js =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
Js3 =0

4.4.40 Dirac metric

This metric is reported by J. Dunning-Davies and assumed to go back to Dirac.
m, p and 7 are parameters. m and p have been set to unity in the plots.

359



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

0 T T T T L
2 i
%_
>
%' -4 | ]
c
(O]
o
<
e 6f :
]
(©]
8l i
_1 0 :‘ 1 1 1 1 1
0 0.5 1 1.5 2 25 3
T
Fig. 4.70: Carmeli metric, current density J,,, 7-dependence.
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Fig. 4.71: Carmeli metric, current density Jy, J,,, x-dependence with 7 = 1.
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Coordinates
-
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2 12
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Einstein Tensor
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Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)
p=0

Current Density Class 1 (—Ri#"j)

(24% — 9m) (p— 1)
9mpt (1 — p)® sin® 9

Js = —

Current Density Class 2 (-Ri#“j)

Jy=0
Jy =0
Js =0

Current Density Class 3 (_Riuuj)

Ji=0
Jo=0
J3 =0
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Fig. 4.73: Dirac metric, current density Jg, J,, p-dependence for 7 = 0.2.
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4.4.41 Alcubierre metric

This metric has been synthesized to model a "spaceship drive" by spacetime.
The parameters are

Oz (t)
ot

re = \/(xl —z4(t))” — 22 — 2.
For the figures we used

tanh(o(rs + R)) — tanh(o(rs — R))
2tanh(cR) '

Vg =

frs) =

Interestingly, the charge and current densities are a counterpart of the intended
spacetime curvature.

Coordinates

t

X = L1
To

T3

Metric
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— oo o
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352 (g ms)2+1 YT (#& ts)2+1 00
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013 3 f2 (d—‘itzs)z—&-l
R2020 = _R2002
Rz021 = _R2012
R2030 = _R2003
R2031 = *R2013
2 2
we e (31 (1) (35 1) Ghe)’ =31 (s 1) ()" - s 1)
ror 3f2 (%Is)z-&-l
d a2 (_d2 d 2 d 24 2 a2
R 45 s <3f (def) (EIS) *f(m ) (ﬂzs) +4122f)
R0 = — p)

2

. e (5 (a5 ) (5 9) Ee)’ -3 (afa 1) (& 90)° - ooy S)
3 f2 (d—‘itzs)z—&-l

2 2
R 110 — -k 101
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(2% £)" (& o5)”
1

t
R* 1, =
112 372 (% zs)2 +
_d_ ( d f) (Lxs)z
2 day dzg at
R%y15 = 32 (d 2
f (ﬁzs) +1
2 2
R%50 = —R%402
2 2
R =Ry
2 2
R%30 = —R%103
2 2
R%y30 = —R%y13

A (Eas) 43 (s f) (Ews)' =37 (5 9) (3% ) (F5 o) +377 (o £) (F5 o) +

Ry, =
001 3 f2 (ﬁxs)erl
o) (1 (a5 1) (35 9) (Fro)+30° (s 1) (s 9)° + ot 1)
002 352 (& ms)z-&-l
L e (357 (52 1) (et (25 1) () + e )
R =
003 3f2 (%15)24»1
R3010 = _R3001

o e (155 1) (35 7) () =37 (o §) (d599)" — s 1)

R —
012 3 f2 (ﬂxs)z-i-l
2 2 2
3 ddt = <3f2 di;;2 f) (%IS)Zif (di? ) (ddt Is)2+di7f>
R =
013 3 f2 (ﬁzs)erl
R3020 = —R3002
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R3021 = _R3012
R3030 = _R3003
R3031 = *R3013
2 2
e s (3f( )(%“)2*5”2 (ﬁf) (%“f*mfid”f)
oL 3f2 (Las)?+1
2 2
oA (1 75 ) ()’ =38 (e 1) (s 9)” -~ wfes 1)
102 — 3f2(%$5)2+1
2 2
. e 1) ()= 1 (a5 1) (o) + 125 7)
R =—
103 32 (%zs)erl
R3110 = _R3101
d
o 75 (a%
112 32 (%zs)erl
2
) aty 1) (s ws)®
R = P 2
3f2 (ﬁ zs)” +1
R312o =—R%0

3 3
R 130 — -R 103

3 3
R%30 = —R%y15
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Ricci Tensor

277 (dﬁ f) (%m)Q (dt2 Is) B (‘“1 f) (df2 IS) 9 f° (

7)) (as)® =674 (5% 1) (das)® — ..

. d .
Ricyg = (3f2 d ms )
. at T8 <4f( il ) (dd%m) -9 (dijz ) (%I5)4*3f3 (%rgf)2 (%’35)4*9f (dij’z ) (dtxs)[l*"')
1Co1 = (3f2 (% ) +1)2
Ricozf—ddt ” (2f (ﬁf) (mm) +3/1° (%f> ("“3 f) +3f4 (d dd 2 f) (dt15)4_6f2 (%f) (dw f) (
(sf2 % 5)”+1)°
oo (01 () (i) w0 (1) (5.0) o) 01 (ot 1) Ghom)* =60° (609) (s 1) G +)
. ( = (%xs) +1)*
Ric,y, = Ricgy;
v 2(atd) (Fm) o8 (1) (o) =60 (e 1) (o) +37° (82 1) (o) =67 ( 5) (% 1) (o) + -
o (372 (o) +1)°
e 7 () 207 (59) (#59) oo =37 (b 1) (o) =35 G 9) () (o) s
" (3]‘2 (%15)2-{-1)
ot () w0 (a7 0) (5 ) (feo)' =95" (st ) (o) =90 (@) (it 9) ()’ 5o
e (352 (g ws)* +1)
Ricy, = Ricyy
Ricy; = Ricy,y
e (0 () e —0r (ah1) (e 481 (2 0) + (1))
1€y = — (3]"2 dizs )
v ) (087 (a5 1) (a5 9) (Hro9)* =98 (ot 1) (Frw0)' =t o (a5 £) =35 (ks 1))
23 — 2

(3f2 (izs) + )
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Ricgy = Ricyy

Ricg; = Ricy4

Ricgy, = Ricyg

(o) (90 (752 1) (Fo0) =67 (%5 1) (o) 435 (3252 1) + (a5 9)")

Ricgy = —

Ricci Scalar

2 (2 (ﬁ f) (% zs) —9f3 (d‘_iQ f) (4 zs)* +3 12 (ﬁjgf)Q (& as)* —9f° (d‘i; f) (4 zs)* +3 12 (ﬁf)Q (%ms)4+m>
(

Bianchi identity (Ricci cyclic equation R” (wvo] = 0)

—— o.k.

Einstein Tensor

(#r2)* (97* (a5 )" (ra) 400 (a5 1) (o) +125° (25 7) (529" =657 (a5 1) (o) + )

Goo = - <3f2 (ﬂ IS + 1)

I A (37 (722 7) Ghroo)* =35 (25 9)" (o) +34% (35 1) (Fee)* =37 (5 1) (Fr0)* + )

01 — b)
(372 (s o0)® +1)

o _ e (21 (a5 1) (dmes) +31° (a5 8) (a5 £) (o) +34" (aafis 1) (Fooe)' =682 (1) (a5 4) (e 29)+ )

T (3]‘2 (% zs)2+1)2

17201 1) (i) 00 (1) (e ) U 01 ) " 00" (1) (e ) )
(372 (r0)* +1)°

G0 =Go1

37 (o) (307 (3257) (droe)* =31 (a5 1) (o) 4307 (722 1) (Fro0)® =31 (35 1)" (o) + 72 1+ 727 1)
G11:
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ﬁf (%:cs)+6f2 (ﬁ

2
G12 -

2
d d

d g f (dt2 xs

Gy =

) +61* (a5 1) (a5 £) (Fen)' = 21" (

2

d
dxz; dzxg f

) (ws)' =31 (&) (3% 1) (&

(572 (frw0)” +1)°

Gao = Gog
Gy =Gy
G22:_2 (ﬁf) (%Zs)f9f3 (d(ﬁQf) (%zs)4+3f2 (ﬁf)Q (%zs)473f2 ﬁf)2 (T ) 4348 (dfl f) (%IS)47
(352 (& os) +1)2
G (5 (1) () B 08 (g 1) ()’ — s o () 51 (e 1)
* <3f2 (& zs)2+1)2
Ggo = Go3
Gz =Gy
Gy = G
o 2 (et ) () =38 (a5 9)" o' 208" (52 9) (o) 434 (5 0)" (oo)' +31° (582 9) (o) =
(352 G os)” +1)°
Hodge Dual of Bianchi Identity
————— (see charge and current densities)
Scalar Charge Density (-RY™)
2<ﬁf> (%wS)—QfS - xs) +6f2 (if) (di“ -9 +6f2 (dzf) d’£5)4+”'

p =
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 1 (-Riﬂ“j)

2 (a4 1) (dos)” (mos) —2 (24 1) (Szos) +60 (a5 1) () +65 (a5 1) (o)’ +30° (322 1) (s o9)° = o

= (Sf2 ﬁms)2+1)3

o (& s)? <9f3 (222 7) (Hoo)® =67 (a5 1) (Fos)®+3f (352 1) + (%ff)
T (?)f2 (%x8)2+1>2

(e’ (97 (72 1) (o9 =05 (a5 1) (o) +31 (3255 1) + (5 1))
\ =

Current Density Class 2 (-R’,"/)

st () 38 (el 1) (o)t =30 (#0) (a5 f) (o) +31° (adr 1) (o)’ + 2t 1 (a5 1) (509)° +
J1 = —

(3f2 (%xs) + )
et () 38 (s 1) o) =31 (D) (3% )! 1372 (ot ) (o)’ + 2t £ (a5 1) (Fes)’ + oo
*T (3]”2 (ixs) + )
L e (o8 (a5 1) (a5 1) o)’ =98 (afs 1) (Fooe)’ = £ (a5 1) =3 (s 1))
3= 2

(3f2 (% 15)2 + 1)

Current Density Class 3 (-Riﬂ“j)

dng(dtz I5)+3f3 (%f) (%zs) =3f (% 1) (drg f) (5 @s) P (%f)( IS) +d f(dtg ) e
lef
(df2 (—zs) + )2
) (o1 (a5 9) (a5 9) (eeo) = 95" (s 1) (s £/ (5 1) -3 (st 1))
J2 = (3f2(izs)+)2
o st (Gae) 30 (s 1) o)’ =31 (D) (a5 1) Grae) +30° (i 1) o)’ + £ (% f) (o)’ + -
-

(3]”2 (—xs) + )2

4.4.42 Homogeneous Space-Time

This metric is a generalization of the Robertson-Walker metric. In addition to
the coordinates, it contains functions X(x, k) =: ¥ and X(z, k') =: ©.
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2
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Fig. 4.74: Alcubierre metric, charge density p, time dependence for x;

t

0,!E3 =0.
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Fig. 4.75: Alcubierre metric, charge density, z; dependence for ¢

O,Zg =0.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density J;
o
(&)

Fig. 4.76: Alcubierre metric, current density J;, 1 dependence for ¢t = 1,25 =

0,(E3 =0.
0 T T T T
0.2 | 1
iy
&l
=
> 04r B
‘»
c
)
D ‘,‘ ",'
c -06 i
o
= . )
o
- 1 1 1 1
0 1 2 3 4 5

Fig. 4.77: Alcubierre metric, current density Jo,Js, x; dependence for ¢ =
1,1’2 = O,(L’g =0.

384



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Coordinates
t
T
X =
Yy
z
Metric
-02B%2 0 0 0
_ 0 A? 0 0
G = 0 0 X242 0
0 0 0 B?
Contravariant Metric
o 0 0 0
pro| T 0
0 0 sz O
0 0 0 3

Christoffel Connection

d
1‘\0 — dz @
03 (_)
FOBO = F003
d
I, =-% (dw 2)
d
1‘\2 — dz Y
12 ¥

2 _ 2
1—‘21_1—‘12

d
FBOO = 9 (dz @)
Metric Compatibility
o.k.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Riemann Tensor

2
RO _ ddz2 e
303 @
R, = —R
330 — 303
d2
P =3 ()
R, =—-R
221 212
2
R2 — # E
112 Z
R2121 - R 112
d2
R.=-0(-—©6
003 (dzg )
R? . = —R
030 003

Ricci Tensor

d2
RiCOO =0 (dzz @)

> b
RiCH - _7(1:8;
d2
RiC22 = - (de Z)
e
Ricgy = — dZé

Ricci Scalar

2 (£2z0B+3 (5 e) 4?)

Roe == ¥ O A2 B2
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Bianchi identity (Ricci cyclic equation R“[WG] =0)
o.k.
Einstein Tensor

o _ _@nte’B
A Ve

G, = ddz2 @A2
11 — ®B2

2 (£ 0) 42

d z?

G2 = o B2

2
Gow = dda:2 ¥ B?
BTonaA

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-RY,)

2 9
P~ 03Bl

Current Density Class 1 (-R’,/7)

ledw

dr2
Jzzda:

q22
J3:dz
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 2 (—Riﬂ“j)

Ji=0
Joa=0
J3 =0

Ji=0
Jo=0
J3 =0

4.4.43 Robertson-Walker metric

Robertson-Walker metric. a(t) is a time-dependent scaing factor, X(r, k) =: X
depends on k which determines if the universe is expanding, static or contracting.

Coordinates
t
< r
o )
%)
Metric
-1 0 0 0
| o a? 0 0
9w =110 0 a2x2 0
0 0 0 a?¥?sin?0

Contravariant Metric

-1 0 0 0

5 o L 0 0

=10 & 0
a? X2

0 0 0 L

a2 X2 sin2 9

388



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Christoffel Connection

d
FOH =a (dt a)
M, =a (jt a) »?

d
M, =a 7 a) »? sin? 9
d
1‘\1 — dt a
01 a
Iy =Ty

a
2 dt
oo =

a

d
1‘\2 752
12 »
2 _ 2
50 =T
2 _ 2
[P =17,
[, = —cos ¥ sind

d
1‘\3 Ea
03 =

a

d
FB_WE
13 5
3 cost
27 gind
3
Mg =173
Mg =173
F32:F23
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Metric Compatibility
o.k.

Riemann Tensor

dQ
R01o1 =a <dt2 a)

R0 =—R1n

d2
R 202 a <dt2 CL> 22
R0220 =-R 202

R0330 = —R503
d2
Zoa
Rl — di?
001 a
Rlow =—R'yn
d2 d \?*
R1212: E (d 22* <dta> E)
T
R, =R
221 212
2 d \°
RY, =% (dr2 ¥ - (dt a) E) sin® ¥
R1331 =—Rg3
2
R2002 = ddt2 ¢
R? R
020 = 002
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2 2
R2 —_ % 2 — (% CL) by
112 D
R2121 = _R2112
d \* d \?
R?33 = — ((d E) - <dt a> IR 1> sin? 9
r
R2332 = *R2323
d2
R3 _ dtz a
003 = T 7
33030 = *33003

R3 _ dr? dt
113 D
33131 = *R3113
d \° d \°
Bz = —2) = — -1
a3 (dr ) (dt “)
R3232 = —R’y3

Ricyy = — P
2 (%E) —a (dd—;a) ¥—-2 (%ayE
Ric;; = —




4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Ricci Scalar

2 (2% (& 2) + (£9)° =30 (fa) 23 (Fa)’ 22 - 1)
a?x?

Rse = —

Bianchi identity (Ricci cyclic equation R = 0)
o.k.

Einstein Tensor

d? d? d \’ ,
Gy3 =X (erzQa <dt2a) IR (dta) 2) sin? ¥

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)

3 (%a)

a

pP==

Current Density Class 1 (- Rilﬂj )

2 (%Z)—a (dd;a) -2 (%a)QE

S = at®
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S (%) + (£) —a (fra) T2 -2 (Fa)’ 2 -1

a* 2% sin? ¥

Jz =

Current Density Class 2 (-R’,/7)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R ")

Ji=0
Jo=0
Jz3=0

4.4.44 Anti-Mach metric

Anti-Mach metric of plane waves of homogeneous vacuum. This is a vacuum
metric.

Coordinates
u
v
X =
T
Y
Metric
—2 (cos (2u) (z? —y?) —2sin(2u) zy) -2 0 0
_ -2 0 0 O
Jpuw = 0 0 10
0 0 0 1
Contravariant Metric
0 -1 00
1 cos(2u) y2+2 sin(2u) z y—cos(2 u) x> 0 0
g’ll.l/ 2 2
0 0 1 0
0 0 0 1
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Christoffel Connection
Moo = sin (2u) y? — 2 cos (2u) zy — sin (2u) =2
Iy, = — (sin (2u) y — cos (2u) z)
T3 = — (cos (2u) y + sin (2u) x)
F120 = Fl02
Flgo = Fl03
20 = —2 (sin (2u) y — cos (2u) )
I3 = —2 (cos (2u) y + sin (2u) x)
Metric Compatibility
o.k.
Riemann Tensor
RYy00 = —cos (2u)
R'yp; = sin (2u)
Rlzzo = _Rlzoz
R1230 = *31203
RY;05 = sin (2u)
RY05 = cos (2u)
R1320 = _R1302
R133o = *31303
R%,09 = —2 cos (2u)
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R?03 = 2 sin (2u)

32020 = —R2002

R2030 = _R2003

R305 = 2 sin (2u)

R3%,03 = 2 cos (2u)

R3020 = _R3002

R3030 = *Rgoos
Ricci Tensor

all elements zero

Ricci Scalar

Rse =0

Bianchi identity (Ricci cyclic equation R"”"[ 0)

uvol

o.k.

Einstein Tensor

—— all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)

p=0
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Current Density Class 1 (—Riﬂ“j)

Jy=0
Jo =0
Js =0

Ji=0
Jo=0
J3=0

Ji=0
Jo=0
J3 =0

4.4.45 Petrov metric

This metric is a special case of the Anti-Mach metric of plane waves.

Coordinates

»®

Il
I/~
NIESEECEES
~

Metric
—e” cos (\/gm) 0 0 —2 sin (\/gm)
0 1 0 0
Guv = 0 0 e~ 2% 0
—2 sin <\/§.L> 0 0 e” cos (\/gL)
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Contravariant Metric

e® cos(V3x) 0 0 2 sin(V3 )
4 sin2(V3a)+e2® cos2(V3x) 4 sin2(V3a)+e2® cos2 (V3 )
w 0 1 0 0
9= 0 0 &% 0
2 sin(\/§z) 0 0 e cos(V3z)
T a Si!lz(\/gl)+€2‘t 0052(\/51) 4 sinz(\/gz)«#eQm cosz(\/gz)

Christoffel Connection

cos (\/51) (\/562“” sin (\/ga:) — 4+/3 sin <\/§x) —e2® cos (\/ga:))
- 2 <e2“° cos? (\/gw) — 4 cos? (\/gw) +4)

0
1—‘017

e”® (cos (\/gz) sin (\/313) — \/5)
762""' cos? (\/gm) — 4 cos? (\/§r> +4

0 _ 0
1_‘3171—‘13

e (V3 sin (VBz) - cos (V3a))

'y, =-—
00 2

1"103 =3 cos (\/Eac)

e” (cos (\/gz) sin (\/gx) — \/g)
e2 cos? (\/gm) — 4 cos? (\/gr) + 4

3
o1 =

3 _ 3
e =T"%

cos (\/gr) (\/562“” sin (\/57") — 4+/3 sin (\/gr) —e2% cos (\/ET))
2 (621 cos? (\/gz) — 4 cos? (\/gac) +4)

3
FIS__

3 3
g =T34
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Metric Compatibility
———— o.k.

Riemann Tensor

R sin (\/51) (2@2” sin? <\/§.L) — 12 sin? \/gL) —2+3e?" cos (\/5.1,) sin (\/§L> +e2® 4 12)
003 ™ ( 2z cos? (\/gm) — 4 cos? (\/gw) +4)
RO030 = _Rooos
s B 2v3e** cos’ (\/§x> sin (\/gz) — 8v3¢e%* cos (\/§93) sin (\/gz) +24v/3¢e%" cos (\/gm) sin (\/gz) +2e*® cos? (\/gm) S
o 4 (621 cos? (\/57:) — 4 cos? (\/5%) +4>2
Rono = _Rolol
RO B e” (4 cos® (\/gx) sin (\/gw) +3e2® cos (\/gw) sin (\/gz) — 16 cos (\/gw) sin (\/§x> —V3e?* cos?* (\/gx) + 4+/3 cos? (\/gx) — )
ms (621' cos? (\/§a:) — 4 cos? (\/gx) +4)2
R0131 = *Rong
0 =_efzmcos(\/§m) (\/gezmsin< )—4\/§sm( 3"5)—, u”cos( ))
202 2 (622 cos? (\/gx) — 4 cos? ( 33:) +4)
Rozzo = _Rozoz
0 _ e * (cos (\/gw) sin (\/§w) - \/5)
223
e2® cos? (\/gx) — 4 cos? (\/395) +4
R0232 = *R0223
o e” cos (\/g"c) (2 V3e2?® cos (\/gx) sin (\/57") +2e2® cos? (\/gx) — 12 cos? (\/57") — 362””)
R305 =
4 (621’ cos? <\/§x) — 4 cos? (\/gx) +4)
R0330 = _R0303
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e” (2 V3e2® cos? (\/gx) sin (\/gx) — 8+/3 cos? (\/gac) sin (\/590) + 16 /3 sin (\/gx) +2e2® cos® (\/gx) — 4 cos® (\/gx) + )

R1001 - 4 (621 cos? (\/gl) — 4 cos? <\/§.L> +4)
Rlom = *Rlom
L 2e2% sin® (\/51) — 12 sin® <\/§»L> + €27 sin (\/§L> — 12 sin (\/51) —2v3€2% cos (\/51)
R 13 =
2 (62’ cos? (\/§x> — 4 cos? (\/gw) +4)
R 31 = =R o13
Ry = —e 27
R1221 = _R1212
) 3 2e2% cos? (\/gx) sin (\/gac) — 12 cos? (\/§x> sin (\/gx) —3e2® sin (\/ga:) + 24 sin (\/ga:) +2v3e%® cos (\/ga:)
R om = 2 (62'1 cos? (\/§m> — 4 cos? (\/gw) +4)
RlSlO = *Rlsol
. e’ (2 V3e2® cos? (\/gm) sin (\/§w> — 8+/3 cos? (\/gw) sin (\/§w) + 16 /3 sin (\/gw) +2e2% cos® (\/§w> — 4 cos® (\/gz) + )
R 33 =

4 (82“‘ cos? (\/gw) — 4 cos? (\/gw) +4)

1 1
R331 = —R'315

er (V3 sin (\/ﬁa;) — cos (V32))

2

R7500 = —
2 2

R0 = =R%g02

Rz023 = —V3 cos (\/39:)

2 2
R 032 — -R 023
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R2112 =1

R2121 = _R2112

R2302 = V3 cos (\/ga:)
R232o = *R2302

et (V3 sin (V3z) - cos (V3a))

R%,.=—
323 2

2 _ 2
R7335 = —R733

e® cos (\/51) (2 V3e2 cos (\/§¢) sin (\/§£) +2e2% cos? (\/EL) — 12 cos? (\/gz) - 3623:)

3

R 003 = 4 (62“” cos? (\/gw) — 4 cos? (\/gz) +4)
R3030 = _R3003
3 3 e® (4 cos® (\/ga:) sin (\/gw) +3e2% cos (\/§w) sin (\/gz) — 16 cos (\/gw) sin (\/59:) —V3e?* cos* (\/gm) + 4+/3 cos* (\/gx) — )
oL (62’/ cos? (\/§x> — 4 cos? (\/§m> + 4)2
R3110 = *R3101
2 B 2v3e*” cos® (\/gx) sin (\/gx) — 83e3%® cos® (\/§9:> sin (\/gm) +24+/3€%% cos (\/gm) sin (\/gm) +2e*® cos? (\/gm) — ...
nee 4 (621 cos? (\/ga:) — 4 cos? (ﬁx) —&-4)2
R3131 = _R3113
B e™” (cos (\/gzc) sin (\/gx) - \/E)
202 e2% cos? (\/gx) — 4 cos? (\/gz) +4
R3220 = _R3202
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ei2zcos(\/§x) (\/gezzsin( )—4\/5511(1( Bw)— Ico:a( ))
2 (621 cos? (\/?ja:) 740052( 3x)+4)

3 _
R2237

3 3
R%335 = —R%553

sin (\/gz) (2 e2® sin? (\/gz) — 12 sin? (\/gm) —2+/3¢e3%% cos (\/§z> sin (\/51) +e2® 4 12)
2 (62’” cos? (ﬁx) — 4 cos? (\/gx) + 4)

3 —
R7303 = —

3 3
R7330 = =R%303
Ricci Tensor

e” (\/§e2$ cos? (\/gx) sin (\/gx) + 4+/3 sin (f ) +3¢e2?% cos® (\/gz) — 12 cos® (\/gx))

Ricoo = = 2 (621' cos? (\/gz) — 4 cos? (\fm) + 4)
) 2e2® sin® (\/§¢) — 12 sin® <\/§.L> — 4+/3 cos (\/g.l/) sin? (\/§L> +e2® sin (\/51) —23¢e2% cos (\/g‘l,)
Ricog = e2Z cos? (\/gw) — 4 cos? (\/gz) +4
R B 23 e** cos® (\/gx) sin (\/31) —8+/3e2% cos® (\/330) sin (\/31) + 243627 cos (\/31) sin (\/§x) + 4627 cost (\/3:5) +...
= 2 (521 cos? (\/gz) — 4 cos? (\/gm) +4)2
e _ e 2% sin <\/§:C) (4 sin (\/31) +3e2® cos (\/gx) — 4+/3 cos (\/gx))
022 = e2® cos? (\/gx) — 4 cos? (\/gm) +4
Ricgy = Ricyg
R e® (\/562‘7”cos2 (\/31) sin(\/gr)+4\/§sin(f )erez“c cos® (\/31)712cos (\/390))
1C33 =

2 (621' cos?2 (\/gm) — 4 cos? (\fz) +4)
Ricci Scalar

R 23 e*® cos® (\/gw) sin (\/ga:> +843e%% cos® (\/39:) sin (\/gw) — 64 /3 cos® (\/§z> sin (\/§:L’) +40vV3e%% cos (\/5;1:) sin (\/gx) + ...

2 (621‘ cos?2 (\/gz) — 4 cos? (\/gm) +4)2

Bianchi identity (Ricci cyclic equation R o = 0)

———  o.k.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Einstein Tensor

e” (16 V3e2® cos? (\/gw) sin (\/gm) — 64+/3 cos? (\/gw) sin (\/gm) +24/3€%® cos? (\/gw) sin (\/gw) + )

oo = 4 (621’ cos? (\/gz) — 4 cos? (ﬂx) +4)2

2et® cost (\/51) sin (\/gzc) +12€2® cos? (\/gx) sin (\/51) — 16 cos?* (\/gzc) sin (\/§£) +9e*® cos? (\/gzc) sin (\/5@) —
2 (62“" cos? (\/§w> — 4 cos? (\/gz) +4)2

Gos =

243e%% cos (\/§x> sin (\/gr) — 16 V3 cos (\/gac) sin (\/590) —6e2® cos? (ﬁx) + 12 cos? (\/gar) +3e2®
4 (ezm cos? (\/gx) — 4 cos? (\/51) +4)

_8721 (6\/§€4m cos® (\/ga:) sin (\/gz) —24/3e%” cos® (\/gz) sin (\/gaz) + 56v3€e%% cos (\/gm) sin (\/gm) +6e** cos? (\/gm) — )

4 (621 cos? (\/gx) — 4 cos? <\/§x) +4)2

G3p = Gos

e” (16 V3e2?® cos? (\/gzr) sin (\/ga:) — 64+/3 cos? (\/gx) sin (\/gac) +243e%% cos? (ﬁm) sin (\/gzc) + )

Gy = — 4 (521 cos?2 (\/gm) — 4 cos? (\/gw) +4)2

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R°)

e”® (\/5641 cos? (\/gw) sin (\/gz) + 44327 cost (\/gz) sin (\/gw) — 32/3 cos? (\/g:v) sin (\/59:) + )
2 (621' cos?2 (\/51) — 4 cos? (\/gz) +4)3

p=—
Current Density Class 1 (-Riﬂ“j)

2v3et® cos® (\/gx) sin (\/§x> —8v3e2% cos® (\/gw) sin (\/§w> +24/3e2% cos (\/gw) sin (\/§m> +4e%® cost (\/gw) + ...

= 2 (62”” cos? (\/3:1:) — 4 cos? (\Em) +4)2
e e2® sin (\/§1> (4 sin (\/gz) +v3e2% cos (\/§x> — 4+/3 cos (\/gx))
e2® cos? (\/ga:) — 4 cos? (\/gﬁ) +4
o _em (\/564“r cos* (\/gz) sin (\/gx) +4+3e%® cos? (\/gx) sin (\/gm) — 32+/3 cos? (\/gm) sin (\/gm) + )

2 (ezz cos? (\/31) — 4 cos? (\/g.l,) —i—4)3
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10 :

Charge Density p
o

X

Fig. 4.78: Petrov metric, charge density p.

Current Density Class 2 (-R’,")

J1 =0

J1 =0
Jo=0
J3 =0

4.4.46 Homogeneous non-null electromagnetic fields, type
1

This metric describes Homogeneous non-null electromagnetic Fields. £ is a

parameter.
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Current Density J,

Current Density J,
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Fig. 4.80: Petrov metric, current density Js.
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10 : : :
5 L
[s2]
iy
>
‘0
o]
a O A S S
c
o
5
O
_5 L
_10 1 1 1 1
-4 -2 0 2 4
X
Fig. 4.81: Petrov metric, current density Js.
Coordinates
t
< x
o 9
¥
Metric
—k2sinh®2 0 0 0
_ 0 k2 0 0
G = 0 0 k2 0
0 0 0 Kk2?sin?0
Contravariant Metric
—m—e— 0 0 0
k2 sinh? z 1
g = =z 0 0
0 0 = 0
0 0 0 k2 s}n2 9
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Christoffel Connection

o0 coshx
1 ginh
0 _ 10

o =T

'y, = coshz sinha

I3, = —cos ¥ sin¥
I3 cos ¢

237 sin

3 _ 13
[P0 =Ty

Metric Compatibility
o.k.

Riemann Tensor

0 o
R%p =1
0
R 110 — R 101
R inh?
001 = —sinh” x
R! R
010 — 001

2 _ 2
R 332 — R 323
3
R 223 — -1
3 _
R 232 — -R 223
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Ricci Tensor
Ricyg = sinh? z
Ric;; = -1
Ricyy, =1
Ricys = sin? 9
Ricci Scalar
Rse=0
Bianchi identity (Ricci cyclic equation R" = 0)
o.k.

Einstein Tensor

— qinh?
Gy = sinh" z

Gy = sin? 9

Hodge Dual of Bianchi Identity

———— (see charge and current densities)

Scalar Charge Density (-R°)

1

r= k4 sinh?
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 1 (—Riﬂ“j)

1
J1 = ﬁ
1
JQ == —F
1
Jy=——
s k4 sin? 9

Current Density Class 2 (-R’,//)

Jy=0
Jo =0
Js =0

Current Density Class 3 (_Riﬂw‘)

Ji=0
Jy =0
Js =0

4.4.47 Homogeneous non-null electromagnetic fields, type
2

This metric describes Homogeneous non-null electromagnetic Fields. a is a
parameter.

Coordinates

T 8 «+
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10 ; ; —— ; :
8 - |
Q
=
5 6 | 1
c
[}
o
()
o
g 4f 1
e
®)
2 .
0 1 B S E 1
-4 -2 0 2 4
X

Fig. 4.82: Homogeneous non-null electromagnetic Fields, type 1, charge density

p for k=1.

Metric
-1 0 4y
0 % 0 0
Juv = z a?
0 0 2 0
4y 0 0 x%2—4y?
Contravariant Metric
(2y—=z) (2y+=) 0 4y
12 y2+a2 ) 12 y2+x2
g,ul/ _ 0 2*2 02 0
0 0 % 0
4 1
Py 0 0 f5pree

Christoffel Connection

8y
M=
027 1942 4 22

dzy
My=—"0"—
137 19242 4 42
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EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

4.4.
Fozo = I‘002
0 2 (4 y* + xz)
r 23 - 2 2
12y° + 2
F031 = F013
F032 = F023
1
rt, =——
11 -
1
Iy, =-—
27
3
1z
a3 —a
2 g2
2 _
Pos ="z
1
I, =—=
12 -
I1221 = I1212
F230 = F203
422y
2
r 33 — a2
2
1'\3 _
02712942 + 22
T
F3 _
B 1242 4 22
I‘320 = I‘302
4y
1'\3 _
B 1292 + 22
[Py =173
[Pgy =179
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Metric Compatibility
o.k.

Riemann Tensor

RO _ 1622y
003 a? (1292 + 2?)
Sxy
R y=—— 7
T (1292 + 22)?
R0021 = _R0012
R0030 = *Rooozs
8y
RO, = —
102 x (1292 + 2?)
0 4y (24y* + 2?)
R" 13 2
(12y2 + 22)
R" 150 = =Rz
RO 8y? (12y* 4+ 7a?)
123 = 2
z (12y2% + 22?)
30131 =—R'3
30132 = _R0123
96 3>
R0201 = D)
z (1292 + 2?)
0 4 (1292 — 2?)
R¥500 = P)
(12y2 + 22)
R0210 =—R'9n
R0213 _ 2 (48 yt 4+ 24229y + 9:4)

z (1292 + 22)?
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

R0231 =-R 213

R0232 = _R0223

RO 42?2y —z) Ry +a)
303 —

a? (12y? + z2?)

2z 2y —z) 2y +x)

R4y =

312 (1247 _HCQ)Q
R0321 =—R3
R° -R

330 — 303
Rl _ 24 x y?

023 a? (12y% 4+ 22?)
R1032 = *R1023

223

Rl

2037 42 (12y2 + 22)

1

R1212 )
R'%,, = —R

221 212
Ry = —R

230 203

2x

R1302 = ?
Rl x2 (24 v+ m2)

313 a? (12y? + 22?)
R1320 = _R1302
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Sxy (6y2 +a:2)

Rl = a? (12y% + 22)
R1331 = *R1313
31332 = _R1323
R2002 — _24—$2
a? (1242 + 22)

R2013 = _%a:
R2020 = *Rzooz
32023 = T2 19,2 L 2\ 8a” Y

a? (1242 + 22)
32031 = _R2013
32032 = _R2023

943

B~ )
R2112 = %
32121 = _R2112
R2130 = _R2103
R2301 S 24a:y2

a? (12y2% + 2?)
R0 2 8"y

a? (12y? + 22?)

R2310 =R,
R%5 = Sy (6y2 —HUZ)
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EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

R34 =
3237 42 (1292 + 22)
R?33; = —R%35
R?330 = —R%30;
422
Ry = —
003 a? (12y2% 4 2?)
2z
R3012 ==
(12y2 + 22)
Ry = =R’
R’y30 = —R%003
2
R3 —
102 z (12y% + 22)
3 242 + 22
Ryy3 = 2
(1292 + 22)
R150 = —R% g
e 8y (6y2—x2)
123 = 2
x (1292 + 22)
R3131 =R
R4 =—R
132 123
3 24y*
Ry01 = — 2
z (12y% + 22)
3 _ 24y
2 (1292 + 22)?
Ry10 = =R’
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48 13
33213 =
x (12y% + 22)
33220 = _R3202
3 60 y* + 22
R993 = — 2
(12y2 + 22)
33231 = _R3213
R3232 = _R3223
- 1622y
3037 42 (1292 + 22)
8y
33312 =
(12y* + 22)
R3321 =—R’315
R3330 = —R’503
Ricci Tensor
8 z2
Ri = —=——
€00 a? (12y2% + 2?)
Sz2y
Ri =
103 a? (12y? + z2?)
Ri 2 (72y" + 2427 y? + 2*)
ic;; = —
M 22 (1292 + 22)°
1443
Riciy = — Y

z (1292 + 22)?
RiC21 = RiC12

4 (6y? —3zy—2?) (6y*>+3zy—a?)

Ricyy = 2 (257 1 x2)2

Ricgy = Ricyg

422 (5 y? — xz)

Ricgs = 9.7 T o) 1257 19
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Ricci Scalar

6 (48y4 —4x2y2+3x4)

Rye = — p)
a? (12492 + 22)

Bianchi identity (Ricci cyclic equation R*
o.k.

=0)

[pvo]

Einstein Tensor

144 y* — 108 22 y2 + z*

G pr—
00 a? (12y% + x2)2
a 4y (144y* — 36 2% y? + T*)
03 a? (12y% + J;2)2
60y% — 72
Gy =— s
(1292 + 22)
14443
Go=—"—"—"""—""7—3
x (1292 + 2?)
G21 = G12
729% + 522
G22 - 2
(129 + 22)
G3p = Gos
57695 — 43222 y* + 76 2% y% — 5 20
Ggg = —

a? (1242 4 22)?

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%")

B 8z (24y4 —8z2y? —|—x4)
a? (1242 4 22)*
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Current Density Class 1 (—Ri#"j)

222 (729" + 2427y + 2*)

J =
' at (1242 + 22)°
412 (6y2—3xy—x2) (6y2+3xy—x2)
Jo = 5
a* (1292 + z2)
422 (21y* — 2?)
Jy = —

a? (1292 + 22)°

Current Density Class 2 (-Ri#“j)

Current Density Class 3 (-R’,/"/)

144 23 43
Ji=——
a* (12y? + 2?)
Jo=0
J3=0

4.4.48 Homogeneous perfect fluid, spherical

This metric describes a homogeneous perfect fluid in spherical coordinates. a is
a parameter.

Coordinates

€ < 3 =+

417



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Charge Density p
N

Fig. 4.83: Homogeneous non-null electromagnetic fields, type 2, charge density
pfora=1,y=1.

400 \ T T T T
350 .
300 F I
> 250 1
Q 200 1
5 150 | b
100 | ]
O 1 1 1 1
-15 -10 -5 0 5 10 15

Fig. 4.84: Homogeneous non-null electromagnetic fields, type 2, current density
Jyfora=1y=1.
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X

Fig. 4.85: Homogeneous non-null electromagnetic fields, type 2, current density
Jy fora=1,y =1.
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Fig. 4.86: Homogeneous non-null electromagnetic fields, type 2, current density
J, fora=1,y=1.
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Metric
-1 0 0 0
0 L0 0
Guv = 122
a 0 0 2 0
0 0 0 72sin®9

Contravariant Metric

-1 0 0 0

o 0 _ (r—al)lgr—&-a) 0 0

N 0 L0
0 0 0 —=tup

Christoffel Connection

T, =— d
1 (r—a) (r+a)
It _r(r—a)(r+a)
22 — ag
1 r(r—a) (r+a)sin219
g = a2
1
2, =-
12 =
I‘221 = I‘212
I‘233 = —cos ¥ sind
1
I3, ==
13= 7
cos v
I3, =
B sing
F331 = F313
[Pgy =179
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Metric Compatibility
o.k.

Riemann Tensor

r
R1212 = a7
31221 = _R1212
1 72 sin? 9
R 313 — a2
31331 = _31313
1
R, =
112 (r—a) (r+a)
R2121 =—R%q
9 72 sin? 9
R%395 = a2
R%., = —R
332 323
1
Ry =
13 (r—a) (r+a)
33131 =—R’3
2
r
33223 = T2
33232 = _R3223
Ricci Tensor
2
Ric;; = —
1 (r—a) (r+a)
. 272
R1C22 = ?
. 272 gin% 9
Ricgs = e
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Ricci Scalar

Bianchi identity (Ricci cyclic equation R o = 0)
o.k.

Einstein Tensor

3
Goo = 22
1
G, =
1 (r—a) (r+a)
2
r
Gy = 2
r2 sin? 9
Gz = a2

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)
p=0
Current Density Class 1 (-Riu“j)

2(r—a)(r+a)

J = "
2
J2 = T a2
2
Jo—m =
8 a?r? sin? ¥
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30 ]

Current Density J4
o

10 | .

Fig. 4.87: Homogeneous perfect fluid, spherical, current density J,. for a = 1.

Current Density Class 2 (-R’,//)

Ji=0
Jo=0
Jz3 =0

Current Density Class 3 (-R’,")

Ji=0
Jo=0
J3 =0

4.4.49 Homogeneous perfect fluid, cartesian

This metric describes a homogeneous perfect fluid in cartesian coordinates. a is
a parameter.
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O T T —
_2 - 1
[s2]
=
ﬁ:'\1
> 4r ]
‘0
C
[0
o
5
(@]
_8 - 1
-10 5 - . . ,

Fig. 4.88: Homogeneous perfect fluid, spherical, current density Jy, J, for a = 1.

Coordinates
t
T
X =
Yy
z
Metric
—a> 0 0 —2e*
B 0 a® 0 0
=1 "0 0 a2 0
2 2z
—-2¢* 0 0 —
Contravariant Metric
2 —x
—aig 0 0 iffs
0 L0 0
[ a?
g o 0 % 0
=z 2 -2z
if—s 0 0 72aa4e—8
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Christoffel Connection

4
My =-——F—
01 a4 —8
Pom = I‘001
ae®
M, =———
13 a4 o 8
F031 = F013
61
Flos = ﬁ
Fl30 = Fl03
eQw
rt,, =-——
2a%e"
I, =
ot at —8
=1
o (@=2) (@+2)
13 — a4 _ 8
FB31 = I‘313

Metric Compatibility
o.k.

Riemann Tensor

4e*
0
R 003 az (a4 . 8)
R0030 = —R"y3
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2
R0101 = at _ 8
Rono = _ROIOI
2a2e”
RV =—"F—
113 a4 _ 8
RO131 =-R"y3
eQa:
RO, = —
303 a4 _ 8
R0 = —R
330 303
2
Rlool = at_8
Rlolo = _Rlool
4e*
1 _
Rois = a2 (at —8)
R1031 = _R1013
4e”
1 _
R 301 — CL2 (a4—8)
R1310 = _31301
Rl B (a4 — 10) e
1372 (ah - 8)
R1331 - Rl313
. 2
R3003 = at _ 8
R%y3=—R
030 003
a*—2
R3 5=
113 a4 _ 8
R3131 =—R’3
4e”
Riyq =
303 7 42 (a* —8)
R’y =—R
330 — 303

4.4.

EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION
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Ricci Tensor

4

Ricyg = ————

1Co0 a4 ~3

. 8e*
Ricos =~ s =gy

(a? —2) (a® +2)

Ric;; = —

1C1q a4 )
Riczg = Ricys

) (a* —12) €2®
IR

Ricci Scalar

R — 2 (a4 — 6)

a2 (a* - 8)

Bianchi identity (Ricci cyclic equation R" = 0)
o.k.

Einstein Tensor

at—2
Gyy=———
0o a*—8
G — 2(a4—2) e*
BT g2 (a* —8)
2
Gll_ 4_8
a*—6
G22_ 4 8
G3o:Go3
3e2e
G —
33 a478
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Hodge Dual of Bianchi Identity
———— (see charge and current densities)
Scalar Charge Density (-R"™)

4

Current Density Class 1 (-Ri#“j)

(a2 — 2) (a2 + 2)

J1= a* (a* —8)
Jo=0

2 (a® —2) (a® +2) e 2®
Jy = —

(at —8)”

Current Density Class 2 (_Riuuj)

Ji=0
Jo=0
J3 =0

Jy=0
Jy =0
Js =0

4.4.50 Petrov type N metric

Petrov type N metric. There is no diagonal element for v. p is a parameter.
The radial charge density is rising exponentially.
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Charge Density p

Current Density J4

0.2

0.15

0.1

0.05

0.5

o
o

Fig. 4.90: Homogeneous perfect fluid, cartesian, current density J,. for a = 1.
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

20 T y T T T

15 | -
® :
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>
‘@
&
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=
o
5
O

5 - .

O 1 1 R S 1 1

-4 2 0 2 4
X

Fig. 4.91: Homogeneous perfect fluid, cartesian, current density J, for a = 1.

Coordinates
U
v
X =
T
Yy
Metric
—2¢2PT 2 0 0
_ 2 0 0 O
G = 0 010
0 0 0 1
Contravariant Metric
1
(1) 2. 0 0
g"“’: 2 2 0 0
0 0 1 0
0 0 0 1
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Christoffel Connection
[loy = —pe*?®
Flzo = I‘102
2., = 2pe??®
Metric Compatibility

o.k.

Riemann Tensor

1 o 2 2px
Rgpe =2p"¢

1 _ 1
R 220 — —R 202
2 2px
Rpp = —4p"e
2
ROQO_ ROOQ

Ricci Tensor
Ricyy = 4p* €2P”
Ricci Scalar

Rse =0
Bianchi identity (Ricci cyclic equation R e = 0)
o.k.
Einstein Tensor
Goo = 4p? e

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%")
p=0

Current Density Class 1 (-Ri#"j)

le_erpr
Jo=0
J3 =0

Current Density Class 2 (-R’,//)

Ji =0
Jo=0
J3 =0

Current Density Class 3 (_Riuuj)

Ji=0
Jo=0
J3 =0

4.4.51 Space Rotationally Isotropic Metric

Space Rotationally Isotropic Metric. € = %1 is a parameter. A(t) and B(t) are
time-dependent functions.

Coordinates

N e 8y o+
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Current Density J4

Current Density J4

Fig. 4.92: Petrov type N metric, current density J; for p = 1.

Fig. 4.93: Petrov type N metric, current density J; for p = —1.
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Metric
- 0 0 0
0 eA? 0 0
=10 0 e*B> 0
0 0 0 e2® B2

1
w |0 e G0
g 0 0 < 0
6721
0o 0 0

2z d
1'\0 — € B (E B)
22 c
2x d
FO — e B (E B)
33 -
d
1'\1 — dt A
01 A
Fl1o = Fl01
e2r B2
rt,, =—
22 e A?
eQm B2
rt -
33 g A2
d
1—\2 — dt B
r,=1
FZ20 = FZ02
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F221 = F212
F303 = % Y
B
M,=1
I3 =T%;
[Py =173

Metric Compatibility
o.k.

Riemann Tensor
d2
Ry,=A(-—5A4
101 < d12 >

0 _ 0
R 110 — —R 101

* B (£ B)

RO202 =

o, T BAGLBE) -~ #AB)
cA

RO220 = _30202

RO221 = _R0212

ey

R¥303 = -

o, BB 4 AB)
cA

RO330 = —R'33
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R0331 = —R33
Rl _ dTZ A

001 — A
RlOlO = Rlool
p "B (A(#B)- #AB)

202 - A3

T d d

w_ETB (A (4 A) (#B) - B)

212 c A2
R1220 = _R1202
R1221 = _R1212

T d d

Rl "B (A(f;B) - #3AB)

303 - A3

T d d

p _STB(A(LA) (£ B) - B)

313 c A2
R133o = 31303
R1331 = R1313
B

002 — B

012 AB
32020 = _R2002
R2021 = —32012

d d
102 AR
d d

R A(54) (£58) -8B

112 — B
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32120 = _R2102

32121 = _R2112

w2 T (A(LB)-B) (A(£B)+B)
323 =

2 _ 2
R 332 — -R 323
a2
R3 — t2 B
003 B

R34 dt 5 dt
33030 = —R03
Rig3 = —R%y13
. _AGE) - 4B

R3,5=— dt Bdt

R340 = —R% 3

R% 4 = —R% 5

w,, (A B) - B) (A (#5) +B)
£ A2

Ry = —R%y08
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Ricci Tensor

. dat?
Ricyy = — 1B
4 py_ 4
fio, — 2 E) -4 48)

Ric,, = Ricy;

Ricy; =

e (A28 (2 B) + 4 (5 B)" + A (3 4) B (4 B) -2B)

. di? dt dt t
Ricyy = A2
v (42 B ({5 B) + 4> (#5B)" + A (5 A) B (4 B) - 2B*)
RiCSS =

Ricci Scalar

2 (2428 (2 B) +4* (5 B)" +24 (£ 4) B (4 B) + A (f2 4) B>~ 3B?)
e A2 B2

Ry =

Bianchi identity (Ricci cyclic equation R o = 0)
—  o.k.

Einstein Tensor

Goo = dt Ad2tB2 dt
L 2(A(LB) - 44B)
01 — AB
Gio=Gn
24°B (4% B) + 4* (& B) - B*
G =—
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Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)

24 (f B) + 45 AB
p== e2AB

Current Density Class 1 (-R’, ")

24 (£4) (#5B)+A (= 4) B-2B

€2 A4 B

Ji=—

e 2 (2B (& B) + 42 (£ B) + A (£ 4) B (4 B) - 2B?)

dt
Jo = —
2 ¢ A2 B4

o2 (428 (£ B) + 42 (4 B)° + A (4 4) B (4 B) —28?)
e A2 B4

Jy = —

Current Density Class 2 (-R’,"/)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R /)

Ji=0
Jo=0
J3 =0
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4.4.52 Electrovacuum metric

Metric of electrovacuum. There is only a constant current density J.

Coordinates
t
T
X =
Yy
z
Metric
-1 0 0 0
0 3 0 0
=110 0 e2= 0
0 O 0 e
Contravariant Metric
-1 0 0 0
0 2 0 0
umY o 22
9 T lo 0 e o
0 0 0 e

Christoffel Connection

3 67233
I, =
22 4
3 e?w
Iy =—
33 4
F212 =-1

Metric Compatibility
o.k.
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Riemann Tensor

R 3e 2%
212 = 1
1 1
R 951 = =R 515
Rl 362x
313 = 1
1 1
R'g31 = —R'33
2
R =1
2 2
R%51 = =R
R2 362m
323 4
2
R%339 = —R%393
3
R’3=1
3 3
R’y51 = —R’5
R3 36—2r
223 1
3 3
R950 = —R7593
Ricci Tensor
Ric;; = -2

Ricci Scalar
3

Rsc = -3

2

Bianchi identity (Ricci cyclic equation R"””[
o.k.

0)

nro) =
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Einstein Tensor

3
Goo = _27
Gy =—1
e 2
G22 - 4
3621
G33 - 4

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%")
p=0

Current Density Class 1 (-R’,"7)

32
J1—273
Jo=0
J3 =0

Ji=0
Jo=0
J3=0

Ji=0
Jo=0
J3 =0
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4.4.53 Spatially homogeneous perfect fluid cosmologies

Metric of spatially homogeneous perfect fluid cosmologies. Coordinate functions
are a(t) and X(r,k) where k is a parameter. The coordinate dependence of
charge and current density is implicitly defined by the models of @ and 3. There
is no explicit coordinate dependence.

Coordinates
t
<= r
o 9
¥
Metric
-1 0 0 0
10 a? 0 0
=110 0 a2%2 0
0 0 0 a?X¥?sin?0

—O O O

a2 X2 sin2 9

Christoffel Connection

d
FO — el
11 =04 (dta)

dt
d

1‘\1 _Ea
01 T
1 1
IMo=TI"n
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I‘202 = dtTa
11212 = CTdT >
Y
250 = T2
I1221 = I1212
25, = —cos¥ sind
FS03 = @
a
F313 = d% -
Y
=
30 = T3
1ﬂ331 =13
P39 = T3

Metric Compatibility
— ok
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Riemann Tensor

d2
ROIOl =a (dt‘z a)

ROllO =-R 101

d2
R 202 a <dt2 a) 22
RO220 =-R 202

R0330 =-R 303
d2
a
Rl — dt2
001 a
R1010 = _R1001
d? d \°
R1212 = 72 <d2 E — <dt CL> E)
T
31221 = _R1212
> d \°
R1313 - _Z <d7’*2 Z — (dt a) 2) Sin2 19
Rl331 = _31313
d2
R2 — diz a
002 = 7
32020 = _32002
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R2121 = R2112
d N\ [(d \ ,
RP33 = — <(dr E) - <dt a> »? - 1) sin? ¢
R%*3, = —R
332 323
d2
+=a
R3 — dt?
003 a
RPy30=—R
030 003

R3. . — dr? dt

113 E
R3131 = *R3113

d \? d \?

3og = ) —(— »? -1
R 23 (dr ) (dt a)
R, = —R

232 223

Ricy; = —
. > d _\? d? ) d \? .,
R1C22:—<E (7’22>+<d7‘2) —a(dtQa>E —Q(dta> E —1
d? d )\’ d? d \?
1Co0o — — R _ _ Rl 22_2 el 22_1 2
Ricsq (E (dr2 Z) + <dr E) a (dt2 a) (dta> ) sin” ¢

Ricci Scalar

2 (2% (&) + (£3)° -3a (#a) 223 (Fa)" 22 - 1)

Rsc:_
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Bianchi identity (Ricci cyclic equation R“[WG] =0)
o.k.

Einstein Tensor

28 (#£3) + (£ %) -3 (£a)" 22 -1
Goo = —

42 d? d \’ ,
Gy3 =% (WZQG (dtQa) IR (dta> 2) sin o)

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)

3 (%a)

a

p=-

Current Density Class 1 (-R’,/7)

2 (dd—;Z)—a (dd—;a) ¥ -2 (%a)2 b))
S = aty

S (%) + () —a (fra) T2 -2 (Fa)’ 22 -1
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Current Density Class 2 (—Riﬂ“j)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R’,"/)

Ji=0
Jo=0
Jz3=0

4.4.54 The main cosmological models

Metric of the main cosmological models. Coordinate functions are A(t), B(t),
and X(y, k) where k is a parameter. The coordinate dependence of charge and
current density is implicitly defined by the models of A, B, and 3. There is no
explicit coordinate dependence.

Coordinates
t
T
X =
Yy
z
Metric
-1 0 0 0
10 A? 0 0
dw=10 0 B2 0
0 0 0 X2B?
Contravariant Metric
-1 0 0 0
Y 0 % 0 0
=10 O L o
B2
0 0 0 x5
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Christoffel Connection

d
M. =A(—4
11 (dt )

d
1‘\1 — dt A
01 A
Fl10 =T 01
d
1‘\2 — dt B
02 B
F220 = F202

d
1‘\3 — dt B
03 B
d
1‘\3 — dy X
23 D
P30 =3
F332 = F323

Metric Compatibility
o.k.
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Riemann Tensor

Ry =a (L4
101 d12

R0110 = _RO101
d2
R%q, =B <dt2 B>
R%,, = —R
220 202

R0330 = _30303
d2
Rl — a2 A
001 A
RlOlO = _R1001
d d
Rl — dt AB (E B)
212 A
R1221 - *31212

Rl _ dt dt

313 A
R';;, = —R

331 313

d2

2 _deB

002 B
R2o20 = _R2002

d d

R, = _A(54) (& B)

B
R2121 = _R2112
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d \° a2
2 _

R2332 = —R%;3
R3 dTZQ B
03~ T p
R3030 = —R’y3
d d
ro_ A4 (5 B)
113 B
33131 = *33113
d 2 d?
o DB -y
223 >
33232 = _R3223

Ricci Tensor

R‘ICOO = —

Ricsg =

Ricci Scalar

2(25AB ({5 B) +TA (£ B)°+23 (£4) B (#B)+3 (f24) B2~ > 24)

Rsc =
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Bianchi identity (Ricci cyclic equation R"[WU =0)

o.k.

Einstein Tensor

2 2
&M%B)+Dﬂ%Aﬂﬂ%B%ﬁ%2A
> AB?

Goo =

42 (258 (£ B) +% (4 B)’ - £ %)
¥ B?

G =—

B(A (ddsz)+ LA (L )+%AB)
Gy =—

S2B (A (4 B)+ %A (5 B)+ 4= AB)

Gay = —

Hodge Dual of Bianchi Identity

——— (see charge and current densities)

Scalar Charge Density (-RY™)

24 (#5 B) + 4 AB
P= AB

Current Density Class 1 (-R’,"/)

S 20 (EB) A
= A3 B

2 2
SAB (£ B)+TA (£B)+5 (4 4) B (£ B) - 54
SAB

Jo = —

2 2
SAB (4 B)+SA(£B) +3 (£4) B (£B) - £:%4
53 A B

Js = —
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Current Density Class 2 (—Ri#"j)

Jy=0
Jo =0
Js =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
J3 =0

4.4.55 Petrov type D fluid

Metric of the Petrov type D fluid. @ and n are parameters. The charge and
current densities are partly increasing exponentially with x.

Coordinates
t
X
X =
Yy
z
Metric
—e 227 0 0
0 1 0 0
gMU = O 0 thrl 672a$ 0
0 0 0 tl—n €—2aw

Contravariant Metric

—e2eT 0 0

w | 0 1 0 0

g - 0 0 t—n—l 62a$ 0
0 0 0 tn—l ean



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Christoffel Connection

I =—a
Fow = FO01
+1) "
FO _ (n
277 o5
n—1
', =—
33 o n
FIOO _ a€72aw

F122 _ atn+1 672a:z:

1 _ 1-n —2acx
Iys=at ™ "e

n+1
[y =
02 2t
%, =—a
%y = g

s, — _n2—tl
I‘313 = —a
I‘330 = I‘303
F331 = F313

Metric Compatibility
o.k.
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Riemann Tensor

0 _ 2
R'yp1 = —a
0
R 110 — R 101
RO tn—l 6—2111 (n262a1_62az_4a2t2)
202 4
0 _ 0
R 220 — -R 202
RO tfnfl ef2aw (n2 eQaa: eQam _ 4@2 t2)
303 4
0
R 330 — -R 303
R1001 — _a2 6720.1
1 _ 1
R 010 — -R 001
R1212 _ 7042 tn+1 6720,95
1 _ 1
R 221 — -R 212
R1313 —_ 7042 tlfn 672(11
1 _ 1
R 331 — -R 313
R2 672a3v (n2€2ax_62am_4a2t2)
002 412
2 _ 2
R 020 — -R 002
2 _ 2
Ry =a
2 _ 2
R 121 — -R 112
R2 t7n71672am (n2€2a1762a1+4a2t2)
323 4
2 _ 2
R 332 — -R 323
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€—2aw (,n2 eQaw _ e?aq: —4a2t2)

R305 =
003 412
3 _ 3

R 030 — -R 003
3 _ 2

R*3=a
3 _ 3

R 131 — -R 113

R3 tn—le—2a:v (n262ax_62am+4a2t2)
223 — 4
3 _ 3

R 232 — _R 223

Ricci Tensor

Ricyg = — 572
Ric;; = —3a?

Ricy, = —3a%t" Tl e 207
Ricyy = —3a*t' ""e 297

Ricci Scalar

n2 eQaz _ 62ax _ 24a2t2

2t2

Rsc =

Bianchi identity (Ricci cyclic equation R = =0)
o.k.

Einstein Tensor

e—2am (’I’LQ eQam _ 62(127 + 12a2t2)

Goo =~ 412
n2e2aT _ g2am _ 194242
Gy=- 412
. =1 g—2az (n262ax_62a$_12a2t2)
22 = T 4
G m _tfnfl e—2az (n2 e2ar _ g2az _ 19,2 tz)

4

456



CHAPTER 4. VIOLATION OF THE DUAL BIANCHI IDENTITY ...

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%)

eQam (n262am _e2ax _ 6a2t2)

2t2

p=—
Current Density Class 1 (—Ri,ﬂj)
J; = 3a?
Jy = 3a2t 1200
Jy = 3a2 "1 e2an

Current Density Class 2 (-Riu“j)

Ji=0
Jo=10
J3 =0

Current Density Class 3 (-R’,")

Ji=0
Jo=0
J3 =0

4.4.56 Spherically symmetric electromagnetic field with
A=0

Metric of the Spherically symmetric electromagnetic field with A = 0. m and e
are parameters.
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40

20

10

Charge Density p
o

-40

Fig. 4.94

Current Density J,
o

Fig. 4.95

: Petrov type D fluid, current density J; for a = 1,n = 2, x=1.
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40 T T T T

35 | i

Current Density Jg
[\S]
o

15 | -
10 | 7
5t | .
0 1 1 I R TR

0 1 2 3 4 5

Charge Density p
&

-15 I L L I

Fig. 4.97: Petrov type D fluid, charge density, x dependence p(x) for a = 1,n =
2,t=1.
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Coordinates
t
x— r
o 9
¥
Metric
m_ e 0 0 0
0 2m ! e2 0 0
Juv = — = +T7+1
0 0 r? 0
0 0 0 r2sin®9
Contravariant Metric
,',,2
e 0 0 0
g‘“’ _ 0 7“—27’# 0 0
0 0 5 0
1
0 0 0 =ews

Christoffel Connection

2

o _ mr—e
Ol_r(r2—2mr+e2)
I‘0102F001
1 (mr—eQ) (7“2—2mr+e2)
oo = 5
r
o mr — e2
= r(r2—2mr+e?)
r2—2mr + e2
rt, =—
22 r
L (r? —2mr + ¢2) sin®¥
Iy =
T
1
2, =
127
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F221 = F212
%5 = —cos ¥ sind
. 1
M, =-
137
. cos v
3
237 sinW
FB31 =13
[P35 =179

Metric Compatibility
o.k.

Riemann Tensor

2mr — 3e?

Ry =
1017 .2 (r2 —2mr +e?)
0o _ 0
R0 =—R1n
RO mr — e?
202 2
0o _ 0
R"950 = = R0
2 102
R (mr —e€ ) sin“
303 2
0o _ 0
RY330 = —R7303
1 (2m7’7362) (7’2727717"4*62)
R g1 = 6
1 1
Ro10=—R'on
Rl mr — e?
212 r2
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1 _ 1
R 221 — -R 212

(mr — 62) sin? 9

1 = —
Rg15 = -2
1 1
R'g31 = —R'33
2 (mr—ez) (r2—2mr+62)
002 = — 6
2
R%020 = —R%02
9 mr — e2
R 112 = 2 2 2
r2 (r2 —=2mr+e?)

2
R%5 = =R

9 (2mr—e2) sin? 9
R%393 = r2

2 2
R%330 = —R7393

3 (mrfeQ) (7”272m7"+62)
Ry03 = — 6
R? R

030 = 003

3 mr — e2
R 113 — 2 2 2

r2 (r2 —2mr+e2)

3
R’y51 = —R%3
o 2mr — e2

223 2

3 _
R’g30 = —R7%503
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Ricci Tensor

Ricyy = "
Ri <
ici = —
1 2(r2—2mr +e?)
2
e
Ricyy, = —
22 72
. €2 sin® 9
Ricgy = ———

r

Ricci Scalar
R,.=0

Bianchi identity (Ricci cyclic equation R"””[ 0)

uvol

o.k.

Einstein Tensor

€2 (7“2 —2m7“+62)

GOO

6
G ¢
1 r2 (r2 —=2mr+e?)
2
Goy = —
22 7,2
€2 sin® 9
G33 =5

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%")

e2

r2 (r2 —2mr + e?)

p =
Current Density Class 1 (-Ri#“j)

e? (7“2 —2mr+62)

J =
6
2
e
Ty =-5
16
J ¢
3= :
r6 sinZ ¢

Current Density Class 2 (-R’,"/)

Ji=0
Jy =0
Js =0

Current Density Class 3 (—Riﬂ“j)

Ji=0
Jo=0
J3 =0

4.4.57 Plane symmetric vacuum metric

Metric of a plane-symmetric vacuum. This is a true vacuum metric.

Coordinates

N 8y o+
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Metric
1
~7 0 0 O
_ 0 z 0 0
=10 0 2 o0
1
0 0 0 7
Contravariant Metric
—/z 0 0 0
» 0o L o0 o
=l o 0L o
0 0 0 vz

Christoffel Connection

FO03 = —i
I‘030 = I‘003
Iy =Tl
%3 = i
F232 =179
g —i
I1311 = _§
11322 = _é
[Py _i
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Metric Compatibility
o.k.

Riemann Tensor

1
R —
101 8 \/2
Rollo - 7R0101
1
R —
202 8 \/2
R0220 - 7R0202
1
R0303 = *74 22
R%.. = —R
330 303
1
R\, = —
001 8 2
R .. =-R
010 001
1
R! —
212 4 \ﬁ
R, =—-R
221 212
1
R, = —
313 ] 22
R, = —R
331 313
1
R%,., = —
002 ] 22
R% ., =-R
020 002
1
R =—+
112 4 \/2
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32121 = _R2112
1
R%,, = —
323 S 22
32332 = *R2323
. 1
R3003 T4z
33030 = _R3003
1
33113 ==

8Vz
33131 = _R3113

1
8z

3 —
R223__

3 _ 3
R 232 — -R 223

Ricci Tensor

all elements zero

Ricci Scalar
R,.=0

Bianchi identity (Ricci cyclic equation R"””[ 0)

o.k.

wvo] =

Einstein Tensor

all elements zero

Hodge Dual of Bianchi Identity

(see charge and current densities)
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Scalar Charge Density (-R%")
p=0

Current Density Class 1 (-R’,"/)

Ji=0
Jo=0
J3 =0

Current Density Class 2 (-Ri#“j)

Ji=0
Jo=0
Jz3=0

Ji=0
Jo=0
J3 =0

4.4.58 Sheared dust metric

Metric of a sheared dust. n is a parameter. Functions A and B depend on r.

Coordinates

€ 3
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Metric
1 —n2 0 0 0
g —| 0 Errat oo
mv 0 t2 0
0 0 0 ¢2sin®9

Contravariant Metric

1
T (n=1) (n+1) ? 0 0
2n
g = 0 (B+t2n A)2 0 0
0 0 t% 0
0 0 0 t2 sin? ¥

Christoffel Connection

nt=2n=1 (B—t2" A) (B +t*" A)

0o _
1_‘11__

(n—1) (n+1)
t
My =———-
27 (n-1) (n+1)
0 t sin? 9
ey = ———F——
(n—1) (n+1)
o (B—t*"A)
Tt (B+2nA)
Fl10:F101
d n d
o _ B (G5 A)
H B+t2n A
1
2 = -
02= 73
11220:11202
%, = —cos ¥ sin¥
1
I3, = -
03 = %
3 cost
27 giny
11330—11 03
r 32 — r 23
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Metric Compatibility
o.k.

Riemann Tensor

nt2"2 (B4 12" A) (nB+ B +nt>" A—{>" A)

R =
101 (n—=1) (n+1)
Rouo = *Rolol
Rl _n(nB+B+nt2"A7t2”A)
001 = 2 (B+t2m A)
Rlolo = _Rlool
Rl n (B —¢2n A)
H27 (1) (n+1) (B+2" A)
R1221 = _R1212
R n sin® 9 (B —¢2n A)
137 " (n—1) (n+1) (B+12" A)
R1331 = _R1313
R2 B nt—2n—2 (B_thA) (B—‘rtQ"A)
H2 = (n=1) (n+1)
R2121 =—R"%q
R n? sin? 1
337 (n—1) (n+1)
R%.,=—-R
332 323
R3 B nt—2n—2 (B_thA) (B—‘rtQ"A)
13 = (n—=1) (n+1)
R3131 =R
2
n
R3,,, = —
223 (n=1) (n+1)
R3., = —R
232 = 223
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Ricci Tensor

n (nB+B+nt2"A—t2"A)

Ricgo = = 22 (B+ 12" A)

i TR (BAETA) (nB- B nfr A+ £ A)
1= (n=1) (n+1)

Ri n (anBJrntz”AthQ"A)
2 T T T (n k1) (B2 A)
) nsin®¥ (nB— B+nt?" A+t A)

Ricsy =

(n—=1) (n+1) (B+2" A)
Ricci Scalar

R 2n (2nB—B+2nt2”A+t2”A)
T (n=1)(n+1) 2 (B+12nA)

Bianchi identity (Ricci cyclic equation R0 = 0)
o.k.

Einstein Tensor

n (anQBJrntz"AJerz”A)

Coo = 2 (B + 27 A)
G th—Qn—Q (B+t2nA>2
S (n=1) (n+1)

2

n
G22__(n—1) (n+1)

n? sin® ¥

G33__(n—1) (n+1)

Hodge Dual of Bianchi Identity

(see charge and current densities)
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Scalar Charge Density (-R%")

n (nB+B+nt2"A—t2”A)
(n—1)° (n+1) 2 (B+127 A)

pP==

Current Density Class 1 (-Ri,ﬂj)

nt2n—2 (nB —B+nt2”A+t2”A)

Jy = :
(n—=1) (n+1) (B+t2"A)

g n(nB—B—i—ntQ"A—i—tQ”A)

T n=1) (n+ 1)t (B+12nA)

J n(nB—B+nt2"A—|—t2”A)

3= -

(n—1) (n+1) t4 sin?9 (B + 2" A)

Current Density Class 2 (_Riﬂw‘)

Ji=0
Jo=0
J3=0

Ji=0
Jo=0
J3 =0

4.4.59 Plane-symmetric perfect fluid metric

Metric of a plane-symmetric perfect fluid. a and b are parameters. There is a
symmetry in tensors for x and y.

Coordinates

N e Ry o+
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Metric
—ebe T2 0 0
0 e2 (1) 0 0
Juv = 0 0 62 (z+t) 0
0 0 0 aZebe?TTH2:

Contravariant Metric

_67b62z72 t_o, 0 0 0
o 0 67227215 0 0
g 0 0 e 22 0

7be2 z72t72z

0 0 0 g

ll2
Christoffel Connection
Fooo — _pe272t
0
o3

672:‘. (b62z +62t)

22-2¢
FO — 62t—be
11

F022 — p2t—be? !
I =T%;

[0, = —a2be2= 2!
My, =1

Iy =Tl
rM,=1

[y =173

), =1

%5 =T%0

I, =1
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2 _ 12
F32_F23

B 672t (b€22+62t)

4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

3
r 00 — a2
FS — _b62z—2t

03

, th_be2z72t
T -

11 aQ

e2t—b62z72t

s, =—

22 a2

3 _ 13
I 30 — I 03

1—\333 — e—Qt (b@QZ +62t)

Metric Compatibility
— o.k.

Riemann Tensor

(a—1) (a+1) (be?* +e*t) e®

62 z—2t

0 —
RlOl_

0 —
R202_

a

(a—1) (a+1) (be?* +e2t) e7®

2

62 z—21t

R%0s =2 (a—1) (a+1)be?* 2t

0 _ 0
R 330 — —R 303
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(a—1) (a+1) e2t=be

1
R 59 = 2

a
1 _ 1
R 221 — -R 212

R1313 =—(a—1) (a+1) he?z2t

2
R 002 — a2
R? R

020 — 002

5 (a—1) (a+1) e2t—be? 7!
R%q5 = a2

2
R%91 = —R%19

R3003 = a2
33030 = —R’y3

5 (a—1) (a+1) be2z=be*
R 113 — a2
33131 =—R’3

3 (a—1) (a+1) he2z—be? 72"
R’993 = o2
33232 =-R 223
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Ricci Tensor

2 (a—1) (a+1) e 2 (2be?* 4 €2t)

Ricyy = — 2
_ 2 (a—1) (a+1) e2t=be*" "
Ricy; = 2
9 1 1 2t _pe2z—2t
Rie, _2(@-D(a+1)e

a2
Ricci Scalar

2(a—1) (a+1) (2()62/Z +3€2t) ebe? T =221

R =
SC a2

Bianchi identity (Ricci cyclic equation R"[WU] =0)
o.k.

Einstein Tensor

(a—1) (a+1) e 2t (2be?* — €*?)

G = — .
(@a—1) (a+1) (2b622+62t) pbe? R
Gi=-— i
a
(a—1) (a+1) (2b62z+62t) p—be 2t
Gy = —

o2
Gys=—(a—1) (a+1) e " (2be** 4+ 3¢*")

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R;")

2(a—1) (a+1) (2be?* +€21) e2be’ T —4z—2t

pP=— 2

a
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Current Density Class 1 (—Ri#"j)

) (CL— 1) (a+1) 67b622_2t74z72t

Jp=— P>
2(a—1) (a+1) e—be? P —4z-21¢
Jo = — 5
a
J3 =10

Current Density Class 2 (—Ri#"j)

Ji=0
Jo=0
J3 =0

Current Density Class 3 (-R’,//)

Ji=0
Jo=0
J3=0

4.4.60 Spherically symmetric perfect fluid metric (static)

Metric of a spherically symmetric perfect fluid (static). ¢ and v are functions
of r.

Coordinates
t
T
=1
2
Metric
—e2v 0 0 0
0 e* 0 0
gMV_ 0 O 7,2 O
0 0 0 7r2?sin®9



4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Contravariant Metric

—e2 0 0 0

o 0 e 0 0

=1 o 0o L 0
0 0 0 =iy

Christoffel Connection

d
%, = —
O gy v
FO10 = FO01
d
Ploo _ - U e2v—22
d
'y =—2A
N dr
F122 = —T 6_2)\
Iy, = —rsin?ge 2
1
I?,=-
127
F221 = F212
I'?;, = —cos¥ sin®
1
I3, =-
137
] cos v
I3, =
B sing
FS31 = FS13
F332 = F323

Metric Compatibility
o.k.
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Riemann Tensor

Rouo =-R'n
R0202 vre 2A
30220 =—R9p
R%5 = vrsin? e 2*
RO330 = —R'303
d d > d \’
R _ L2v=2A 2l ==
001 = € dr dr dr? v dr
R'yo=—-R
010 001
d
RY,, =re X A
212 = T€ (dr )
R1221 = *31212

d
1 = i 21_9 —2A 7)\
R 3,3 =rsin“de i

1 _ 1
R 331 — -R 313
d 2v—2\
R2 2:_d’r‘1/e
00 r
2 _ 2
R 020 — -R 002
d
RQ :_W)\
112 r
2
R 121 — R 112
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R?4,, = sin? e 22 (e)‘ -1) (e’\ +1)

R2332 = _R2323

R3003 o ddr ve2v—22
T

R3030 = —R%3

R3113 = ﬂ

R3131 =—R’3

3 _ 3
R 232 — —R 223

Ricci Tensor

Ricy, = —

: _ dr
Ricy; =

. _ d d
Ricy, = e 24 (T (dr)\)—l—eg”\—drur—l)

d d
c w29 —2 2X _ _
Ricgy =sin“ve (7“ (dr )\) +e i 1)

Ricci Scalar

272X (Tdr vr? (dir)\) +2r (Tdr )\) 42X - ddfz vr?— (Tdr V)2 r2 —2 (WI/) 7“—1)
Rsc: 2

Bianchi identity (Ricci cyclic equation R"[/Lw] =0)
o.k.
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Einstein Tensor

Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R%™)

—2N— 2
22 (dyr ()~ v — () v -2 ()

p==

Current Density Class 1 (-R’,"7)

0 (err ()2 N~ o= ()7 7)

J=—
r
Ty — _6_2)\ (r (d%)\) +e2X - d%ur—l)
i
Jy = 76_2>‘ (r (%/\) —|—62>‘—ﬁur—1)

r4 sin? 9

Current Density Class 2 (-R’,"7)

Ji=0
Jo=0
J3 =0
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4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

Current Density Class 3 (—Riﬂ“j)

Ji=0
Jo=0
J3 =0

4.4.61 Spherically symmetric perfect fluid metric (dynamic)

Metric of a spherically symmetric perfect fluid (dynamic). A, v, and y are
functions of r and t.

Coordinates

-

Il
I/
€ 3
~

Metric
—e?v 0 0 0
0 e2* 0 0
I = g 0 2 0
0 0 0 sin?9y?

—e 2v 0 0 0
o 0 e2x 0 0
g = 0 0 4 0
y 1

0 0 0 sin2 9 y2

d
= —
00 dt
d

', = —
01 dr
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d ‘
rtoo— 4, e2v22
00 drl/e
d
My, =—2X
01 dt

e

2 at Y
e = t
Yy
d
2 ar¥
Py =45

2 2
[y =17,
2, =
33 = —cos? sind
d
3. — 49
03 =
Y

s _ cos¥
237 sin®
3

30 = T3

3 3
[Py =T"3
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Metric Compatibility

———— o.k.

Riemann Tensor
d2
RO _ 672 v 62 A
101 ai2

0 0
R 110 — —-R 101

d
0 —2
R 515 = —e Vy(*y

0 0
R 220 — —-R 202

0 0
R 221 — —-R 212

oA d
R0303:sin219ye 2A-2v (—t2ye2>‘

0 0
R%330 = —R7303
0 0
R'331 = —R7313
42
R! — o2 [ 22
001 qi2
1 1
R910 = =R g01
d
1 —2 A
R0 =vye (E Y
d
1 —2A-2
Ry =ye v (E
1 1
R 990 = =R 202
1 1
R = =R 515

2

d

4.4. EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

d d 22 2y [ d d
at’ \at?) ¢ € ar ) \ar?
N d <d ) d?

da (4 N_ &

ar " \at¥) " arac?

d d oy o, [ d d
at’\at?) ¢ @) \ar?
d)\ +d d d?
2 da (4 N_ 4
dt ar " \at¥)  arat?
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R 2gue—2r [ d 3 4 d d d?
o = SIN e —_ —_— — UV —_— —
303 Y ar ¥ \at ar " \at?)  darac?

1 2 —2x—2v d 2 d 2v d d 2v d?
R g3 =sin“dye (Eye E)\ +e Eg EA —e drzy

1 1
R 330 = =R 303

1 1
R 331 — -R 313

e (et -y () -8 (F ) ()
002 y
2
pr __ary (@M +dv (dy) - aray
012 y
R2o2o = *R2002
R2021 = _R2012

d d d
R2102=_Ey(ﬁ/\)+ﬂ”
Yy
-2 d . .2X) (d 2 d d 2 a2
we (e NS () (Y - ()
112 v
2 2
R%50 = —R%102
2 2
R0 = =R
R2... —sin2g9e—22—2v <62>\+2,,+(iy>2ezx_ezu (iy>2)
328 dt dr
2 2
R%335, = —R7303
—2x (d 2 d 2 2 d d
e (mye —a5v (Ghy) e?” (& v) (ﬁy))
003 v
d d d d d?
R? v (@GN () ety
13 —
013 v
3 3
R%30 = =R%003
3 3
R%531 = —R%013
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2

R = _dny @V v (fhy) ~ avay

R, =-
113 "
3 3
R%y30 = —R%03
3 3
R%3; = —R%y33
d 2 d 2
R3 — _e2x—2v [ 242w a G2A_2v (4
223 + az y ar y
3 3
R%535 = —R%553

Ricci Tensor

— 2 2
P (e (F ) Huet ENT - dvee (EN e () v (@D 2 (Hae) )

Ricyy = — -
Ri%:z(ﬁy%miu (#v) — 75 v)
Ric,, = Ricy,
rie (e (G d) bue™ N+ (o) ;d—%n—%vye“ (0 4262 (= 9) (5 0) +-)
Ricy, = e 22 72¥ ( (%y) e (%A)-ﬁ-ez"y (%«y) <dir>\)+e2”2”+ (dd; y) M-&-(%y)?e“— )

. . Can—2u d d . d d . d? d 2
Ricyy = sin” 9 e 2772 <71 <Ey) i (EA>+€2 U(E?’D (E/\)+e2’\+2 +y<ﬁy> 62)\4»(5:[}) 82)\—,,,>
Ricci Scalar

L2 (N () et (#5072 () N () — divd® N () 426 () () + )

y2

Bianchi identity (Ricci cyclic equation R" = 0)

——  o.k.
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Einstein Tensor

e (2y (o) N (V) +2e27y (y) (N +e 20 4 (L) e —2e?y (L5y) - (£&0)7)

Goo = u2
2( Ly (LN +2Ev(Ly) - L
ar Y \az dar at ¥ arat ¥
Gy = "
G0 =Go1
o e ey () N ()T 2 () () N = () -2 () ()
1= =

d? d 2 d d d d d d
Gor = —sin29ye 2227 RN 2x (@ LD N AN 2x (@ 2v (4 2
33 s vye ve ae ) tve dt tave dt at e at)te ar V) \ar )T

Hodge Dual of Bianchi Identity

————— (see charge and current densities)

Scalar Charge Density (-R")

e—2XA—4v (ye2)‘ (%A)—i—yﬁ)‘ (%)\)2_%1/?!62; (%A)—i—e%’ (ﬁl/)y (Tdr/\)"'Q (%U) 62/\___4)

Y

p=-

Current Density Class 1 (-R’,"/)

—4xr—2v P 2 p v v
e (e () e NP2 () N (5 8) < divy e () 267 (o) () + Y () v () - )
J1 y
e (y (Fy) P (FEN +y () (N + 4y (Bry) @+ (F0)” = Fvy () -
J2:7 y4
- —2v v v 2
L e (G SN EN T () EN SN 4y () N (0 - vy (F9) 2P - )
3=

Current Density Class 2 (-R’,"/)

J1 =0
J2 =0
J3 =0
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Current Density Class 3 (—Riﬂ“j)

J1 =0
Jo =0
J3 =0

4.4.62 Collision of plane waves

This metric does not contain terms du?,dv?. Nevertheless the matrix of the
metric elements has rank 4 due to the off-diagonal elements.

Coordinates
U
v
X =
T
Y
Metric
0 -2 0 0
-2 0 0 0
=110 0 cos? (bv —au) 0
0 0 0 cos? (bv + au)
Contravariant Metric
0o -1 0 0
, |-3 o 0 0
=10 0 i 0
cos2(bv—au) X
0 0 0 cos?(bv+tau)

Christoffel Connection

b cos (bv —aw) sin(bv —aw)

FO - _

22 9

0 b cos (bv+ aw) sin(bv+ au)
a3 = — 2

1 a cos (bv —au) sin (bv — au)
[y =

2
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~acos(bv+au)sin(bv+au)

IMyy =
33 9
9 a sin (bv — au)
g = ———+~
cos (bv —au)
5 bsin(bv —au)
[Py =———7F——=
cos (bv —awu)
F220 :F202
F221 :F212
3 a sin (bv + au)
oy = ———— ="
cos (bv + awu)
3 bsin(bv+au)
Py=—————
cos (bv + au)
F330 :F303
11331 :F313

Metric Compatibility
o.k.

Riemann Tensor

ab cos? (bv —au)

O =

R902 9
b? cos? (bv —awu
30212 == ( )
2

R0 = —R%q;
Ry = =R’

o ab cos? (bv + au)
R7303

2
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EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATION

b2 cos? (bv + au)

RO —
313 D)
R0330 = —R0303
R4 = —R
331 313
a? cos? (bv — au)
Ry = —
202 9
ab cos? (bv —au)
Ry, =
212 9
Rlzzo = _Rlzoz
R1221 = *31212
R a? cos? (bv + au)
303 — 9
Rl __abcosz(bv+au)
313 — 9
R1330 - *31303
Rl331 = _R1313
32002 =—d’
R%,, = ab
R2020 = R2002
R2021 = R2012
R2112 =’
R%*,,=—-R
120 102
R2121 = _R2112
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3 _ .2
Rgp3 = —a
3 —
Rg13 = —ab
3

Ro30 = —R%03
3 —
Ro31 = =013
3 —
Ryp3 = —ab
3 _ 32
Rz =—b
3

R130 = —R%103
3 —
Rz = =R

Ricci Tensor
Ricy, = 2a*
Ric,, = 20
Ricyy = ab cos? (bv — au)
Ricgy = —ab cos? (bv + au)
Ricci Scalar
Rse=0
Bianchi identity (Ricci cyclic equation R“[NVU] =0)
o.k.
Einstein Tensor
Goo = 2a?
Gy =20
Gyy = ab cos® (bv — au)
Gy3 = —ab cos? (bv + au)
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Hodge Dual of Bianchi Identity

(see charge and current densities)

Scalar Charge Density (-R°)

p= )
Current Density Class 1 (_Riuuj)

2

a
J]_ == —?
ab
J2= cos? (bv —au)
b
Jy = “

cos? (bv + au)

Current Density Class 2 (-R’,//)

Ji=0
Jo=10
J3 =0

Ji =0
Jo=0
J3 =0
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Fig. 4.98: Collision of plane waves, current density J,(u) for v=1,a =b=1.
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Fig. 4.99: Collision of plane waves, current density J,(v) foru=1,a =b=1.
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