Absorption data in the range up to THz frequencies for pure liquid CH₂Cl₂ and in isotopic solutions in chloroform-linoleic acid are used to evaluate critically some recent modelling of the liquid state X-body problem, and to obtain some preceision of chiropteric behaviour in model systems. Adjustable parameters are avoided as far as is necessary to produce the fundamental theoretical absorption constant. The models used can all be expressed as various early approximations of the Mori continued fraction expansioan of the Liouville equation, and therefore describe the absorption data adequately only at low frequencies, or equivalently at long times when the orientational autocorrelation function decays exponentially. In contrast to be found and often contradictory evaluations drawn from the available literature on Raman, infrared and n.m.r. spectroscopy, together with high-resolution Rayleigh wing and incoherent neutron scattering studies on liquid CH₂Cl₂, it is shown that the zero to THz absorption profile discriminates clearly between models, such as rotational diffusion, extended rotational diffusion, planar limit Raman and Bro-Mark motion of coupled dipole. A scheme is suggested for a self-consistent evaluation of the available data from all sources within the context of the Mori continued fraction. This aims a satisfactory evaluation of such quantities as the mean square torque, and derivatives, so that some statistical assessment may be made of the potential part of the total X-particle Hamiltonian. At present, features of observed spectra are reflected in model correlation times which are often physically meaningless and directly contradictory.

In this paper we aim to demonstrate that: (i) absorption and dispersion data over the whole range of frequencies up to and including the THz region (far infrared) provide a means of discriminating easily between currently popular models of the isotropic fluid state. (ii) The related problem of anisotropic molecular motions in mesophases may be approached more readily by spectroscopic studies on suitably chosen solutes acting as probes. There are many models from which to choose.2 Those we consider here may be described in general terms as approximants (i.e., truncated) of the Mori continued fraction expansion of the Liouville equation of motion. In what follows adjustable parameters have been eliminated as far as possible, in order that the underlying theoretical characteristics become visible in their barest form. We aim at a least mean squares minimisation by iteration on parameters only when this seems necessary to define the directions along which further development of a particular model might proceed. The models considered here are listed below in the order in which they succeed in defining satisfactorily the potential energy part of the total hamiltonians of

1 Or leave from: Department of Electronics Engineering, M.M.M. Engineering College, Gorakhpur 273009, India.

2 2143
the N molecules (-1015) being considered. Successive approximations of the
Mori continued fraction each define the mean intermolecular potential energy more
accurately by incorporating higher derivatives such as the mean square angular
velocity, mean square torque, etc. (i) The Langevin equation for the angular
Brownian motion of the asymmetric top, developed recently by Morita, 8 and
by Lewis, McConnell and Ford, 5. The angular momentum memory is a delta function.
(ii) The Chandler binary collision approximation 6-7 for rotation icosahedrons
embedded in the inertial spherical top. This is equivalent to the J-diffusion model as
demonstrated by Blot et al. 8 (iii) An approximate of the Mori continued fraction
equivalent to a gaussian orientational memory function. The adjustable variables
used before in this model 9 are eliminated here using a simple technique. (iv)
Finally we chose a form of the Mori equation of motion [eqn (2) below] to which
may be ascribed 10 more than one useful physical meaning in terms of clearly definable
dipolar motion and interaction. Due to its heuristic nature we have made use of
adjustable parameters with the purpose outlined above.

The motion of CH3Cl, molecules in the pure liquid and in solution is monitored
by sweep frequency, 11 microwave klystron 12 and optical interferometric techniques 13
(Martin/Paplett and Michelson). This molecule is chosen for reasons of its intense
absorption, especially in the TIR range 14 so that induced absorption effects are
minimal in comparison. Also, a recent review 15 emphasizes the considerable extent
to which parallel studies have been carried out by incoherent inelastic neutron
scattering and other techniques. Models (i) and (ii) have been used for interpretation
in this context. In this paper we use as also a convenient probe into the environ-
ment provided by quasi-statically dispersed (monofréquente) solutions in chloroethyl
linoleate. In this condition some plausibility of the coherent condition is detectable on
the molecular scale, as evidenced by intensity effects, especially at the higher
frequencies.

GENERAL THEORY AND RELATION TO MODELS

Consider a dynamical array of N interacting molecules (N = 1015). Let \(\mathbf{a}(t) \)
represent an \(n \times 1 \) column vector of a linearly independent variables \(a_j(t) \), which each
causes the Liouville equation of motion:

\[
\dot{a}_j(t) = [a_j(t), H] = i\mathcal{L} a_j(t)
\]

where \(H \) is the system hamiltonian and \(\mathcal{L} \) the Liouville operator. Our basic equation
(model-independent) is then the Mori relation: 2

\[
\dot{a}_j(t) = i\Omega_{a_j}(0) - \int_0^\infty dt \phi_{a_j}(t-\tau)\mathcal{F}(\tau)
\]

where \(\Omega(\mathbf{a}) \) is a resonance frequency operator and the matrix kernel \(\phi_{a_j}(t) \)
is a memory function (or effective linebroaded). The random force \(\mathcal{F}(\tau) \) is Mori-
propagated from \(\mathcal{F}(0) \) and is a generalised stochastic variable. \(\mathcal{F}(0) \) is the component
of \(\mathcal{A}(0) \) orthogonal to \(\mathcal{A}(0) \), whereas \(\mathcal{F}(\tau) \) is propagated from \(\mathcal{F}(0) \) by the special
propagator exp \((i\mathcal{L}\Delta t) \), where \(Q \) is a projection operator of an arbitrary vector \(G \)
into the orthogonal complement of the subspace spanned by \(\mathcal{A}(0) \) in Liouville space.

A physical realisation 15 of eqn (2) occurs in the rotational Brownian motion of a
spatially, or equivalently of a disc about a fixed axis through its center perpen-
dicular to its plane. 15

Eqn (2) then becomes:

\[
\frac{DJ}{Dt} = \int_0^\infty dt \phi_{a_j}(t-\tau)\mathcal{F}(\tau) = \mathcal{F}(\tau)
\]
where \(J \) is the angular momentum of the rotor, \(\Omega \) is null, \(\phi_0(t) \) is a time-dependent friction tensor, and \(\phi(t) \) is a random driving torque of finite correlation time with zero mean. \(D(t) \) denotes the rate of change of the components of each vector referred to principal body-axes. In the case of the disclination model (IV) there is only one component, but for the asymmetric top cross-terms appear in eqn (3), rendering it analytically intractable except in the case of our model (I), which is now briefly discussed.

LANCZOS EQUATION, ASYMMETRIC TOP

This has been solved recently by \(\text{corr} \) and corresponds to a friction tensor which has delta function elements in time, with null resonance operator in eqn (2). Physically the process considered is one of rotational diffusion of the asymmetric top, i.e., one of infinitesimally small reorientations taking place infinitely rapidly. (Classical Debye theory describes this for the dipole embedded in the inertia-less spherical top). The solutions, with inertial effects, for the asymmetric top are given in full by Motra and by McConnell et al., and involve the friction coefficients \(\beta_0, \beta_1, \beta_2 \) and \(\beta_3 \) along the inertial principal axes \(x, y, z \). These are estimated in this paper by the ellipsoidal shape factor analysis of Budny et al. applied to \(\text{CH}_3\text{Cl}_2 \), \(I_x = 26.3 \times 10^{-44}, I_y = 278 \times 10^{-44}, I_z = 253 \times 10^{-44} \text{g cm}^2 \). There are no parameters adjusted for best fit to the observed spectrum other than these, which are fixed by observation of the loss frequency maximum at 110 GHz.

CHANDLER BINARY COLLISION THEORY

Consider the solution of eqn (3) for the spherical top with the assumption that the memory kernel obeys an eqn of the form:

\[
\phi(t) = \phi_0(t) \exp\left(-t/\tau_m\right)
\]

where \(\tau_m \) is a characteristic time of the dynamical system. Here \(\phi_0(t) \) is the memory kernel for a gaussian ensemble of non-interacting rotors. The resulting spectrum \(\langle J(\mathcal{R}(t)) \rangle = \langle \omega(t) \rangle \mathcal{E}(\omega(t)) \) where \(\omega(t) \) is the angular velocity about the dipole axis of the spherical top) is analytically identical with that from Golder's J-diffusion model, and the Chandler collision operator theory \(\text{by binary} \) events only are considered. The physical meaning of these systems are clear-cut and both correspond to first-order approximations of the Mori coupled fraction.

The analytical correspondence was first demonstrated by Blott et al. and the first approximation of this approach to the far infrared spectra of liquids was attempted by van der Elsken et al who developed it further with the introduction of more adjustable parameters. Cukier et al. have completed a statistical generalization. Here we restrict ourselves to the original concept represented by eqn (4) where \(\tau_m \) is the mean angular velocity relaxation rate. This is adjustable for best fit or estimable roughly from kinetic theory. We use this rather out-dated model to emphasize the most characteristic and discriminating feature of the zero to THz absorption in liquid \(\text{CH}_3\text{Cl}_2 \) its large shift in power absorption peak to a higher frequency with respect to the root mean square angular velocity:

\[
\langle \omega^2 \rangle = \left(4kT \right)^{-1} \left(\frac{1}{I_x} + \frac{1}{I_y} \right) \text{cm}^{-1}
\]

Eq (4) implies that this shift cannot be followed by \(J \)-diffusion theory, essentially because of the underlying Poisson statistics. Also interactions are elastic, so that the r.m.s. torque is not defined, since the torque is infinite at collision.
Consider eqn (2) where \(A \) contains one element \(a \), the dipole unit vector. The resonance frequency operator \(\omega_{\text{res}} \) is null and \(\phi_{\text{res}}(\gamma) \) is an orientational motion function. The vector \(\gamma \) is embedded in the asymmetric top reorienting in space. A tractable expression for \(C_{2g}(\gamma) = \phi(\gamma) - \phi(0) \), the orientational autocorrelation function, may be obtained by methods (fully described elsewhere) which involve truncating the Mori continued fraction at what we term second order, a strategy intended to treat the effect of interactions in the molecular ensemble in terms of the mean square torque \(\phi_{\text{mean}}(\gamma) \) factor, and a characteristic frequency \(\gamma \) which was considered originally as an adjustable parameter. This is the inverse of the characteristic relaxation time of the second motion function:

\[
\phi_{\text{res}}^2(\gamma) = \phi_{\text{res}}^2(\gamma) e^{-\gamma}.
\]

Recently Halley et al.\(^{11} \) have demonstrated in another context that eqn (5) corresponds to a gaussian motion \(\psi_{\text{gaus}}(\gamma) \), and that for consistency there must exist the following relation between \(\gamma \) and \(\phi_{\text{res}}(\gamma) \):

\[
\gamma = \left[\frac{3}{2} \phi_{\text{res}}^2(\gamma) \right]^{1/2}.
\]

The remaining parameter \(\phi_{\text{res}}^2(\gamma) \) may be estimated by differentiating the model absorption coefficient with respect to \(\gamma \), whereupon \(\phi_{\text{res}}^2(\gamma) \) can be obtained from the measured peak frequency of the far infrared, \(\omega_{\text{p}} \). A physical meaning may be given to this formalism insofar as it represents a rigorous and tractable approximation to the equation of motion of a:

\[
k = -i \omega_{\text{p}} \phi_{\text{res}}(\gamma).
\]

This is recovered by taking the orientational continued fraction to infinity, convergence being discussed by Tokuyama and Mori.\(^{12} \) Finally, we mention that it is possible to take the next approximant:

\[
\phi_{\text{res}}^2(\gamma) = \phi_{\text{res}}^2(0) \exp \left[-\frac{3}{2} \phi_{\text{res}}^2(\gamma) \right]^{1/2}
\]

and estimate both \(\phi_{\text{res}}(0) \) and \(\phi_{\text{res}}(\gamma) \) without recourse to less gc-squares iteration. \(\phi_{\text{res}}^2(0) \) is known already as \(\psi(\omega_{\text{p}}) \). We make use of the relation between power absorption \(a(\omega) \) and dielectric loss \(\epsilon'(\omega) \):

\[
a(\omega) = \omega^2 \epsilon'(\omega)/\omega_{\text{p}}.
\]

Here \(\omega_{\text{p}}(\omega) \) is the refractive index. Since \(\epsilon'(\omega) \) peaks at a much lower frequency than \(a(\omega) \), a difference of each with respect to frequency yields two simultaneous equations for \(\phi_{\text{res}}^2(0) \) and \(\phi_{\text{res}}^2(\gamma) \) within the analytical framework of eqn (2) and (8).

PLANAR STATIONARY OSCILLATOR AND DIPOLAR-DIPOLAR INTERACTION

Consider fig. 1 and 2 defining the angles \(\theta \) and \(\psi \). Fig. 1 described the geometry of the planar stationary oscillator model of stochastic angular motion (described fully elsewhere)\(^{14} \) in a form in which there is no friction \(\beta \) between the inner disc and the surrounding ring. Here the disc is drawn out by the planar angular motion of a dipole embedded in the asymmetric top and bound harmonically at a frequency \(\omega_{\text{p}} \) to a rigid cage of nearest neighbours undergoing collective planar reorientation against a hydrodynamic friction \(\beta \). Defining \(\omega_{\text{res}}(\theta) \), \(\phi_{\text{res}}(\gamma) \), and \(\psi(\omega_{\text{p}}) \) as \(I_{\text{res}}(\theta) \) where \(I_{\text{res}} \) and \(I_{\text{p}} \) are the moments of inertia respectively of the annulus drawn out by the reorienting rigid
and that of the inner ring, the dynamical system evolves according to eqn (2) with:

$$\mathbf{A}(t) = \begin{bmatrix} \mathbf{A}(0) \\ \mathbf{\dot{A}}(0) \end{bmatrix}, \quad \mathbf{\phi}_{A} = \begin{bmatrix} \mathbf{\phi}_{A}(0) + \mathbf{a}_{d}^2 \\ -\mathbf{\Omega}^2 \end{bmatrix}, \quad \mathbf{F}_{A} = \begin{bmatrix} \mathbf{W}_{2} \\ \mathbf{W}_{1} \end{bmatrix}$$

and a null resonance operator. Here \mathbf{W}_{2} and \mathbf{W}_{1} are Wiener processes. This is a special case of the system developed by Duflo et al. for translational incoherent oscillation in space for use with neutrons scattered incoherently from a bath of atoms.

Fig. 1—Schematic diagram of the disc/annulus interpretation of eqn (10).

Fig. 2—Schematic diagram of the dipole-dipole interpretation of eqn (10).
Fig. 2 describes another physical interpretation of eqn (10) in terms of an interaction pair of dipoles undergoing Brownian motion, under the following conditions.

(a) The potential between the dipoles has the form

$$V(heta - \psi) = \frac{1}{2} \mu \theta \sin(\theta - \psi)^2.$$ \hspace{1cm} (11)

(b) The measuring field is applied in the same plane of rotation of the dipoles \(\mu_1 \) and \(\mu_2 \), which rotate about an axis through their common centre perpendicular to the plane containing the field.

![Graph](image)

FIG. 3. (a) Variation of \(\alpha _{\mu} / \alpha_{\mu 0} \) with molecular number density \(\eta \) of CH₂Cl₂ in solution in CO₂ and deuterium. (b) Power absorption coefficients for CH₂Cl₂/CO₂ solutions (this paper) in the region (2-30 cm⁻¹) bridging the gap between the microwave and far infrared.
In this interpretation I_1 and I_2 are the moments of inertia of the dipoles μ_1 and μ_2, respectively, about a central axis perpendicular to their own plane. β_1 and β_2 are the opposing frequency coefficients arising from the surroundings. It is reasonable to suppose, in pure CH$_3$Cl, that $\beta_1 = \beta_2$ and $I_1 = I_2$.

Both interpretations are artificially planar as opposed to spatial but the second is capable of considerable development to take account of more realistic potentials than eqn (11) and of space reorientations. Should eqn (11) be accepted for the moment, then ω_0 is a measure of the importance of dipole-dipole coupling. However, ω_0, in the ring/annulus context is a frequency purely resultant in origin. Furthermore, we have, by geometrical consideration, $I_1 > I_2$ in the interpretation of fig. 1, contrary to $I_1 = I_2$ of fig. 2 for a fluid made up solely of CH$_3$Cl dipole.

Finally, in a dilute solution of CH$_3$Cl, dipoles in an isotropic non-dipolar medium (e.g., CCl$_4$) dipole-dipole interaction should be considerably weakened, whereas CH$_3$Cl libration would remain within cages of CCl$_4$ molecules. To begin to resolve these conceptual constraints we have adopted criteria for comparing these models with the experimental data as described below.

EXPERIMENTAL

The data in the 2-40 cm$^{-1}$ region were gathered with a Martin-Puplett interferometer built by Dr. G. J. Davies and described fully elsewhere. Reproducibility between successive interferograms was $\pm 2\%$ of the power absorption coefficient over most of the range and the overlap between klystron and Michelson interferometric data at high frequencies is satisfactory (fig. 3).

Sweep frequency and klystron methodology is standard and solutions were made up to within the nearest 0.1 mg by weight/weight methods. Polarising microscope measurements were used to ascertain whether the solutions were macroscopically anisotropic.

RESULTS AND DISCUSSION

The sweep frequency and microwave results are tabulated for CH$_3$Cl and in solution in CCl$_4$ and chloroform. We emphasise that the latter solution is isotropic (not birefringent). The overlap between the sweep frequency, klystron, polarising and Michelson interferometric data is within the experimental uncertainty estimated for each technique separately (fig. 3). The information contained within the total absorption profile may be classified as follows. (i) The complete zero to THz bandshape describes the evolution of the molecular dynamics from an arbitrary $t = 0$. (ii) The integrated absorbance intensity per molecule $A_I = \int_{0}^{\infty} a(\nu)d\nu$ is a measure of Kirkwood correlation ω_0 and the internal field band effect together with interaction induced absorption. (iii) The peaks in $a(\nu)$ and $\omega_0(\nu)$ are measures of the extent of molecular interaction embodied in the potential part of the total hamiltonian. In principle these frequencies may be calculated given an analytical form for the intermolecular potential (e.g., by the method of computer simulation using an empirical Lennard-Jones form).

By using the approximation embodied in model 3 above, we can estimate to a first approximation the mean square torque contribution to the mean potential energy and this is plotted against N in fig. 3. Here N is the molecular number density of CH$_3$Cl in CCl$_4$ solutions. The corresponding variation of $a(\nu)$ in the crucial region 2-30 cm$^{-1}$ is shown in the same figure. (These data were obtained at the P.O. Telecommunications Centre by Dr. G. J. Davies using a Martin-Puplett polarising interferometer). There is no variation of A_I with dilution of CH$_3$Cl in
CCl₄ or dioxane although these is apparently a considerable decrease for monorefringent solutions in cholesterol linolate and cholesterol oleyl carbonates. Part of the purpose of this paper is to monitor such solutions at microwave frequencies and below.

The dielectric results for the solutions of CH₃Cl₂ in cholesterol linolate and carbon tetrachloride (table 1) are remarkable in that the static permittivities for the same concentration of CH₃Cl₂ (1.97 x 10⁻¹⁰ molecule cm⁻³) are widely different. The intensity trend here is opposite to that which is observed in terms of α(ω), the power absorption coefficient, in the far infrared in that the integrated loss per molecule is greater in the cholesterol linolate environment.

| TABLE 1.—Dielectric Parameters for Solutions of CH₃Cl₂ in CCl₄ and Cholesterol Linolate at 258 K. |
|---|---|---|---|---|---|
| | | | | | |
| pure CH₃Cl₂ | 9.01 | 3.36 | 0.96 | 1.45 | 1.50 | 1.42/M |
| 7.22 x 10⁻⁷ molecules cm⁻³ of CH₃Cl₂ in cholesterol linolate | 7.06 | 2.55 | 0.91 | 1.66 | 1.58 |
| 1.97 x 10⁻⁷ molecules cm⁻³ of cholesterol linolate | 3.90 | 0.65 | 0.82 | 2.09 | 1.89 | 1.466 |
| 1.97 x 10⁻⁷ molecules cm⁻³ in CCl₄ | 3.24 | 0.50 | 1.44 |

In light of these results the decrease in ΔA at millimetre wavelengths seems reasonable, a possible explanation would probably be based on anisotropy of reorientation, governed by inertial effects which show up more obviously with these wavelengths. This effect appears in a macroscopically monorefringent liquid which seems to imply that the loss in ΔA would be large in the cholesterol environment itself. The study of this phase unfortunately requires an impractically low concentration of CH₃Cl₂.

EVALUATION OF MODELS

CRITERIA AND METHODS

At a long enough time after τ = 0 the molecular interactions and motions in a densely packed N molecule ensemble evolve such that the decay in the correlation functions (A/μ)δ(0) is exponential. This is to say that after suffering many interruptions in its initial trajectory, the probability of finding a molecule with, for example, an orientation α(τ), given an initial α(0) decays eventually as a Gaussian function of time. 14 This is a long-time law obeyed by all four models considered here. (It is not obviously obeyed in a dilute gas of rarely interacting quantized rotons, where the autocorrelation function of α is periodic.) Therefore we assume in what follows that the low frequency loss curve should be modeled accurately and α(ω) of the far infrared extraplated therefrom. Using this method it will be shown (fig. 4) that deviations from the observed high frequency behaviour are often large.

(i) The frictions β and βₚ are fixed as described already from the loss curve peak. 24 The loss is converted then to power absorption using the model-independent relations:

\[\alpha(\omega) = 2\omega^2\epsilon''(\omega)/[\epsilon'(\omega)^2 + \epsilon''(\omega)] \]

\[\alpha = 2\nu\epsilon' \]
and the far infrared spectrum calculated. (ii) The mean angular velocity relaxation rate \(\tau_0 \) is adjusted to provide a least square best fit to the whole zero-THz band. Alternatively \(\tau_0 \) could be fixed from the exponential law (low frequency has band) as in model (i). Naturally \(\tau_0 \) from both methods ought to agree. This is necessarily a rough approximation since we are dealing in reality with the motion of an asymmetric, not spherical, top. (iii) We have used for the sake of comparison a two-variable I.m.s. fit on \(M^3 Q(0) \) and \(g \); but the more useful method with no adjustable parameters has been used to fit the theoretical bands shape from a knowledge of the far infrared peak frequency only. (a) For the planar disarrant libration the fraction coefficient between the ring and disc \(\Sigma_2 \) has the spectroscopic effect of broadening the far infrared band centred on \(w_0 \). From geometrical considerations it is estimated that \(I_a = 10 \times I_1 \), on average. However, for heuristic reasons we have also allowed \(I_1 \) to vary along with \(\beta_2 \) for best fit.

Dipole-Dipole Interpretation

In this case, in pure \(CH_2Cl_2 \), \(I_w = I_a \), \(\beta_1 = \beta_2 \) is also a reasonable estimate. This eliminates adjustable variables. However, the ratio \(I_1/I_2 \), \(\beta_1 \) and \(\beta_2 \) have also been simultaneously iterated for best fit. This is in order to estimate which interpretation of the moment of inertia ratio does better justice to the experimental data.

Deductions

In this section the inter-model comparison is used to define the paths along which cascibve progress may be avoided in dealing with the \(\lambda \) body interaction problem.

Model (i)

The delta function memory is not capable in spectroscopic terms of producing the far infrared Polyke absorpion of \(CH_2Cl_2 \) (fig. 4). In particular the mean intermolecular potential energy is inaccurately defined (e.g., its derivative with respect to orientation, the root mean square torque is left undefined). Therefore, the concept of molecular torsional oscillation with wells between such potentials is in this context meaningless. There is room for further progress by using successive approximations of the continued fraction if the problems caused by cross-terms can be overcome analytically.

Model (ii)

The J-diffusion model has been discussed in great breadth and since its inception and in is a sense the opposite pole of model (i) since the liquid state problem is approached via collision interrupted free rotation. The underlying physical process is one where collisions randomize onto a Poison distribution the angular momentum magnitude and direction. Collisions are elastic, so that again the torque is singular. Van der Elske et al.\(^{32}\) have attempted to remedy the failure to shift (\(\omega^2 \)) away from its gas phase value by invoking a statistical distribution of angular momentum which is basically Poison, but with an additional "pseudo-phonon peak" adjusted arbitrarily for best fit. This seems artificial, especially since the intermolecular potential is still ill-defined (hard-sphere collision). Curve 2 of fig. 4(e) is one where \(\tau_0 \) had been optimised for best fit, which is poor. Progress in this type of model may be pursued analytically by using the concept of inelastic collisions, as has been demonstrated by computer simulation of rough spheres \(^{32}\) and discs \(^{34}\) using sliding interactions. Satisfactory definition of a time of collision, and thus of a
Fig. 4.—Absorption in terms of $\alpha(\nu)$ of pure CH_2Cl_2 liquid: (a), microwave klystron results; (b), microwave interferometer (O. T. Telecommunication H.Q.); (c), microwave interferometer (Grubb-Parsons N.P.L. at Abney Hall). (1) Langevin equation, asymmetric top, $B_0 = 2.0, B_1 = 23.7, B_2 = 2.2$ THz. (2) Diffusion model, spherical top, best fit, with $B_0 = 7.4$ in units of MHz, $B_1 = 2.13$ THz, and $B_2 = 0.0$. (3) Model (10) with $B_0 = 14.2$, $B_1 = 2.38$, and $B_2 = 0.0$. (4) For fig. (a) the solid curve is model (2) with γ related as in the text to ν_{max} calculated as best fit. (5) For fig. (b) the solid curve is model (2) with γ related as in the text to ν_{max} calculated as best fit. (6) For fig. (c) the solid curve is model (2) with γ related as in the text to ν_{max} calculated as best fit. (7) For fig. (d) the solid curve is model (2) with γ related as in the text to ν_{max} calculated as best fit. (8) For fig. (e) the solid curve is model (2) with γ related as in the text to ν_{max} calculated as best fit.
mean square torque would enable the desired shift in $\langle \alpha' \rangle^3$ to take place. Obviously, zero to ΔZ bondstresses are sensitive measures of analytical realism in this respect, and will also be useful in evaluating density expansions of the memory operator, which allows one to take into account multiple collisions.

MODEL (ii)

Here the mean square torque is related to $\phi_k^2(0)$, and is well-defined. However, the bondshape calculated with no adjustable variables is rather too broad in comparison with the data (fig. 4). Iterating on γ and $\phi_k^2(0)$ (approximately) improves the fit but is doing so obscures the fact that further approximations are needed before the mean intermolecular potential energy is satisfactorily described. Such work is in progress. The disadvantage of this approach is that it is not possible to obtain an analytical relation between $\langle \alpha' \rangle - \langle \alpha \rangle(0)$ and other autocorrelation functions of interest, such as $\langle \alpha'' \rangle - \langle \alpha \rangle(0)$, unlike the other three models considered.

MODEL (iv)

Using the geometrical relation $I_1 \approx 10 I_2$ for various values of β_2 with $\beta_1 = K T / \tau$, where τ_0 is the inverse of the loss peak frequency, it is obvious (fig. 4) that the resonance around ω_0 is too narrow in frequency range. The original model 10 with $\beta_2 = 0$ would produce therefore an even sharper peak. However, iteration on I_1 and I_2 rectifies matters at the expense of physical realism in the discordant sense, since for a poor best fit $I_1 < I_2$ (mathematically corresponding to the overdamped case). A parallel result was found by Dandie et al. 13 for the translational space itinerant oscillator, where β_1 and β_2 are memory functions. At this point the following remarks may be made. Firstly the planar itinerant oscillator with $\beta_2 = 0$ corresponds exactly with the 2nd Mori approximant to $\langle \alpha' \rangle - \langle \alpha \rangle(0)$, the dipole angular velocity autocorrelation functions. The equilibrium averages $\phi_k^2(0)$ and $\phi_k^2(0)$ - (this time contain information on the mean square torque and the mean square torque derivative respectively. We have in addition:

$$\phi_k^2(0) = \alpha_k^2; \quad \phi_k^2(0) = \langle I_1 I_2 \rangle \alpha_k^2.$$

(12)

Now in general it is perfectly reasonable that $\phi_k^2(0)$ should exceed $\phi_k^2(0)$ if the rate of change of torque is large, so that from eqn (12), approximately $I_2 > I_1$ in this case, is a direct contradiction with the geometrical expression that the rigid cage moment of inertia should exceed that of the disc. This might mean that a dipole-dipole interpretation is to be preferred. Secondly the model described by eqn (20) is one zero/th order approximant of the system devised by Dandie et al. and perhaps successive approximants would improve the fit if the problem of too many adjustable parameters could be overcome. Dandie et al used six of these, four of which were independent. The main advantage of this formalism was discussed by Evans 31 in the case $\beta_2 = 0$, since the orientational autocorrelation function is constructed very well, (being even up to the 8th term in its time expansion) and the mean intermolecular potential is defined in terms of both the mean square torque and the mean square torque derivative. To regard $\phi_k^2(0)$ and $\phi_k^2(0)$ as terms in the Mori continued fraction treatment of ϕ_k is undoubtedly the most profitable view point at the moment.

Using $I_1 = I_2, \beta_1 = K T \tau / I_2$ in the dipole interaction formalism of fig. 2 produces a poor fit, (fig. 4), while iteration on β_1, β_2 and I_1 / I_2 is barely an improvement. This suggests that a more realistic potential V' of eqn (111) is necessary.
Certainly extension to space orientation is feasible. However, $\phi^{(0)}(0)$ and $\phi^{(1)}(0)$ are not wholly electrostatic in origin and an interpretation of the far infrared absorption solely in these terms is obviously to be avoided (since the Poole absorption persists to infinite dilution).^{22}

Comparison with Neutron Scattering Experiments

Recently Brier and Perry^{23} have obtained some time of flight neutron scattering data on liquid CH$_3$Cl and have tested their results with four different models of the liquid state. They have also reviewed critically the available n.m.r.'s., i.e., Raman, and depolarized Rayleigh wing results. The information is confused and sometimes contradictory, these reviewers concentrating their effort on evaluating the anisotropy of the molecular angular motion. Is this section we compare the zero to THz results with the neutron-scattering data available and suggest a self-consistent strategy for further progress in this field, based on the Mori equation (eqn (2)).

X- and Diffusion Models

These models were used regarding CH$_3$Cl as an inerzal symmetric top, i.e., assuming that axial symmetry of angular motion about the z axis (least moment of inertia). This assumption is however contradicted by u.m.r. results, giving $\tau_p(H-H) \neq \tau_p(C-H)$. An Egelsstaff-Schofield form was used for the translational correlation function in the usual decoupling approximation (i.e., translation and rotation decoupled). The conclusions drawn as to the efficacy of the model within this approximation are very similar to those of this paper: obtaining the values of the time between collisions alters the magnitude of the anelastic peak, its position remaining virtually constant. The maximum of the predicted anelastic intensity distribution occurs at much too low an energy transfer (frequency) for both models. Therefore, within the extended diffusion context, treating CH$_3$Cl as a spherical top (this paper) or symmetric top (neutron scattering) makes little difference to the final result, which is poor. It is important to realize that this does not imply that the data are insensitive to asymmetry of rotational or roto translational motions, but rather that the use of unrealistic and over-simplified assumptions leads to the same kind of result (i.e., oversimplified and unrealistic).

Also, Brier and Perry are working within the further severe assumption (common to nearly all neutron-scattering studies of molecular motion) of complete decoupling of rotation from translation. Brier and Montgomery^{23} have shown recently that even for rough and hard spheres the decoupling assumption (standard notation): $\langle e^{-i\omega t}\phi_P([s],u(0)) \rangle = \langle e^{-i\omega t}\phi_P([s],u(0)) \rangle$

(1) is unjustified. In our zero to THz absorption process g is very small, so that this problem vanishes. Indeed, the main result of Brier and Perry, that neutron scattering measurements in molecular liquids are not sensitive to anisotropy of angular motion, is true only within the approximation represented by eqn (14). It should be judged in the light of the fact that the analytical roto translational neutron scattering spectrum of a rough sphere fluid is completely different from that of a smooth hard sphere fluid. Not unaturally, therefore, the use of different translation models with a given rotational model in the r.h.s. of eqn (14) will lead to confusion.

A self-consistent approach is clearly needed to the roto translational problem in neutron scattering and this could be supplied^{16} within the framework of the Mori equation (eqn (2)), and a roto translational continued fraction developed for the correlation function on the r.h.s. of eqn (14) in the general molecular, as opposed
Studies of the depolarized Rayleigh wing complement the zero to THz band except as far as the former type of data are roughly equivalent to $s_0'(o)/o$ while the latter are available as approximately $ox'(o)$ and $s'(o)$. Bier and Perry 13 have discussed fully the depolarized Rayleigh, Raman, i.r. and n.m.r. data available on the molecular dynamics in liquid CH$_3$Cl. The dielectric and Rayleigh scattering results provide information on collective effects 12 while, ideally, the other types of experiment deal with single molecule motion describable solely in terms of auto-correlation functions.1, 12

The correlation times available from these techniques are confusingly disparate.14

An explanation is attempted in the review 15 based on the asymmetric top Langevin equation, which in the light of fig. 4 is meaningful. It is significant that only the zero to THz absorption shows up clearly enough the discrepancy between rotational diffusion and observation. Another feature is that interpretation in terms of jump models gives directly contradictory results.

It is clear only that the available data on liquid CH$_3$Cl have been interpreted using many different models with each of which are associated usually adjustable parameters so that an overall viewpoint is not attained. We propose below a scheme to remedy this to a modest degree.

Future Scheme of Study

A computer simulation, using an empirical intermolecular potential (e.g., atom-atom Lennard-Jones interactions) should be carried out on CH$_3$Cl, and desired quantities such as the mean square torque, mean square torque derivative, various autocorrelation functions and collective correlation functions extracted. These should then be compared with the values extracted from self-consistent Mori approximants 11 used with the far infrared and depolarized Rayleigh data, these being free from the uncertainties of vibrational relaxation, hot bands etc. The effect of cross-correlations may be easily estimated from the zero-THz band by dilution 14 and compared with those simulated.

Isotropy or otherwise of angular orientations may be simulated is detail 26 and compared with the considerable amount of n.m.r. data available. Rotational effects may be simulated and compared with the available neutron scattering data.

In this way we hope that the empirical intermolecular potential may be refined by evaluation against the spectroscopic data, especially if these were available over a broad enough range of number density and temperature. Alternatively, if the empirical potential were considered adequate, the eacy of the continued fraction approximation could be measured in the context of approximating the Lissajous equation.

Probe Studies on Liquid Crystals

The zero to THz results indicate that there are effects on the motion of CH$_3$Cl dissolved in cholesteryl linolate in the isotropic phase which mirror those found by n.m.r. in, for example, hexa-substituted benzene dissolved in meso-phasen. 24 By an extension of such a scheme as the above these interesting effects could be further elucidated.
The S.R.C. is thanked for a fellowship to G. J. E., a studentship for C. J. R. and for an equipment grant, the Ramsay Memorial Trust for a fellowship to M. W. E. We thank Dr. A. H. Price for stimulating discussions and the loan of apparatus and the Director of Research at the Post Office for permission to publish the data in the 2-40 cm\(^{-1}\) region. Drs. Brier and Perry are thanked for sending us a preprint of their review article.