On the representation of the Maxwell Heaviside equations in terms of the Barut field four vector

Institute for Advanced Study, Alpha Foundation, Institute of Physics, 11 Rutafa Street, Building H, Budapest, H-1165, Hungary
1 Faculty of Technology and Metallurgy, Department of Physics, University of Skopje, Republic of Macedonia
2 CTO, CITEC Inc. 2311 Big Cove Road, Huntsville, AL 35801-1351, USA
3 Institute for Information Technology, Stuttgart University, Stuttgart, Germany
4 Department of Microelectronics and Electrical Engineering, Trinity College, Dublin 2, Ireland
5 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
6 Department of Environment, Trinity College, Carmarthen, Wales, Great Britain
7 Former Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth SY23 1NE, Wales, Great Britain
8 sometime JRF, Wolfson College, Oxford, Great Britain
9 CTO, Applied Science Associates and Temple University, Philadelphia, Pennsylvania, USA
10 Department of Physics and Astronomy, York University, Toronto, Canada
11 The Boeing Company, Huntington Beach, California
12 Alfvén Laboratory, Royal Institute of Technology, Stockholm, S-100 44, Sweden
13 Alpha Foundation, Institute of Physics, 11 Rutafa Street, Building H, Budapest, H-1165, Hungary
14 Indian Statistical Institute, Calcutta, India
15 Labo de Gravitation et Cosmologie Relatives, Université Pierre et Marie Curie, Tour 22-12, 4ème etage, BP 142, 4 Place Jussieu, 75252 Paris Cedex 05, France

Abstract: It is shown that the Maxwell Heaviside equations can be written simply in terms of a field four vector \(G^\mu = (0, cB + iE) \), where \(B \) is magnetic flux density and \(E \) is electric field strength. The method given is much simpler than that used by Barut [1] in expressing the Maxwell Heaviside equations as neutrino equations. Under Lorentz transformation \(G^\mu \) transforms as a four vector, leading to novel interpretation. The field four vector \(G^\mu \) leads directly to cyclical relations between magnetic fields in the vacuum.

Key words: Maxwell Heaviside equations – Barut field vector – Lorentz transformation

1. Introduction

It is not well known that electric and magnetic fields can be expressed in terms of four vectors. However, Barut [1] used such a four vector to express the Maxwell Heaviside equations as neutrino equations. In this communication a much simpler expression is found for the Maxwell Heaviside equations in terms of the four vectors:

\[G^\mu = (0, cB + iE) \]

and

\[H^\mu = (0, H + iCD) \]

where \(E \) is electric field strength, \(D \) is electric displacement; \(B \) is magnetic flux density and \(H \) is magnetic field strength in S.I. units. The Lorentz transformation of these field four vectors leads to different expressions for the field components than the standard transformation of the field four tensor \(F^\mu\nu \) [2, 3], even though the basic equations are the same, the Maxwell Heaviside equations. This shows that it is necessary but not sufficient merely to consider the Lorentz transformation of field components. It is necessary and sufficient to consider the Lorentz transform of field equations. The Maxwell Heaviside equations can be expressed either in terms of field four vectors or as usual in terms of field four tensors, yet the field components behave differently under Lorentz transformation. The only possible way out of this paradox is to always consider the Lorentz transformation of the underlying field equations.

2. The Maxwell Heaviside equations in terms of field four vectors

Firstly consider the free space Maxwell Heaviside equations using the four vector [1]:

\[G^\mu = (0, cB + iE) \]

Received 13 October 1999; accepted 19 January 2000.

Correspondence to: M. W. Evans, AIAAS, 82 Lois Lane, Ithaca, NY 14850, USA
E-mail: FishnChips@compuserve.com

Optik 111, No. 5 (2000) 245–248
© 2000 Urban & Fischer Verlag
http://www.urbanfischer.de/journals/optik

0030-4026/2000/111/05-245 $ 12.00/0
Clearly:
\[G^\mu G_\mu = G^\mu G'_\mu \]
(4)
is a Lorentz invariant proportional to the field energy. The free field equations are simply:
\[\partial_\mu G^\mu = 0 \]
(5)
\[\{ \partial_\mu, G_\mu \} + i \{ \partial_\mu, G'_\mu \} = 0. \]
(6)
In vector notation and S. I. units these give:
\[\nabla \cdot E = 0; \quad \nabla \cdot B = 0; \]
(7)
\[\nabla \times E + \frac{\partial B}{\partial t} = 0; \quad \nabla \times B - \frac{1}{c^2} \frac{\partial E}{\partial t} = 0. \]
(8)
For field matter interaction we use the field four vector:
\[H^\mu = (0, H + i e D) \]
(9)
and the Maxwell Heaviside equations are simply:
\[\partial_\mu H^\mu = i e c \]
(10)
\[\{ \partial_\mu, H_\mu \} + i \{ \partial_\mu, H'_\mu \} = J_k. \]
(11)
In vector notation and S. I. units these are:
\[\nabla \cdot H = 0; \quad \nabla \cdot D = 0; \]
(12)
\[\nabla \times H = \frac{\partial D}{\partial t} + J; \quad \nabla \times E + \frac{\partial B}{\partial t} = 0. \]
(13)
Here \(q \) is scalar charge density and \(J \) is vector current density. Using the well known fact that \(q \) and \(J \) themselves form the components of a four vector the Maxwell Heaviside equations for matter field interaction can be combined into just one relation between four vectors:
\[\frac{1}{c} \{ -i \partial_\mu H^\mu, \{ [\partial_\mu, H_j] + i [\partial_\mu, H_k] \} \} = \left(q, \frac{1}{c} J_k \right) \]
(14)
and the free space equivalent is:
\[\{ \partial_\mu G^\mu, \{ \partial_\mu, G_j \} + i \{ \partial_\mu, G_k \} \} = 0. \]
(15)

3. Discussion

It is well known that the free space Maxwell Heaviside equations can be written in tensor form as [2, 3]:
\[\partial_\mu F^{\mu\nu} = 0 \]
(16)
\[\partial_\mu F^{\mu\nu} = 0 \]
(17)
where the tensor \(F^{\mu\nu} \) is the dual of \(F_{\mu\nu} \). A Lorentz boost in the \(z \) direction of \(G^\mu \) produces:
\[cB'_z + iE'_z = cB_z + iE_z \]
(18)
\[cB'_y + iE'_y = cB_y + iE_y \]
(19)
\[cB'_x + iE'_x = \gamma(cB'_x + iE'_x) \]
(20)
\[cB'_0 + iE'_0 = -\gamma B(cB'_z + iE'_z) \]
(21)
but a Lorentz boost in the \(z \) direction applied to \(F^{\mu\nu} \) produces:
\[cB'_z = \gamma(cB_z + \beta E_z) \]
(22)
\[cB'_y = \gamma(cB_y + \beta E_y) \]
(23)
\[cB'_x = cB'_x \]
(24)
\[B'_0 = 0 \]
(25)
a completely different result, even though eq. (13) and eqs. (14) and (15) are both precisely equivalent to eqs. (7) and (8). The only common factor is that the charge current four tensor transforms in the same way for vector representation (12) and its equivalent tensor representation, which is:
\[\partial_\mu F^{\mu\nu} = 0 \]
(26)
\[\partial_\mu H^{\mu\nu} = J. \]
(27)
The vector representation develops a timelike component under a Lorentz boost in \(z \), while the tensor representation does not. However, the underlying equation in both cases are the Maxwell Heaviside equations, which transform covariantly in both cases, and, obviously, in the same way for both the vector and tensor representations of the field components.

If we define the vectors
\[a := \frac{1}{2} (cB + iE) \]
(28)
\[b := \frac{1}{2} (cB - iE) \]
(29)
then
\[[a_x, a_y] = i a_z \text{ et cyclicum} \]
(30)
\[[b_x, b_y] = i b_z \text{ et cyclicum} \]
(31)
\[[a_x, b_y] = 0 \text{ et cyclicum} \]
(32)
Thus \(a \) and \(b \) each generate a group \(SU(2) \), and the two groups commute. The Lorentz group is then \(SU(2) \otimes SU(2) \) and transforms in a well defined way labelled by two angular momenta \((j, j')\), the first corresponding to \(a \) and the second to \(b \). Thus \(a \) and \(b \) are generators of the Lorentz group.

The vector \(G^\mu \) also transforms as the Pauli Lubanski vector in particle rest frame [4], for example a photon with a very tiny mass. This strongly suggests that the vector representation (1) is for the intrinsic spin of the electromagnetic field at a fundamental level (one photon level), while the tensor representation is for orbital angular momentum. This is also suggested by O(3) electrodynamics [5–12], where the fundamental intrinsic spin of the field is given by the Evans Vigier vector \(B^{(1)} \) obeying the cyclic relations:
\[B^{(1)} \times B^{(0)} = iB^{(0)} B^{(3)} \text{ et cyclicum}. \]
(33)

Acknowledgements. Several private and public sources of funding for AIAS are acknowledged. The U.S. Department of Energy is acknowledged for a website: http://www.osti.doe.gov/electromagnetic/ containing about sixty papers and documents on O(3) electrodynamics, and the editor of the Journal of New Energy is thanked for a special issue devoted to O(3) electrodynamics.
References