DEFINITIVE PROOF EIGHT

In general relativity, a particle at rest has angular momentum.

In special general relativity, the angular velocity of a particle of mass \(m \) with \(r \) is:

\[\omega = \frac{L}{E} \frac{2}{m(r)^2} \] \hspace{1cm} (1)

However, \(m(r) = \frac{E}{nc^2} \left(1 + \frac{E}{mc^2} \right) \), \hspace{1cm} (2)

so

\[\omega = \frac{L}{mr^2} \left(1 + \frac{E}{mc^2} \right)^{-1} \] \hspace{1cm} (3)

The angular momentum is:

\[L = mr^2 \omega \left(1 + \frac{E}{mc^2} \right) \] \hspace{1cm} (4)

which is a constant multiplied by a classical non-relativistic result:

\[L_0 = mr^2 \omega \] \hspace{1cm} (5)

So in special general relativity, the angular momentum is still non-relativistic, a reduction to absurdity. For a particle at rest:

\[E = mc^2 \] \hspace{1cm} (6)

but for eq. (4):

\[L = 2mr^2 \omega \] \hspace{1cm} (7)

meaning that a particle at rest still has finite angular momentum, a reduction to absurdity.